Đề thi thử THPT quốc gia năm 2015 có đáp án môn: Toán - Trường THPT chuyên Vinh
lượt xem 2
download
Bạn đang gặp khó khăn trước kì thi trung học phổ thông và bạn không biết làm sao để đạt được điểm số như mong muốn. Mời các bạn cùng tham khảo đề thi thử THPT quốc gia năm 2015 có đáp án môn "Toán - Trường THPT chuyên Vinh" sẽ giúp các bạn nhận ra các dạng bài tập khác nhau và cách giải của nó. Chúc các bạn làm thi tốt.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử THPT quốc gia năm 2015 có đáp án môn: Toán - Trường THPT chuyên Vinh
- TRƯỜNG ĐẠI HỌC VINH ĐỀ THI THỬ THPT QUỐC GIA NĂM 2015 TRƯỜNG THPT CHUYÊN Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề x2 Câu 1 (2,0 điểm). Cho hàm số y . x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 1 b) Tìm m để đường thẳng d : y x m cắt đồ thị (C) tại 2 điểm nằm về hai phía của trục 2 tung. Câu 2 (1,0 điểm). a) Giải phương trình sin 2 x 2sin 2 x sin x cos x. b) Gọi z1 là nghiệm phức có phần ảo âm của phương trình z 2 2 z 3 0. Tính A z12 . Câu 3 (0,5 điểm). Giải phương trình 2 x 1 3.2 x 7 0. 3 Câu 4 (1,0 điểm). Giải bất phương trình 1 x 1 2x 3 x 1 0. 4 Câu 5 (1,0 điểm). Tính tích phân I x 1 sin 2 x dx. 0 Câu 6 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, BC 2 AB 2 AD 2a. Gọi E là điểm đối xứng với A qua D, M là trung điểm của BC. Biết rằng cạnh bên SB vuông góc với mặt phẳng đáy, góc giữa hai mặt phẳng (SCE) và (ABCD) bằng 450. Tính theo a thể tích khối chóp S.AMCE và khoảng cách giữa hai đường thẳng AM, SD. Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có AB 2 BC , B(7; 3). Gọi M là trung điểm của đoạn AB, E là điểm đối xứng với D qua A. Biết rằng N (2; 2) là trung điểm của DM, điểm E thuộc đường thẳng : 2 x y 9 0. Tìm tọa độ đỉnh D. Câu 8 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho điểm M (3; 1; 2) và mặt phẳng ( ) : 2 x 2 y z 7 0. Tìm tọa độ điểm H là hình chiếu của M lên ( ). Viết phương trình mặt cầu (S) tâm M, biết rằng () cắt (S) theo giao tuyến là một đường tròn có bán kính bằng 4. Câu 9 (0,5 điểm). An và Bình tham gia một kỳ thi, trong đó có 2 môn thi trắc nghiệm là Vật lý và Hóa học. Đề thi của mỗi môn gồm 6 mã khác nhau và các môn khác nhau có mã khác nhau. Đề thi được sắp xếp và phát cho các thí sinh một cách ngẫu nhiên. Tính xác suất để trong 2 môn thi đó An và Bình có chung đúng một mã đề thi. Câu 10 (1,0 điểm). Cho các số thực dương x, y, z thỏa mãn x 2 y 2 z 2 3. Tìm giá trị nhỏ nhất của biểu thức 2 2 x y z P x y 1 2 2 z2 2 . x y z 2 xy z 2 ------------------ Hết ------------------ Ghi chú: BTC sẽ trả bài vào các ngày 20, 21/6/2015. Để nhận được bài thi, thí sinh phải nộp lại phiếu dự thi cho BTC. Chóc c¸c em häc sinh ®¹t kÕt qu¶ cao trong Kú thi THPT Quèc gia n¨m 2015 !
- TRƯỜNG ĐẠI HỌC VINH ĐÁP ÁN ĐỀ THI THỬ THPT QUỐC GIA NĂM 2015 TRƯỜNG THPT CHUYÊN Môn: TOÁN; Thời gian làm bài: 180 phút Câu Đáp án Điểm a) (1,0 điểm) Câu 1. 1o. Tập xác định: \{1}. (2,0 2o. Sự biến thiên: điểm) * Giới hạn, tiệm cận: Ta có lim y và lim y . Do đó đường thẳng x 1 x ( 1) x ( 1) là tiệm cận đứng của đồ thị (C). Vì lim y lim y 1 nên đường thẳng y 1 là tiệm cận ngang của đồ thị (C). 0,5 x x 1 * Chiều biến thiên: Ta có y ' 0, với mọi x 1. ( x 1) 2 Suy ra hàm số nghịch biến trên mỗi khoảng ; 1 , 1; . * Bảng biến thiên: x 1 y' y 1 1 y 3o. Đồ thị: Đồ thị (C) cắt Ox tại 2; 0 , cắt Oy tại 0,5 0; 2 ; nhận giao điểm I 1; 1 của 2 hai đường tiệm cận làm tâm đối xứng. I 1 2 1 O x b) (1,0 điểm) Đường thẳng d cắt (C) tại 2 điểm nằm về hai phía của trục tung khi và chỉ khi phương x2 1 trình x m có hai nghiệm trái dấu 0,5 x 1 2 x 2 (3 2m) x 4 2m 0 có hai nghiệm trái dấu khác 1 P 4 2m 0 m 2. 1 (3 2m) 4 2m 0 0,5 Vậy giá trị của m là m 2. a) (0,5 điểm) Câu 2. (1,0 điểm) Phương trình đã cho tương đương với 2sin x cos x 2sin 2 x sin x cos x 2sin x(cos x sin x) sin x cos x 1
- tan x 1 x k sin x cos x 0 4 1 0,5 2sin x 1 sin x x k 2 , x 5 k 2 . 2 6 6 5 Vậy nghiệm của phương trình là x k , x k 2 , x k 2 , k . 4 6 6 b) (0,5 điểm) z 1 2i Ta có z 2 2 z 3 0 z 1 2i. 0,5 2 Suy ra z1 1 2i. Do đó A 1 2i 1 2 2i 3. 3 Câu 3. Phương trình đã cho tương đương với 2 x 1 7 0 2x (0,5 2 điểm) 2. 2 x 7.2 x 3 0 x 1 0,5 2 x 1 2 x x log 2 3 2 3 Vậy nghiệm của phương trình là x 1, x log 2 3. Điều kiện: x 1. Câu 4. Đặt a x 1, b 2 x , khi đó a 0, b 2 và b 2 2a 2 2. (1,0 2 điểm) 3 b 2 2a 2 3 Bất phương trình trở thành 1 a b 3a 0 a (b 3a ) 0 2 2 0,5 3 2 2 a2 a a 2 b 2a 3 4a (b 3a ) 0 1 2 2 4 1 3 0. b b b a 2 3 Đặt t b , t 0, bất phương trình trở thành 1 2t 2 4t 1 3t 0 104t 4 108t 3 40t 2 4t 1 0 (2t 1) 52t 3 28t 2 6t 1 0 (2t 1) t (52t 2 28t 6) 1 0 0,5 2t 1 0, vì t 0 và 52t 2 28t 6 0. x 1 1 Suy ra 2 x 1 2 x 4( x 1) 2 x x 2. 2x 2 Kết hợp điều kiện, suy ra nghiệm của bất phương trình là 1 x 2. 4 4 Câu 5. (1,0 Ta có I xdx x sin 2 xdx. (1) 0 0 điểm) 0,5 4 2 1 2 4 Tính I1 xdx x . (2) 0 2 32 0 4 cos 2 x Tính I 2 x sin 2 xdx. Đặt u x, dv sin 2 xdx, khi đó du dx, v . 0 2 2
- Theo công thức tích phân từng phần, ta có 4 cos 2 x 4 cos 2 x sin 2 x 4 1 0,5 I2 x dx . (3) 2 0 2 4 4 0 0 2 2 1 8 Từ (1), (2) và (3) suy ra I . 32 4 32 S Ta có CE ( SBC ) suy ra Câu 6. (1,0 điểm) 45 . SCE , ABCD SCB 0 Suy ra SB BC 2a. H Khi đó 0,5 B M C 1 1 a a 2a VS . AMCE .SB.S AMCE .2a. a3. 3 3 2 A D E Ta có AM // CD nên 1 d AM , SD d AM , SDC d M , SDC d B, SMC . (1) 2 Tam giác BDC có trung tuyến DM bằng một nửa cạnh đối diện BC nên BDC 900. Kẻ BH SD tại H. Ta có CD BD, CD SB CD SBD CD BH . Từ đó suy ra BH SCD . (2) 0,5 Trong tam giác vuông SBC ta có 1 1 1 1 1 3 2a 3 2 2 2 2 2 2 BH . (3) BH BS BD 4a 2a 4a 3 a 3 Từ (1), (2), (3) suy ra d AM , SD . 3 : 2x y + 9 = 0 Trước hết, ta chứng minh NE NB. Câu 7. E Đặt AB 2 BC 2a, ta có (1,0 điểm) NE.NB ND DE NM MB ND.NM ND.MB DE.NM DE.MB A M B(7; 3) a a 2 a 0,5 .a.cos1350 2a. .cos 450 H 2 2 2 N(2; 2) a2 a2 I a 2 0. 2 2 D C Suy ra NE NB. Do đó NE : x y 0 E ( 3; 3). Gọi I BN AD. Kẻ MH // AD ( H BI ). Ta có NI NH , HI HB. Suy ra 5 3 xI 2 1 11 BN 3 NI I ; . 5 3 yI 2 3 3 0,5 1 Lại có DI MH AI . Suy ra EI 5 ID D 1; 5 . 2 Lưu ý. Học sinh có thể đặt AB x, AD y. Biểu thị hai vectơ NE , NB qua x, y. Từ đó dễ dàng suy ra NE.NB 0. 3
