Khóa luận tốt nghiệp đại học: Tìm hiểu phương pháp ma trận và phương pháp nhiễu loạn trong cơ học lượng tử
lượt xem 8
download
Nội dung chính của khóa luận gồm có 3 chương như sau: Chương 1: Cơ sở của cơ học lượng tử, Chương 2: Phương pháp ma trận, Chương 3: Phương pháp nhiễu loạn. Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Khóa luận tốt nghiệp đại học: Tìm hiểu phương pháp ma trận và phương pháp nhiễu loạn trong cơ học lượng tử
- TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA VẬT NGUYỄN THỊ DINH TÌM HIỂU PHƢƠNG PHÁP MA TRẬN VÀ PHƢƠNG PHÁP NHIỄU LOẠN TRONG CƠ HỌC ƢỢNG TỬ KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC HÀ NỘI, 2017
- LỜI CẢM ƠN Em xin tỏ lòng biết ơn sâu sắc đến các thầy cô giáo trong khoa Vật lý, trƣờng Đại học Sƣ phạm Hà Nội 2 đã dạy dỗ chỉ bảo và truyền đạt kiến thức cho em trong suốt quá trình học tập và rèn luyện tại trƣờng cũng nhƣ trong quá trình thực hiện khóa luận này. Đặc biệt em xin chân thành cảm ơn cô giáo: PGS.TS Lƣu Thị Kim Thanh đã tận tình hƣớng dẫn giúp đỡ em trong suốt quá trình thực hiện khóa luận tốt nghiệp này. Là một sinh viên lần đầu tiên nghiên cứu khoa học nên khóa luận của em không tránh khỏi thiếu sót, vì vậy em rất mong nhậnđƣợc những đóng góp ý kiến của các thầy cô và bạn bè để khóa luận đƣợc hoàn thiện hơn. Em xin chân thành cảm ơn! Hà Nội, ngày 28 tháng4 năm 2017 Sinh viên Nguyễn Thị Dinh
- LỜI CAM ĐOAN Em xin cam đoan đề tài khóa luận này là do sự cố gắng nỗ lực tìm hiểu, nghiên cứu của bản thân với sự giúp đỡ nhiệt tình của cô giáo: PGS.TS Lƣu Thị Kim Thanh. Công trình này không trùng lặp với các kết quả luận văn của các tác giả. Nếu sai sót em xin hoàn toàn chịu trách nhiệm. Hà Nội, ngày 28 tháng 4 năm 2017 Sinh viên Nguyễn Thị Dinh
- MỤC LỤC MỞ ĐẦU ........................................................................................................... 1 1. Lý do chọn đề tài ................................................................................................................... 1 2. Mục đ ch nghi n cứu ........................................................................................................... 2 3. Đối tƣợng và phạm vi nghiên cứu .................................................................................. 2 4. Nhiệm vụ nghiên cứu .......................................................................................................... 2 5. Phƣơng pháp nghi n cứu.................................................................................................... 2 6. Cấu trúc khóa luận ................................................................................................................ 2 CHƢƠNG 1: CÁC CƠ SỞ CỦA CƠ HỌC LƢỢNG TỬ ................................ 3 1.1.Lƣỡng tính sóng-hạt của hạt vi mô và nguyên lý bất định Heisenberg ........ 3 1.1.1.Lƣỡng tính sóng hạt của hạt vi mô................................................................... 3 1.1.2.Hệ thức bất định Heisenberg .............................................................................. 6 1.1.3.Nội dung của nguyên lý bất định ...................................................................... 8 1.1.4.Ý nghĩa của nguyên lý bất định ......................................................................... 8 1.2.Nguyên lí chồng chất các trạng thái............................................................................ 9 1.3.Hàm sóng của hạt vi mô................................................................................................. 10 1.3.1.Định nghĩa hàm sóng ........................................................................................... 10 1.3.2.Các tính chất của hàm sóng. ............................................................................. 10 1.3.3.Ví dụ về hàm sóng ................................................................................................ 11 1.3.4.Hàm sóng của hệ N hạt ....................................................................................... 11 1.3.5.Trung bình của một đại lƣợng vật lý ............................................................. 11 1.3.6. Ý nghĩa thống kê của hàm sóng..................................................................... 12 1.4. Phƣơng trình Schrodinger ............................................................................................ 13 1.4.1.Phƣơng trình Schrodinger dừng ...................................................................... 13 1.4.2.Phƣơng trình Schrodinger thời gian .............................................................. 13 1.4.3.Tính chất của phƣơng trình Schrodinger ..................................................... 14
- 1.5. Vai trò của cơ học cổ điển........................................................................ 14 1.5.1. Cơ học cổ điển là giới hạn của cơ học lƣợng tử ............................. 14 1.5.2. Cơ học cổ điển là cơ sở của cơ học lƣợng tử .................................. 15 KẾT LUẬN CHƢƠNG 1................................................................................ 16 CHƢƠNG 2: PHƢƠNG PHÁP MA TRẬN ................................................... 17 2.1. Toán tử và ma trận ................................................................................... 17 2.2. Biểu diễn của toán tử................................................................................ 21 2.2.1. Khái niệm về biểu diễn của toán tử ................................................ 21 2.2.2. Tính chất của biểu diễn của toán tử ................................................ 23 2.3. Hệ phƣơng trình ma trận .......................................................................... 23 2.3.1. Hệ phƣơng trình ma trận và sự tƣơng đƣơng với phƣơng trình trị riêng .......................................................................................................... 23 2.3.2. Dạng vecto của phƣơng trình ma trận............................................. 25 2.4. Tính chất của ma trận của các toán tử ...................................................... 26 2.5. Spinor và ma trận Pauli ............................................................................ 26 2.6. Biểu diễn ma trận của toán tử spin của electron ...................................... 