intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử THPT quốc gia lần 2 năm 2015 có đáp án môn: Toán – Trường THPT Lý Thái Tổ

Chia sẻ: Trần Minh Phương | Ngày: | Loại File: PDF | Số trang:6

66
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bạn đang gặp khó khăn trước kì thi thử THPT và bạn không biết làm sao để đạt được điểm số như mong muốn. Mời các bạn cùng tham khảo đề thi thử THPT quốc gia lần 2 năm 2015 có đáp án môn "Toán – Trường THPT Lý Thái Tổ" sẽ giúp các bạn nhận ra các dạng bài tập khác nhau và cách giải của nó. Chúc các bạn làm thi tốt.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPT quốc gia lần 2 năm 2015 có đáp án môn: Toán – Trường THPT Lý Thái Tổ

  1. SỞ GD & ĐT BẮC NINH ĐỀ THI THỬ KỲ THI THPT QUỐC GIA LẦN 2 NĂM TRƯỜNG THPT LÝ THÁI TỔ 2015 Môn: TOÁN Thời gian: 180 phút, không kể thời gian phát đề. Ngày thi 09/03/2015 Câu 1 (2.0 điểm) Cho hàm số: y  x3  3(m  2)x2  9x  m  1 (Cm ) với m là tham số a. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m  0. b. Gọi  là tiếp tuyến với đồ thị (Cm ) tại giao điểm của đồ thị (Cm ) với trục tung. Viết phương trình tiếp tuyến  biết khoảng cách từ điểm A(1; 4) đến đường thẳng  bằng 82. Câu 2 (1.0 điểm) Giải phương trình: cos 2x  cosxsin x  sin x  sin2 x  cosx 5 Câu 3 (1.0 điểm) Tính tích phân: I   (3x  1) 2x  1 dx 1 Câu 4 (1.0 điểm) a. Giải bất phương trình: log2 (x  1)  2 log 4 (5  x)  1  log2 (x  2) b. Có 6 tấm bìa được đánh số 0, 1, 2, 3, 4, 5. Lấy ngẫu nhiên 4 tấm bìa và xếp thành hàng ngang từ trái sang phải. Tính xác suất để xếp được một số tự nhiên có 4 chữ số. Câu 5 (1.0 điểm) Trong mặt phẳng với hệ tọa độ Oxyz, cho hai điểm A(1; 1; 0), B(2; 0; 1) và mặt phẳng (P): 2x  y  z  1  0. Tìm tọa độ điểm C trên (P) sao cho mặt phẳng (ABC) vuông góc với mặt phẳng (P) và tam giác ABC có diện tích bằng 14 . Câu 6 (1.0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 3a và ABC  60o. Tính theo a thể tích khối tứ diện SACD và khoảng cách giữa hai đường thẳng AB và SD biết SA  SB  SC  a 7 . Câu 7 (1.0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có đường phân giác trong góc ABC đi qua trung điểm M của cạnh AD, đường thẳng BM có phương trình: x  y  2  0, điểm D nằm trên đường thẳng  có phương trình: x  y  9  0. Tìm tọa độ các đỉnh của hình chữ nhật ABCD biết đỉnh B có hoành độ âm và đường thẳng AB đi qua E(1; 2). >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 1
  2. x 2  2x  2(x 2  x) 3  2y  (2y  3)x 2  1  Câu 8 (1.0 điểm) Giải hệ phương trình:  3 2x 2  x 3  x  2  2  3  2y   2x  1 Câu 9 (1.0 điểm) Cho x, y là hai số thỏa mãn: x, y  1 và 3(x  y)  4xy. Tìm giá trị lớn nhất và giá trị nhỏ  1 1  nhất của biểu thức: P  x3  y3  3   2 x y  2 -------------------------- Hết -------------------------- SỞ GD& ĐT BẮC NINH ĐỀ THI THỬ THPT QUỐC GIA TRƯỜNG THPT LÝ THÁI TỔ LẦN 2 NĂM 2015 MÔN: TOÁN Câu 1: a. (1 điểm) TXĐ: D = R - Sự biến thiên: y’ = 3x2 – 12 x + 9 ; y’ = 0 