- x 3 y 1 z 2 Câu 8. Ta có MH : H 2t 3; 2t 1; t 2 () H (1; 3; 3). 0,5 2 2 1 (1,0 6 2 2 7 điểm) Ta có d M , ( ) 3. 3 0,5 Suy ra bán kính của mặt cầu (S) là R 32 42 5. 2 2 2 Vậy S : x 3 y 1 z 2 25. Số cách nhận mã đề 2 môn thi của An là 6.6 36. Câu 9. Số cách nhận mã đề 2 môn thi của Bình là 6.6 36. (0,5 Suy ra số phần tử của không gian mẫu là 36.36 1296. điểm) Gọi A là biến cố “An và Bình có chung đúng một mã đề thi”. Khả năng 1. An và Bình có chung mã đề thi môn Vật lý. Số cách nhận mã đề thi của An và Bình là 6.6.5 180. 0,5 Khả năng 2. An và Bình có chung mã đề thi môn Hóa học. Số cách nhận mã đề thi của An và Bình là 6.6.5 180. Suy ra số kết quả thuận lợi cho A là A 180 180 360. A 360 5 Suy ra xác suất P( A) 0, 2778. 1296 18 2 2 2 x y 2 x y z Câu 10. Ta có P x y 2 2 z2 2 (1,0 x y z 2 xy z 2 điểm) 2 2 2 2 2 2 2 x yz x y z 2 . x y z 2 xy z 2 2 2 Xét các véc tơ u x y; , v z; . x y z Áp dụng bất đẳng thức u v u v , ta có 2 2 2 2 2 0,5 2 2 2 2 2 2 2 x y z x y z x y z x y z 2 2 2 2 1 1 1 2 9 1 1 1 x y z 2 x y z x y z x yz x y z 2 9 18 . x y z 2 2 9 x yz 9 x yz Suy ra P 18 2 18 . x yz 2 xy z x yz 3 81 t Đặt t x y z , 0 t 3 x 2 y 2 z 2 3. Khi đó P 18 t 2 3 . 81 t 2t 5 9t 3 54 3 Xét hàm số f (t ) 18 2 với 0 t 3. Ta có f '(t ) ; 0,5 t 3 2 3t 2 2t 2 9 f '(t ) 0, với mọi 0 t 3. Suy ra f (t ) f (3) 1 3 3. Suy ra giá trị nhỏ nhất của P là 1 3 3, đạt khi x y z 1. 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ 45 đề thi thử THPT Quốc gia năm 2020 có đáp án
272 p | 2510 | 53
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Sở GD&ĐT Hưng Yên
30 p | 239 | 7
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Liên trường THPT Nghệ An (Lần 2)
42 p | 164 | 6
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Lê Khiết (Lần 1)
24 p | 60 | 5
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Sở GD&ĐT Lào Cai
14 p | 89 | 4
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Quang Trung (Lần 1)
37 p | 70 | 3
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT Bình Minh (Lần 1)
34 p | 81 | 3
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Hạ Long (Lần 1)
30 p | 75 | 3
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Sở GD&ĐT Hà Tĩnh
26 p | 77 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Hùng Vương (Lần 1)
17 p | 58 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Hà Tĩnh
78 p | 54 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Đại học Vinh (Lần 1)
41 p | 87 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Sở GD&ĐT Bạc Liêu (Lần 1)
33 p | 119 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Bắc Ninh (Lần 1)
30 p | 90 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THCS&THPT Lương Thế Vinh (Lần 2)
38 p | 91 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên Bắc Ninh (Lần 2)
39 p | 113 | 2
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT chuyên ĐHSP Hà Nội (Lần 3)
7 p | 93 | 1
-
Đề thi thử THPT Quốc gia môn Toán năm 2019 có đáp án - Trường THPT 19-5 Kim Bôi (Lần 1)
15 p | 72 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn