intTypePromotion=1

Đề thi thử THPT Quốc gia lần I năm học 2015-2016 môn Toán 12: Trường THPT Hàn Thuyên

Chia sẻ: Nguyen Thi Quynh | Ngày: | Loại File: PDF | Số trang:5

0
69
lượt xem
3
download

Đề thi thử THPT Quốc gia lần I năm học 2015-2016 môn Toán 12: Trường THPT Hàn Thuyên

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mời các bạn cùng tìm hiểu "Đề thi thử THPT Quốc gia lần I năm học 2015-2016 môn Toán 12: Trường THPT Hàn Thuyên" để nắm bắt một số thông tin phục vụ cho quá trình ôn thi và làm bài thi. Đề thi gồm có 10 câu hỏi tự luận có kèm đáp án với thời gian làm bài 180 phút.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPT Quốc gia lần I năm học 2015-2016 môn Toán 12: Trường THPT Hàn Thuyên

  1. SỞ GD&ĐT BẮC NINH ĐỀ THI THỬ THPT QUỐC GIA LẦN I TRƯỜNG THPT HÀN THUYÊN NĂM HỌC 2015 – 2016 MÔN : TOÁN 12 (Đề thi có 01 trang) Thời gian làm bài: 180 phút, không kể thời gian phát đề 2 x  3 Câu 1 (1,0 điểm). Cho hàm số y  . Khảo sát sự biến thiên và vẽ đồ thị hàm số. x2 Câu 2 (1,0 điểm). Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y  x3  3x 2  4 trên đoạn  2;1 . Câu 3 (1,0 điểm). Giải phương trình  2sin x  1   3 sin x  2 cos x  1  sin 2 x  cos x Câu 4 (1,0 điểm). a) Tìm số nguyên dương n thỏa mãn An2  3Cn2  15  5n . 20  1  b) Tìm số hạng chứa x trong khai triển P  x    2 x  2  , x  0. 5  x   4 5 Câu 5 (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, với A  2;5 , trọng tâm G  ;  ,  3 3 tâm đường tròn ngoại tiếp I  2; 2  . Viết phương trình đường thẳng chứa cạnh BC. Câu 6 (1,0 điểm). sin   cos  a) Cho tan   2 . Tính giá trị của biểu thức: P   4 cot 2  . sin   cos  b) Nhà trường tổ chức tham quan dã ngoại cho 10 thành viên tiêu biểu của Câu lạc bộ Toán học và 10 thành viên tiêu biểu của Câu lạc bộ Tiếng Anh. Trong một trò chơi, ban tổ chức chọn ngẫu nhiên 5 thành viên tham gia trò chơi. Tính xác suất sao cho trong 5 thành viên được chọn, mỗi Câu lạc bộ có ít nhất 1 thành viên. Câu 7 (1,0 điểm). Cho hình chóp S. ABCD, có đáy ABCD là hình chữ nhật với AD  2 AB  2a. Tam giác SAD là tam giác vuông cân tại đỉnh S và nằm trên mặt phẳng vuông góc với mặt đáy  ABCD  . Tính thể tích khối chóp S. ABCD và khoảng cách giữa hai đường thẳng SA và BD, Câu 8 (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD, có AD  2 AB. Điểm  31 17  H  ;  là điểm đối xứng của điểm B qua đường chéo AC . Tìm tọa độ các đỉnh của hình chữ nhật  5 5 ABCD , biết phương trình CD : x  y  10  0 và C có tung độ âm. 8 x3  y  2  y y  2  2 x  Câu 9 (1,0 điểm). Giải hệ phương trình      y  2  1 2 x  1  8 x3  13  y  2   82 x  29 Câu 10 (1,0 điểm). Cho các số thực x, y, z thỏa mãn x  2, y  1, z  0. Tìm giá trị lớn nhất của biểu 1 1 thức: P   . 2 x 2  y 2  z 2  2  2 x  y  3 y  x  1 z  1 ----------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
