Đề thi thử THPT quốc gia lần 1 năm 2015 có đáp án môn: Toán - Trường THPT chuyên Quốc học Huế
lượt xem 13
download
Cùng tham khảo đề thi thử THPT quốc gia lần 1 năm 2015 môn "Toán - Trường THPT chuyên Quốc học Huế" kèm đáp án giúp các em ôn tập lại các kiến thức đã học, đánh giá năng lực làm bài của mình và chuẩn bị kì thi sắp tới được tốt hơn với số điểm cao như mong muốn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử THPT quốc gia lần 1 năm 2015 có đáp án môn: Toán - Trường THPT chuyên Quốc học Huế
- TRƯỜNG THPT CHUYÊN QUỐC HỌC - HUẾ KỲ THI THỬ THPT QUỐC GIA LẦN 1 NĂM 2015 Môn Toán Thời gian 180 phút Câu 1 ( ID: 82132 ) (4,0 điểm ). Cho hàm số: 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho 2. Tìm tọa độ điểm M thuộc đồ thị (C) sao cho tiếp tuyến của đồ thi (C) tại M song song với đường thẳng d: 9x + 3y – 8 = 0 Câu 2 ( ID: 82164 ) ( 2,0 điểm ) Giải phương trình ( ) Câu 3 ( ID: 82165 ) ( 2,0 điểm ) Giải phương trình √ , Câu 4 ( ID: 82166 ) ( 4,0 điểm ) 1. Giải bất phương trình , 2. Tìm hệ số của x trong khai triển của biểu thức √ với x > 0, biết n thỏa mãn: √ Câu 5 ( ID: 82167 ) (2,0 điểm ) Cho hình chóp S.ABC có hình chiếu của đỉnh S lên mặt phẳng (ABC) thuộc miền trong của tam giác ABC. Biết AB = 6; AC= 8; BC = 10, các góc giữa các mặt bên với mặt đáy bằng nhau và bằng 600. Tính thể tích khối chóp S.ABC. Xác định tâm và bán kính của mặt cầu đi qua đỉnh S và tiếp xúc với ba cạnh của tam giác ABC. Câu 6 ( ID: 82168 ) ( 2,0 điểm ). Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có tâm E(3;-4). Đường thẳng chứa cạnh AB đi qua điểm M(7;4) và trung điểm N của đoạn CD thuộc đường thẳng d: 4x + y – 10 = 0. Viết phương trình đường thẳng AB. Câu 7 ( ID: 82169 ) ( 2,0 điểm ). Giải hệ phương trình √ { √ Câu 8 ( ID: 82170 ) ( 2,0 điểm ) Cho các số thực dương a, b, c thỏa mãn a2 + b2 = 3c2 + 4. Tìm giá trị lớn nhất của biểu thức >> http://tuyensinh247.com/ - Học là thích ngay! 1
- ĐÁP ÁN Câu 1 (4,0 điểm ) 1. (2,0 điểm ) Tập xác định D = R Sự biến thiên: y’ = x2 – 2x – 3; y’= 0 * (0,5) Giới hạn ; , đồ thị hàm số không có đường tiệm cận. Hàm số đồng biến trên mỗi khoảng ( và ( , nghịch biến trên (-1 ;3) Hàm số đạt cực đại tại x = -1 ; giá trị cực đại là y = Hàm số đạt cực tiểu tại x = 3, giá trị cực tiểu là y =-5. (0,5) Bảng biến thiên ( 0,5 ) Đồ thị (0,5) 2. (2,0 điểm ) Gọi M(x0 ;y0) , tiếp tuyến với đồ thị tại M có dạng y = f’(x0)(x – x0) + y0 Tiếp tuyến tại M song song với d : 9x + 3y – 8 = 0 suy ra ( 0,5 ) Giải phương trình bậc hai này ta tìm được hai nghiệm là x0 = 0 và x0 = 2 ( 0,5) >> http://tuyensinh247.com/ - Học là thích ngay! 2
- Nếu x0 = 0 thì y0 = 4 và phương trình tiếp tuyến với (C) tại M là y = -3x + 4 Nên M(0 ;4) thỏa mãn yêu cầu bài toán. (0,5) Nếu x0 = 2 thì y0 = - và phương trình tiếp tuyến với (C) tại M là 9x + 3y – 8 = 0. Nên không thỏa mãn yêu cầu bài toán. Vậy điểm thỏa mãn yêu cầu bài toán là M(0 ;4). Câu 2 ( 2,0 điểm ) Ta có : ( ) 3 cos x + sin 3x + sin x – sin 3x = 5 + 5sin x (0,5 ) ( 0,5 ) Gọi sao cho cos , ta có cos(x+ ( 0,5) x=- Vậy tập nghiệm là S = { - với sao cho cos (0,5) Câu 3 ( 2,0 điểm ) Điều kiện { . Với điều kiện đó phương trình đã cho tương đương (0,5) 2x4 – 3x3 + 2x2 – 3x + 2 = 0 ( 0,5) Đặt t = x + , , phương trình trở thành 2t2 – 3t – 2 = 0 [ (0,5) Ta tìm được nghiệm t = 2 thỏa mãn. Với t = 2 ta có phương trình x+ x2 – 2x + 1 = 0 x = 1 thỏa mãn điều kiện. Vậy tập nghiệm S={1} ( 0,5) Câu 4 (2,0 điểm ) 1. (2,0 điểm ) Ta có >> http://tuyensinh247.com/ - Học là thích ngay! 3
- Chia cả tử và mẫu của vế trái cho 4x > 0, bất phương trình tương đương đương với ( ) Đặt t = ( ) , t > 0 bất phương trình trở thành (0,5) [ (0,5) Với ta có ( ) x Với 1 < t ta có 1 < ( ) 0 0 nên √ =∑ √ ∑ (0,5) √ √ Theo yêu cầu bài toán thì k = 4. Do đó hệ số của x là: 16. (0,5) Câu 5 ( 2,0 điểm ) >> http://tuyensinh247.com/ - Học là thích ngay! 4
- Gọi O là hình chiếu của S lên (ABC). Từ giả thiết suy ra O là tâm đường tròn nội tiếp tam giác ABC có nửa chu vi p = 12, diện tích tam giác ABC bằng 24. Giả sử (O) tiếp xúc với ba cạnh AB, BC, CA lần lượt tại M, N, P. Khi đó S = 12.OM => 0M = 2 Tam giác SOM vuông tại O, ̂ nên SO = 2√ , từ đó thể tích khối chóp V = = 16√ (0,5) Gọi I là tâm mặt cầu đi qua đỉnh S và tiếp xúc với ba cạnh của tam giac ABC. Khi đó ta phải có IM= IN =IP=IS, suy ra I là giao điểm của SO với đường trung trực của cạnh SM trong tam giác SMO, hay I là trọng tâm tam giác đều SMM’ với M’ đối xứng với M qua O. (0,5) √ Từ đó bán kính mặt cầu cần tìm là IM = (0,5) √ Câu 6 (2,0 điểm ) Gọi N(a;10-4a); N’ đối xứng với N qua E, ta có N’(6-a;4a -18). Dễ thấy E khác N (0,5) Vì ABCD là hình chữ nhật và N là trung điểm của DC nên ta có : ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗ 17a2 – 146a + 305 = 0 [ Với a = 5, ta có đường thẳng AB qua M nhận ⃗⃗⃗⃗⃗⃗ làm vecto pháp tuyến nên phương trình của nó là : AB : x – 3y + 5 = 0 (0,5) Với a , tương tự ta cũng có phương trình đường thẳng AB : 5x – 3y – 23 = 0 (0,5) >> http://tuyensinh247.com/ - Học là thích ngay! 5
- Câu 7 (2,0 điểm ) √ { √ Điều kiện { , với điều kiện đó (1) x2 + 4xy – 20y – 1 = 4y2 – x + 2√ (2) 4xy = 16y + 2√ Thay vào (1) ta có: √ √ (0,5) Xét hàm số u = g(t) = t2 + 2√ với t [ Hàm số này luôn đồng biến Vì thế √ √ x = 2y + 1 x – 1 = 2y (0,5) Thay vào (2) ta được 2x2 – 9x +8 = √ √ [ √ √ √ (0,5) √ √ √ ( √ ) √ √ √ √ { (0,5) √ √ Phương trình bậc hai ( √ ) √ có √ √ . Nghiệm x2 bị loại vì √ √ √ Hoàn toàn tương tự ta có √ √ +2√ x= √ √ √ √ Vậy hệ đã cho có nghiệm là và Câu 8 (2,0 điểm ) Đặt x = a+c, y = b+ c, x, y > 0 ta có : >> http://tuyensinh247.com/ - Học là thích ngay! 6
- P= ( ) (0,5) Theo bất đẳng thức AM – GM ta có , dấu bằng xảy ra khi và chỉ khi x = y a = b, nên :P x2 + y2 -2c(x+y) – c3 (0,5) Nhưng x2 + y2 -2c(x+y) = a2 + b2 – 2c2 = (a2 + b2 – 3c2) +c2 = 4 + c2 nên P – c3 + 4 + c2 (0,5) Xét hàm số: U = f(t) = - t3 + t2 + 4, t ; f’(t) = -3t2 + 2t ; f’(t) = 0 [ Bảng biến thiên Từ đó ta có : P , dấu bằng xảy ra khi và chỉ khi a= b= 2√ và c = >> http://tuyensinh247.com/ - Học là thích ngay! 7
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ 45 đề thi thử THPT Quốc gia năm 2020 có đáp án
272 p | 2509 | 53
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Sở GD&ĐT Hưng Yên
30 p | 238 | 7
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Liên trường THPT Nghệ An (Lần 2)
42 p | 164 | 6
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Lê Khiết (Lần 1)
24 p | 60 | 5
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Sở GD&ĐT Lào Cai
14 p | 89 | 4
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Quang Trung (Lần 1)
37 p | 70 | 3
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT Bình Minh (Lần 1)
34 p | 81 | 3
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Hạ Long (Lần 1)
30 p | 75 | 3
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Sở GD&ĐT Hà Tĩnh
26 p | 76 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Hùng Vương (Lần 1)
17 p | 58 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Hà Tĩnh
78 p | 53 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Đại học Vinh (Lần 1)
41 p | 87 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Sở GD&ĐT Bạc Liêu (Lần 1)
33 p | 119 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Bắc Ninh (Lần 1)
30 p | 89 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THCS&THPT Lương Thế Vinh (Lần 2)
38 p | 91 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Bắc Ninh (Lần 2)
39 p | 113 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên ĐHSP Hà Nội (Lần 3)
7 p | 92 | 1
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT 19-5 Kim Bôi (Lần 1)
15 p | 71 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn