intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử THPT quốc gia lần 1 có đáp án môn: Toán - Trường THPT Lý Tự Trọng (Năm học 2014-2015)

Chia sẻ: Trần Minh Phương | Ngày: | Loại File: PDF | Số trang:8

73
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Cùng tham khảo đề thi thử THPT quốc gia lần 1 có đáp án môn "Toán - Trường THPT Lý Tự Trọng" năm học 2014-2015 giúp các em ôn tập lại các kiến thức đã học, đánh giá năng lực làm bài của mình và chuẩn bị kì thi sắp tới được tốt hơn với số điểm cao như mong muốn.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPT quốc gia lần 1 có đáp án môn: Toán - Trường THPT Lý Tự Trọng (Năm học 2014-2015)

  1. ĐỀ THI THỬ THPT QUỐC GIA LẦN I – NĂM HỌC 2014 – 2015 Môn : Toán SỞ GIÁO DỤC VÀ ĐÀO TẠO KHÁNH HÒA TRƯỜNG THPT LÝ TỰ TRỌNG Câu 1 (2đ) Cho hàm số y 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . 2. Gọi I là giao điểm của hai đường tiệm cận của đồ thị (C) , hãy tìm trên đồ thị (C) điểm M có hoành độ dương sao cho tiếp tuyến với đồ thị (C) tại điểm M cắt đường tiệm cận đứng , tiệm cận ngang lần lượt tại A và B thỏa mãn Câu 2 (2đ) Giải các phương trình sau : 1. 2. √ ( ) Câu 3 (1đ) Tính tích phân : ∫ Câu 4 (1đ) Trong mặt phẳng tọa độ Oxy , cho 2 điểm A(1 ;2) ; B(4 ;1) và đường thẳng d : 3x – 4y + 5 = 0 . Viết phương trình đường tròn (C) đi qua A,B và cắt d tại C , D sao cho CD = 6 . Câu 5 (1đ) Trong một chiếc hộp có chứa 6 viên bi đỏ , 5 viên bi vàng và 4 viên bi trắng . Lấy ngẫu nhiên trong hộp ra 4 viên bi . Tính xác suất để trong 4 viên bi lấy ra không có đủ cả 3 màu . Câu 6 (1đ) Cho hình chóp đều S.ABCD có độ dài cạnh đáy bằng a , mặt bên của hình chóp tạo đáy một góc . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của cắt SC , SD lần lượt tại M, N. Tính thể tích khối chóp S.ABMN theo a . Câu 7 (1đ) Giải hệ phương trình : { √ √ Câu 8 (1đ) Cho x , y , z 0 và x + y + z = 3 . Tìm giá trị nhỏ nhất của biểu thức : >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 1
  2. ĐÁP ÁN Câu 1 : 1, + Tập xác định : D = R\{1} 0,25 + ( ) ( ) + 0,25 + 0,25 + Điểm đặc biệt (0 ;1) ; ( ) + Đồ thị : 0,25 2, (1đ) + I(1 ;2) . Gọi M( 0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 2
  3. + Pttt với (C) tại M : d : + A là giao điểm của d và TCĐ => A( ) 0,25 + B là giao điểm của d và TCN => B(2 + Tính được 0,25 +2   [   0,25 √ √ [ √ [ √ √ + KL : Vậy có 2 điểm cần tìm : √ 0,25 Câu 2 + Điều kiện :  0,25 Pt  0,25    0,25 [  thỏa mãn điều kiện 0,25 [ 2. +ĐK : 0 < x 0,25 Với điều kiện trên pt  | |  [ ] | | | | >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 3
  4. { , [ [ 0,25 { , , √  0,25 { √ [ √ Đối chiếu điều kiện , nghiệm của pt : 0,25 Câu 3 ∫ ∫ Đặt t = => dt = (x+1) dx 0,25 Đổi cận x = 0 => t = 0 , x = 1 => t = e 0,25 ∫ ∫ ( ) = (t – 2ln|t+2|)| ln 0,25 Câu 4 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 4
  5. 0,25 Nhận xét A thuộc d nên A trùng với C hay D . ( Giả sử A trùng C ) Gọi I(a;b) là tâm đường tròn (C) , bán kính R > 0 . (C) đi qua A,B nên IA = IB = R √ √  b = 3a – 6 Suy ra I(a;3a-6) và R = √ (1) 0,25 | | Gọi H là trung điểm CD => IH ⊥ CD và IH = d(I;d) = R = IC = √ √ 0,25  13 [ + a = 1 => I(1;-3) ; R= 5.pt đường tròn (C) : 0,25 √ +a= => I( );R= Pt đường tròn (C) : ( ) ( ) = 0,25 Câu 5 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 5
  6. Số cách chọn 4 viên bi bất kỳ trong hộp : = 1365 cách 0,25 + Chọn 2 bi đỏ , 1 bi trắng , 1 bi vàng : 0,25 + Chọn 1 bi đỏ , 2 bi trắng , 1 bi vàng : + Chọn 1 bi đỏ , 1 bi trắng , 2 bi vàng : Số cách chọn 4 viên bi có đủ 3 màu : + = 720 cách Số cách chọn 4 viên bi không đủ cả 3 màu là : 1365 – 720 = 645 cách 0,25 Xác suất cần tìm 0,25 Câu 6 Gọi O là giao điểm của AC và BD 0,25 S.ABCD là hình chóp tứ giác đều nên SO ⊥ (ABCD) G i I , J lầ ượt tru đ ểm của AB v CD x c đ h được óc ữa mặt b SCD v ặt đ y ABCD ̂ √ √ Nhận xét đều : SO (đvtt) 0,25 Trong (SAC) , AG cắt SC tại M , M là trung điểm của SC 0,25 Chứng minh được MN // AB và N là trung điểm của SD >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 6
  7. √  = = ( đvtt ) 0,25 Câu 7 { √ √ (1)  0,25 Xét hàm số có  đồng biến trên R và (1)  x – 2 = y (3) Thay (3) vào (2) : √ √ (4) ; 0,25 + Chứng minh g(x) =√ √ đồng biến trên đoạn * + 0,25 + Chứng minh h(x) = nghịch biến trên đoạn * + g(2) = h(2) =2 => x = 2 là nghiệm duy nhất của phương trình (4) Đáp số (x;y) = (2;0) 0,25 Câu 8 Với a , b , c > 0 áp dụng bất đẳng thức Côsi ta có : ( ) Dâu ‘’ =’’ xảy ra  a = b = c Áp dụng (1) ta có 0,25 Xét f(t) = 2ln(1+t) – t ,t [0 ;3]  0,25 12ln2 – 9 =>12ln2+3 + 3ln4 => >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 7
  8. Vậy MinP = x=y=z =1 0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 8
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2