0,25 - Giới hạn và tiệm cận: ; - Bảng biến thiên: 0,25 x 1 3 y’ + 0 - 0 + y - Hàm số đồng biến trên khoảng (- và nghịch biến trên khoảng (1;3) - Hàm số đạt cực đại tại x = 1; yCĐ = 3; đạt cực tiểu tại x = 3; yCT = -1 0,25 - Đồ thị: 0,25 b. (1 điểm) TXĐ: D= R, y’ = 3x2 – 6(m +2)x + 9 Giả sử M là giao điểm của đồ thị hàm số (Cm) với Oy M(0;-m-1) 0,25 Phương trình tiếp tuyến là y = 9x – m – 1 hay 9x – y – m -1 = 0 0,25 Ta có d(A, ) = = 0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 2
  3. Vậy phương trình tiếp tuyến là y = 9x – 95; y = 9x + 69 0,25 Câu 2: Giải phương trình PT cos2x – sin2x + cosx sinx + sin2x – (sinx + cosx) = 0 0,25 (cosx – sinx) (cosx + sinx) + sinx(cosx + sinx) – (cosx + sinx) = 0 0,25 (cosx + sinx) (cosx – sinx + sinx – 1) = 0 0,25 (cosx + sinx) (cosx – 1) = 0 0,25 0,25 Vậy nghiệm của pt đã cho là x = , Câu 3: Tính tích phân Đặt t = t2 = 2x -1 tdt = dx Đổi cận x = 1 t =1 x=5 t=3 0,25 I= t.dt = +5)t2 dt = +5 )dt 0,25 = + ) = + – )= 0,5 Câu 4: a. Giải bất pt: ĐK: 2 < x > Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 3
  4. mp (ABC) nhận =(c+b+1;1-a-c;b-a+2) là 1 vtpt Vì (ABC) (P) =0 -2a + 3b + c + 5 = 0 (2) 0,25 Mà SABC = [ ] =2 (3) Từ (1), (2) ta có 0,25 Thay vào (3) ta được (-2a)2 + (3a)2 + a2 = 4.14 a2 = 4 0,25 Vậy toạ độ điểm C thoả mãn đề bài là C(2;2;-7); C(-2;-6;9) Câu 6: Do SA = SB = SC và tam giác ABC đều nên hình chiếu của đỉnh S trên (ABCD) là trọng tâm H của tam giác ABC ABC đều BH = a Ta có SACD = SABC = 0,25 vuông tại H nên ta có SH = = 2a Vậy VSACD = 0,25 Vì H là trọng tâm tam giác ABC nên 3 HD = 2 BD Do AB // CD nên d(AB, SD) = d(AB, (SCD)) = d(B,(SCD)) = d(H, (SCD)) Ta có = = 300 + 600 = 900 0,25 Mà SH CD Nên CD (SHC) Trong (SHC) kẻ HK SC (K SC) d(H, (SCD)) = HK Tam giác SHC vuông tại H nên = HK = vậy d(AB;SD) = 0,25 Câu 7 (1 điểm) >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 4
  5. 0,25 - Kẻ đường thẳng đi qua E vuông góc BM tại H và cắt AC tại E’ H là trung điểm của EE’ Phương trình EH là x + y – 1 = 0 H = EH BM H(- Vì H là trung điểm EE’ E’(0;1) - Giả sử B(b;b+2) BM (b> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 5
  6. ( )3 + =1+ + (4) 0,25 Xét hàm số f(t) = t3 + t với t R Ta có f’(t) = 3t2 + 1 > 0 , Hàm số f(t) đồng biến trên R 0,25 Do đó, (4) f( = f( Đặt a = (a trở thành: 0,25 - Với x= (3) < 0 (loại) Vậy hệ phương trình đã cho vô nghiệm Câu 9: Đặt t = x + y (t> 0). Khi đó xy = Từ giả thiết ta có: 3(x + y ) = 4xy (x+y)2 x+y 3 t 3 0,25 Vì x, y 1 nên (x -1) (y – 1) 0 xy – (x + y) + 1 Vậy ta có 3 Mặt khác từ giả thiết ta có : Suy ra P = (x + y)3 - 3 xy(x +y) – 3( 2 + t3 - t2 + 0,25 Ta có f’(t) = 3t2 - t - (t3(5t – 9) + (t4 – 16 )) > 0 với 0,25 Suy ra f(t) là hàm số đồng biến trên đoạn [3;4] Vậy giá trị nhỏ nhất của P là f(3) = khi t = 3 x=y= GTLN của P là f(4) = khi t = 4 0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 6
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2