  2. SỞ GD&ĐT BẮC NINH HƯỚNG DẪN CHẤM TRƯỜNG THPT HÀN THUYÊN ĐỀ THI THỬ THPT QUỐC GIA LẦN I (Hướng dẫn chấm – thang điểm 10 có 04 trang) NĂM HỌC 2015 – 2016 MÔN TOÁN 12 Câu Nội dung – đáp án Điểm Tập xác định D  \ 2 Ta có lim y  2; lim y  2 x  x  0,25 lim y  ; lim y   x 2 x 2 Đồ thị có tiệm cận đứng x  2; tiệm cận ngang y  2. 7 y'    0x  2  Hàm số đồng biến trên các khoảng  ; 2  ,  2;   và    2 1 x 2 0,25 không có cực trị. Bảng biến thiên x   2  y'   0,25 y  2   2 Đồ thị 0,25 Hàm số y  f  x   x3  3x 2  4 xác định và liên tục trên đoạn  2;1 và y '  3x 2  6 x 0,25  x  0   2;1 y' 0   0,25 2  x  2   2;1 f  2   16; f  0   4; f 1  2 0,25 Vậy Giá trị lớn nhất 4 là khi x  0 , giá trị nhỏ nhất là 16 khi x  2. 0,25 PT   2sin x  1   3 sin x  2 cos x  1  cos x  2sin x  1   0,25   2sin x  1 3 sin x  cos x  1  0  2sin x  1  0  0,25  3 sin x  cos x  1  0   3  x    k 2 1 6 +) 2sin x  1  0  sin x     0,25 2  x  7   k 2  6  x  k 2   1 +) 3 sin x  cos x  1  0  cos  x       x  2  k 2 0,25  3 2  3 Điều kiện: n  , n  2 n! An2  3Cn2  15  5n  n  n  1  3  15  5n 0,25 a) 2! n  2  ! n  5 4  n 2  11n  30  0   . 0,25 n  6 k  1  Khai triển P  x  có số hạng tổng quát C20k  2 x    2   C20  1 2 x 20  k k k 20  k 20 3 k 0,25 b)  x  Ta phải có 20  3k  5  k  5  Số hạng chứa x 5 là C20 5 15 5 2 x 0,25 1/4
  3.  10 10  Gọi M là trung điểm của BC . Ta có AG   ;   . 0,25  3 3 10  4  3  2  xM  3   xM  3    AG  2GM     M  3;0  0,25  10  2  y  5   yM  0 5  3  M   3 IM  1; 2  là véc tơ pháp tuyến của BC 0,25 Phương trình BC :  x  3  2 y  0  x  2 y  3  0. 0,25 tan   1 4 P  0,25 a) tan   1 tan 2  2  1 4 P   2. 0,25 2  1 4 Số phần tử của không gian mẫu là n     C20 5 6 Gọi A là biến cố “Chọn được 5 thành viên, sao cho mỗi câu lạc bộ có ít nhất 1 thành 0,25 viên” b) Số kết quả thuận lợi cho A là C105  C105  504. 504 625 0,25 Xác suất của biến cố A là P  A  1  5  . C20 646 S Gọi I là trung điểm của AD. Tam giác SAD là tam giác vuông cân tại đỉnh S  SI  AD . Mà  SAD    ABCD   SI   ABCD  . 0,25 K S ABCD  AB.BC  a.2a  2a 2 AD H SI  a 2 A D 0,25 1 1 2a 3 I  VS . ABCD  SI .S ABCD  a.2a 2  . 3 3 3 7 O Dựng đường thẳng  d  đi qua A và song song với BD. Gọi H là hình chiếu vuông góc của I trên  d  . C 0,25 BD / /  SAH   d  BD, SA  d  BD,  SAH   B  d  D,  SAH    2d  I ,  SAH   Gọi K là hình chiếu vuông góc của I trên SH  IK   SAH   d  I ,  SAH    IH 5 a 6 a 6 0,25 Ta có IH  a  IK   d  SA, BD   . 5 6 3 H 1 2 5 tan ACB   cos ACD   cos ACH 2 5 A D 5 5 và sin ACH   cos ACD  8 N 5 5 0,25 2 5 sin ACD  5 B C 2/4
  4.   sin HCD  sin ACD  ACH   3 5 18 2 18 2 5 Ta có d  H , CD    HC  .  6 2. 5 5 3  31 65  Gọi C  c; c  10   CH    c;  c  .  5 5  0,25 2 2 c  5  31   67  Ta có:   c     c   72    C  5; 5  .  5   5  c  73  5 Phương trình BC :  x  5   y  5  0  x  y  0 . Gọi B  b; b  , ta có BC  CH  6 2  BC 2  72   b  5    b  5   72 2 2 0,25 b  11 loai    B  1;1 . b  1 Tìm được A  2; 4  , D  8; 2  . 0,25  1 2 x  1  0 x   Điều kiện:   2 y  2  0  y  2 Phương trình 8 x3  y  2  y y  2  2 x   2 x    2 x     3 3 y2  y2 0,25 Xét hàm đặc trưng: f  t   t 3  t , f '  t   3t 2  1  0t Hàm số f  t  liên tục và đồng biến trên R. Suy ra: 2 x  y  2 Thế 2 x  y  2 vào phương trình thứ hai ta được:  2x 1 2 x  1  8x3  52 x 2  82 x  29   2 x  1 2 x  1   2 x  1  4 x 2  24 x  29    2 x  1   2 x  1  4 x 2  24 x  29  0   2 x  1   2 x  1  4 x 2  24 x  29  0 0,25  1 9  2x 1  0  x   y  3  2   2 x  1  4 x  24 x  29  0 2 Giải phương trình: 2 x  1  4 x 2  24 x  29  0 Đặt t  2 x  1, t  0  2 x  t 2  1. Ta được phương trình: t   t 2  1  12  t 2  1  29  0  t 4  14t 2  t  42  0 2 t  2  t  3  loai  0,25    t  2  t  3  t 2  t  7   0  t  1  29  loai   2  1  29 t   2 3/4
  5. 3 Với t  2  x   y  11 2 1  29 13  29 103  13 29 Với t  x y 0,25 2 4 2  1   3   13  29 103  13 29  Vậy hệ phương trình đã cho có 3 cặp nghiệm:  ;3  ;  ;11 ;  ;  . 2  2   4 2  Đặt a  x  2, b  y  1, c  z . 1 1 Ta có a, b, c  0 và P   2 a 2  b2  c2  1  a  1 b  1 c  1 0,25  a  b  c  1 2 2 1 a 2  b2  c 2  1    a  b  c  1  2 Ta có 2 2 4 Dấu "=" xảy ra khi và chỉ khi a  b  c  1 .  a  b  c  3 3 Mặt khác  a  1 b  1 c  1  27 0,25 1 27 Khi đó : P   . Dấu "  "  a  b  c  1 a  b  c  1  a  b  c  13 1 27 Đặt t  a  b  c  1  t  1. Khi đó P   , t  1. t (t  2)3 1 27 1 81 Xét hàm f (t )   , t  1 ; f '(t )   2  ; t (t  2) 3 t (t  2) 4 0,25 f '(t )  0  (t  2)4  81.t 2  t 2  5t  4  0  t  4 ( Do t  1 ). 10 lim f (t )  0 t  Ta có BBT. t 1 4  f 't  + 0 - 1 f t  8 0 0 0,25 Từ bảng biến thiên ta có 1 max f (t )  f (4)   t  4 8 1 a  b  c  1 maxP  f (4)     a  b  c  1  x  3; y  2; z  1 8 a  b  c  4 1 Vậy giá trị lớn nhất của P là , đạt được khi  x; y; z    3; 2;1 . 8 Chú ý: - Các cách giải khác đúng, cho điểm tương ứng như đáp án. - Câu 7. Không vẽ hình không cho điểm.
ADSENSE
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2