27 KẾT LUẬN CHƢƠNG 2................................................................................ 32 CHƢƠNG 3: PHƢƠNG PHÁP NHIỄU LOẠN ............................................ 33 3.1. Mở đầu ..................................................................................................... 33 3.2. Trƣờng hợp nhiễu loạn không phụ thuộc thời gian ................................. 34 3.2.1. Trƣờng hợp mức năng lƣợng En(0) không suy biến .......................... 34 3.2.2. Trƣờng hợp mức năng lƣợng En(0) suy biến ..................................... 38 KẾT LUẬN CHƢƠNG 3................................................................................ 43 KẾT LUẬN CHUNG ...................................................................................... 44 TÀI LIỆU THAM KHẢO ............................................................................... 45
- MỞ ĐẦU 1. Lý do chọn đề tài Cơ học lƣợng tử ra đời vào đầu thế kỷ 20 và trở thành một lý thuyết vật lý đƣợc thừa nhận vào cuối thập kỉ 20 của thế kỉ 20. Hiện nay cơ học lƣợng tử đã trở thành một lý thuyết chủ yếu của vật lý hiện đại. Cơ học lƣợng tử nghiên cứu các tính chất của các hạt vi mô và các quy luật chi phối các hạt vi mô. Hạt vi mô là hạt có k ch thƣớc nhỏ, cỡ 10-6 m hoặc nhỏ hơn. Ngày nay, khi công nghệ và kĩ thuật hiện đại có thể tạo ra các thiết bị có k ch thƣớc cỡ nano mét (10-9 m), vai trò của cá thể một hạt vi mô trở nên quyết định thì cơ học lƣợng tử ngày càng quan trọng. Rất nhiều các công nghệ hiện đại sử dụng các thiết bị có k ch thƣớc mà ở đó hiệu ứng lƣợng tử rất quan trọng. Ví dụ nhƣ là laser, transistor, hiển vi điện tử, và ảnh cộng hƣởng từ hạt nhân. Nghiên cứu về chất bán dẫn dẫn đến việc phát minh ra các đi-ốt và transistor, đó là những linh kiện điện tử không thể thiếu trong xạ hội hiện đại. Việc giải bài toán trong cơ học lƣợng tử đều quy về việc giải phƣơng trình Schodinger để tìm năng lƣợng và hàm sóng. Trong điều kiện l tƣởng thì ta hoàn toàn có thể giải đƣợc dễ dàng. Nhƣng trong thực tế việc giải phƣơng trình này gặp nhiều khó khăn và phức tạp. Do vậy ta phải sử dụng phƣơng pháp gần đúng để phƣơng trình schodinger đƣợc giải một cách dễ dàng và ch nh xác hơn. Phƣơng pháp đó gọi là phƣơng pháp nhiễu loạn. Để giải đƣợc các bài toán cơ học lƣợng tử , chúng ta cần phải hiểu và nắm vững đƣợc các toán tử cũng nhƣ các biểu diễn của nó. Và biểu diễn ma trận của các toán tử là một vấn đề hay và hữu ích khi tìm hiểu về toán tử, giúp ta giải một số bài toán trong cơ học lƣợng tử một cách thuận lợi. 1
- Với l do đã trình bày, tôi quyết định chọn đề tài “ Tìm hiểu phƣơng pháp ma trận và phƣơng pháp nhiễu loạn trong cơ học lƣợng tử ” làm đề tài khóa luận tốt nghiệp của mình. 2. Mục đ ch nghi n cứu Giải các bài toán trong cơ học lƣợng tử một cách thuận lợi và chính xác. 3. Đối tƣợng và phạm vi nghiên cứu Phƣơng pháp ma trận và phƣơng pháp nhiễu loạn trong cơ học lƣợng tử. 4. Nhiệm vụ nghiên cứu - Giải bài toán bằng phƣơng pháp ma trận - Giải bài toán bằng phƣơng pháp nhiễu loạn . Phƣơng pháp nghi n cứu - Đọc tài liệu và tra cứu - Tham khảo ý kiến giáo vi n hƣớng dẫn - Sử dụng giải tích toán học. - Sử dụng phƣơng pháp toán lý trong vật lý lý thuyết. 6. Cấu tr c h uận - Phần 1: Mở đầu - Phần 2: Nội dung + Chƣơng1: Cơ sở của cơ học lƣợng tử + Chƣơng 2: Phƣơng pháp ma trận + Chƣơng 3: Phƣơng pháp nhiễu loạn - Phần 3: Kết luận - Phần 4: Tài liệu tham khảo 2
- CHƢƠNG 1: CÁC CƠ SỞ CỦA CƠ HỌC ƢỢNG TỬ Cơ học lƣợng tử thừa nhận một số nguyên lý, luận điểm làm cơ sở để xây dựng một lý thuyết hoàn chỉnh nhƣ các lý thuyết khác và từ đó nghi n cứu các tính chất của các hạt vi mô. Trong phần này chúng ta sẽ trình bày các cơ sở của cơ học lƣợng tử, gồm có: lƣỡng tính sóng-hạt của hạt vi mô và nguyên lý bất định Heisenberg, cơ học cổ điển, hàm sóng và phƣơng trình Schrodinger. 1.1. ƣỡng tính sóng-hạt của hạt vi mô và nguyên lý bất định Heisenberg 1.1.1.Lưỡng tính sóng hạt của hạt vi mô Chúng ta đã biết, hạt vi mô có lƣỡng tính sóng-hạt, chẳng hạn hạt photon trong những hiện tƣợng quang điện, bức xạ nhiệt biểu hiện tính chất hạt, nhƣng trong các hiện tƣợng giao thoa, nhiễu xạ, phân cực lại biểu hiện tính chất của sóng điện từ. Nhiều hiện tƣợng thực nghiệm cũng cho thấy các hạt vi mô khác đều có tính chất sóng. Chúng ta xét một số ví dụ đối với hạt electron. 1.1.1.1.Chuyển động của electron trong mô hình nguyên tử cổ điển Electron trong nguyên tử cổ điển đƣợc coi nhƣ một hạt trong mô hình nguyên tử của Bohr. Việc coi electron là hạt trong trƣờng hợp này dẫn đến những mâu thuẫn với các lý thuyết cổ điển: electron là hạt mang điện chuyển động xung quanh hạt nhân tƣơng đƣơng với một dòng điện biến thi n, do đó bức xạ sóng điện từ và mất dần năng lƣợng, nghĩa là giá trị vận tốc giảm dần, điều này tƣơng đƣơng với sự giảm khoảng cách từ electron đến hạt nhân và cuối cùng electron rơi vào hạt nhân, dẫn đến nguyên tử bị phá hủy. Từ đó suy ra rằng, không thể coi một cách đơn giản electron chỉ là hạt. Nhƣ chúng ta sẽ thấy ở dƣới, việc coi electron có tính chất sóng sẽ khắc phục đƣợc nghịch lý này. 3
- 1.1.1.2.Hiệu ứng đường ngầm Xét chuyển động của một hạt có khối lƣợng bằng m chuyển động từ trái sang phải tới một hàng rào thế có độ cao bằng U (hình 1.1) U U0 m E 1 2 3 0 a Hình 1.1 Nếu coi hạt không có t nh sóng, trƣớc khi tới hàng rào thế (miền 1: U=0) năng lƣợng E của hạt E=T+U=T, tức bằng động năng T. Trong miền 2: U=U0 và E
- Lý thuyết lƣợng tử coi hạt có tính chất sóng đã giải th ch đƣợc hiện tƣợng thực nghiệm nêu trên. Tính toán cho thấy hệ số truyền qua D của hạt từ miền 1 sang miền 3 đƣợc xác định bởi công thức: D exp 2a / 2m U 0 E Với bề dày hàng rào thế a vào cỡ 10-10 m, hiệu năng lƣợng (U0-E) vào cỡ 7,5.10-19J, áp dụng công thức trên cho electron, hệ số truyền qua xấp xỉ 0,1. Chúng ta thấy khả năng xuy n qua hàng rào thế theo hiệu ứng đƣờng ngầm là không nhỏ. 1.1.1.3.Nhiễu xạ electron Chiếu chùm electron qua một khe hẹp K và hứng trên màn huỳnh quang M. Chúng ta thấy trên màn huỳnh quang hình ảnh phân bố cƣờng độ sáng giống nhƣ hình ảnh phân bố cƣờng độ sáng trong hiện tƣợng nhiễu xạ ánh sáng (hình 1.2a) e e K M K M Hình 1.2a Hình 1.2b Để khẳng định hình ảnh nhiễu xạ trên không phải do tƣơng tác của electron với biên của khe K, ngƣời ta thực hiện thí nghiệm nhiễu xạ electron với 2 khe (hình 1.2b) và trên màn M là hình ảnh nhiễu xạ qua hai khe nhƣ trong nhiễu xạ ánh sáng. 5
- Kết quả trên chỉ có thể giải th ch đƣợc nếu coi electron có tính chất sóng. Với các hạt vi mô khác cũng có kết quả tƣơng tự. De Broglie đã coi hạt vi mô tự do tƣơng ứng với một sóng gọi là sóng De Broglie. Một hạt vi mô có năng lƣợng E và động lƣợng p tƣơng ứng với một sóng đơn sắc có tần số f và bƣớc sóng λ theo các quan hệ sau: E=hf (1.1a) p=h/λ (1.1b) 1.1.2.Hệ thức bất định Heisenberg Từ hiện tƣợng nhiễu xạ electron có thể dẫn ra một dạng hệ thức bất định Heisenberg nhƣ là một biểu hiện của tính chất sóng của electron. Khi chƣa chú ý hiện tƣợng nhiễu xạ, electron chuyển động theo phƣơng y, do vậy vx=0; vy=v. Khi có nhiễu xạ: vx≠0 ; Δvx=vx Công thức cực tiểu nhiễu xạ (hình 1.3): sinφ=kλ/b ; sinφmin=λ/b=λ/(2Δx) trong đó k=1 ứng với góc nhiễu xạ cực tiểu; sai số tọa độ theo phƣơng x bằng một nửa độ rộng b của khe (Δx=b/2). x b φ e y K M Hình 1.3 6
- Với các góc nhiễu xạ nhỏ mà ta còn quan sát đƣợc ảnh nhiễu xạ, chúng ta có: sinφ≈tgφ=vx/vy=Δvx/v Suy ra: Δvx/v≈sinφ≥sinφmin=λ/(2Δx) Do đó ΔxΔvx≥vλ/2 Thay v=p/m ; Δvx=Δpx/m ; p=h/λ Cuối cùng: Δx.Δpx≥h/2 T nh toán ch nh xác chúng ta đƣợc: Δx.Δpx≥ℏ/2 (1.2a) Một cách tƣơng tự bằng cách thay đổi kí hiệu x thành y hoặc z: ∆y.∆py≥ℏ/2 (1.2b) ∆z.∆pz≥ℏ/2 (1.2c) Các hệ thức (1.2) là các hệ thức bất định Heisenberg cho tọa độ và động lƣợng, đƣợc Heisenberg đƣa ra năm 1927. Ý nghĩa của hệ thức bất định: từ các hệ thức (1.2) chúng ta thấy tọa độ và động lƣợng không thể đồng thời xác định chính xác. Nếu trong một trạng thái nào đó, động lƣợng px có giá trị xác định, thì tọa độ x của trạng thái đó hoàn toàn bất định, ngƣợc lại tọa độ xác định thì xung lƣợng bất định. Hệ thức bất định có vai trò rất quan trọng trong vật lý hiện đại cũng nhƣ trong công nghệ tiên tiến. Hàng loạt các lĩnh vực đã ứng dụng hệ thức bất định để đánh giá khả năng tối đa của mình. Chúng ta có thể kể một vài ví dụ nhƣ: Độ phân giải của truyền hình mật độ cao chỉ có thể đạt tới một giá trị cực đại nào đó, vì mật độ của các điểm hình càng cao thì số dòng quét càng lớn và muốn nhƣ thế thì thời gian giành cho một xung sẽ nhỏ, đi làm cho sai số về 7
- năng lƣợng càng lớn. Điều đó làm cho các màu bị nhòe đi vì độ đơn sắc kém đi. Trong thông tin kĩ thuật số, tải thông tin tăng l n kéo theo tiếng ồn tăng lên, bởi vì tải thông tin tăng thì thời gian dành cho một xung giảm đi, dẫn đến sai số năng lƣợng tăng. Điều này dẫn đến việc làm tăng sai số của tần số, kéo theo làm tăng tiếng ồn. Trong kĩ thuật xung, muốn tạo đƣợc các xung sắc nét, cần phải làm nhòe năng lƣợng và ngƣợc lại. 1.1.3.Nội dung của nguyên lý bất định Trong cơ học cổ điển quỹ đạo hoàn toàn xác định trạng thái của hạt ở mọi thời điểm. Căn cứ vào quỹ đạo của hạt chúng ta có thể chỉ ra tọa độ và vận tốc của hạt ở bất kì thời điểm nào. Tuy nhi n đối với hạt vi mô, vì có độ bất định về tọa độ và động lƣợng (hoặc vận tốc) chúng ta sẽ có một tập vô số các quỹ đạo có thể của vi hạt mà không thể khẳng định là hạt chuyển động theo quỹ đạo nào. Vì thế “Không thể xác định trạng thái của hạt vi mô bằng quỹ đạo”. Đó ch nh là nguy n lý bất định Heisenberg. 1.1.4.Ý nghĩa của nguyên lý bất định Sở dĩ trạng thái của hạt vi mô không thể xác định bằng quỹ đạo chính là vì hạt có tính chất sóng thể hiện bởi hệ thức bất định Heisenberg mà chúng ta đã dẫn ra từ hiện tƣợng nhiễu xạ electron. Điều đó có nghĩa là nguy n lý bất định thể hiện rõ rệt tính chất sóng của vi hạt. Đó ch nh là ý nghĩa của nguyên lý bất định Heisenberg. Vậy thì khi nào hạt vi mô là sóng và khi nào là hạt? Dễ thấy rằng hạt vi mô bao giờ cũng vừa có tính chất sóng vừa có tính chất hạt. Tuy nhiên việc biểu hiện ra tính chất sóng hay tính chất hạt phụ thuộc vào vật mà hạt vi mô tƣơng tác. V dụ trong hiện tƣợng nhiễu xạ electron thì hạt electron biểu hiện 8
- tính chất sóng, còn trong việc đo tọa độ của hạt khi hạt qua khe hẹp thì nó lại biểu hiện tính chất hạt. Điều đó có nghĩa là dù biết trạng thái của vi hạt ở thời điểm t, chúng ta không thể khẳng định ở điểm t‟>t hạt sẽ thể hiện tính chất nào và ở trạng thái nào. Tính chất của vi hạt chỉ đƣợc biểu hiện ra khi nó tƣơng tác với các vật xung quanh. 1.2.Nguyên lí chồng chất các trạng thái. Nguyên lí chồng chất các trạng thái là một luận điểm rất cơ bản của cơ học lƣợng tử. Nội dung của nguy n l nhƣ sau: Nếu một hệ lƣợng tử nào đó có thể ở trong các trạng thái đƣợc mô tả bởi hàm sóng 1 , 2 , 3 ,... thì nó cũng có thể ở trong trạng thái đƣợc mô tả bởi tổ hợp tuyến tính bất kì của các hàm sóng đó: ck k (ck C ) k 1 Hàm và hàm c ( c phức bất kì ≠ 0) cùng tƣơng ứng với một trạng thái của hệ. Từ các nội dung của nguy n lý này, chúng ta đƣa ra một số nhận xét qua trọng trong quá trình xây dựng n n môn cơ học lƣợng tử. Các trạng thái trong cơ học lƣợng tử khác một cách cơ bản với sự chồng chất các dao động của cơ học cổ điển, mà trong sự chồng chất đó sẽ dẫn đến một dao động mới có bi n độ lớn hơn hay nhỏ hơn các bi n độ của dao động thành phần. Ngoài ra, trong cơ học cổ điển có tồn tại các trạng thái nghỉ, tức là các trạng thái ứng với dao động ở khắp mọi nơi bi n độ dao động bằng không. Còn trong cơ học lƣợng tử, các hàm sóng không mô tả một sóng thực nào cả, ở nơi nào hàm sóng bằng 0 thì nơi đó không có mặt của hạt. Giả sử các hàm 1 , 2 , 3 ,... là nghiệm của phƣơng trình xác định các trạng thái của một hệ lƣợng tử, thì để cho nguyên lý chồng chất các trạng thái đƣợc thực hiện bắt buộc phƣơng trình đó phải tuyến tính. 9
- Nguyên lý chồng chất các trạng thái phản ánh một tính chất rất quan trọng của các hệ lƣợng tử mà không có sự tƣơng tự trong vật lý cổ điển. Nguyên lý chồng chất các trạng thái chỉ áp dụng trong không gian có k ch thƣớc dài không nhỏ hơn 10-13 cm. Việc áp dụng nguyên lý này cho không gian có k ch thƣớc dài nhỏ hơn chƣa đƣợc khẳng định. 1.3.Hàm sóng của hạt vi mô Hạt vi mô có tính chất sóng nên trạng thái của nó không thể mô tả bằng quỹ đạo. Vì vậy phải có cách tiếp cận khác. Ngƣời ta đã sử dụng hàm sóng để mô tả trạng thái của vi hạt, coi việc có tồn tại hàm sóng nhƣ là một cơ sở của cơ học lƣợng tử. 1.3.1.Định nghĩa hàm sóng Hàm sóng φ(x,y,z,t) là nghiệm của phƣơng trình sóng, tức phƣơng trình vi phân cấp II, sao cho/φ(x,y,z,t)/2dV là xác suất tìm thấy hạt trong dV lân cận điểm (x,y,z) ở thời điểm t. Định nghĩa tr n cho thấy hàm sóng mô tả trạng thái của vi hạt là một hàm sóng không chỉ thỏa mãn phƣơng trình sóng mà còn có tính xác suất là tính chất mà các sóng cổ điển không có. 1.3.2.Các tính chất của hàm sóng. 1.3.2.1.Liên tục, có đạo hàm bậc nhất liên tục, trừ trường hợp thế năng bằng vô cùng. 1.3.2.2.Hàm sóng thỏa mãn nguyên lý chồng chất Nếu các hàm sóng φ1(x,y,z,t) và φ2(x,y,z,t) mô tả các trạng thái của hạt thì hàm sóng φ(x,y,z,t)=c1φ1(x,y,z,t)+c2φ2(x,y,z,t) là tổ hợp tuyến tính của φ1(x,y,z,t) và φ2(x,y,z,t) cũng mô tả trạng thái của hạt. Các tính chất 1.3.2.1 và 1.3.2.2 thể hiện hàm sóng là nghiệm của phƣơng trình sóng. 1.3.2.3.Giới nội, đơn trị 10
- x, y, z, t 2 1.3.2.4.Điều kiện chuẩn hóa hàm sóng dV 1 V 1.3.2.5.Nếu hàm sóng φ1(x,y,z,t) và φ2(x,y,z,t) mô tả trạng thái của hai phần độc lập của hệ thì hàm sóng φ(x,y,z,t)= φ1(x,y,z,t).φ2(x,y,z,t) mô tả trạng thái của hệ gồm hai phần nói trên. Các tính chất 1.3.2.3, 1.3.2.4 và 1.3.2.5 thể hiện tính xác suất của hàm sóng. 1.3.3.Ví dụ về hàm sóng Hàm sóng của một hạt tự do là hàm sóng phẳng đơn sắc gọi là sóng De Broglie ( x, y, z, t ) (r , t ) 0ei ( kr t ) 0ei ( pr Et )/ Vận tốc nhóm của sóng: E E E E vn i j k p px p y pz là vận tốc trùng với vận tốc của hạt Vận tốc pha của sóng: νph=ω/k=2πf/k ; k=2π/λ ; trong đó năng lƣợng E, động lƣợng p của hạt tự do quan hệ với các đặc trƣng của sóng De Broglie tƣơng ứng theo công thức (1.1) 1.3.4.Hàm sóng của hệ N hạt Hàm sóng của hệ N hạt có các tính chất nhƣ hàm sóng của một hạt, nhƣng phụ thuộc vào tọa độ của tất cả N hạt qi=(xi,yi,zi), i=1,2,3…,N (q, t ) (q1 , q2 , q3 ,..., qN , t ) 1.3.5.Trung bình của một đại lượng vật lý Trung bình Fˆ của một đại lƣợng vật lý F có thể tính theo hàm sóng φ(q,t) của hạt (hoặc hệ) bởi công thức sau: Fˆ * (q) Fˆ (q) (q)dq (1.6) 11
- Trong đó: Fˆ là toán tử tƣơng ứng với đại lƣợng F, sẽ đƣợc đề cập đến ở các phần sau. Giá trị trung bình Fˆ của địa lƣợng F tính theo công thức (1.6) chính là giá trị của đại lƣợng F xuất hiện trong trạng thái φ(q,t) và đƣợc gọi là trung bình lƣợng tử của đại lƣợng F. 1.3.6. Ý nghĩa thống kê của hàm sóng. Năm 1926 M.Born đã đƣa ra giả thiết cho ý nghĩa của hàm sóng. Theo giả thiết này, cƣờng độ sóng De Broglie tại mỗi điểm của không gian, ở một thời điểm đã cho, tỉ lệ với xác suất tìm thấy hạt tại điểm đã cho của không gian đó. Nhƣ vậy, theo M.Born thì đại lƣợng: (q) dq * (q) (q)dq 2 tỉ lệ với xác suất dW(q) để khi đó, chúng ta tìm thấy giá trị tọa độ của các hạt của hệ nằm trong khoảng (q,q+dq). Nếu hàm (q) đã đƣợc chuẩn hóa: (q) dq (q), (q) 1 2 thì dW(q) là giá trị xác suất: dW(q) (q) dq 2 Còn đại lƣợng: ( ) ( ) | ( )| mang ý nghĩa là mật độ xác suất tìm thấy tọa độ q của hệ ( ở thời điểm t). Từ điều diện chuẩn hóa, ta thấy rằng các hàm chuẩn hóa sai khác nhau một nhân số modul bằng đơn vị, nghĩa là hơn kém nhau một hệ số exp(iα) 12
- (α∈ R). Tuy nhiên các kết quả vật lý luôn tỉ lệ với | ( )| và vì vậy sự bất định này không còn nữa. Trong một số trƣờng hợp, tích phân ∫| ( )| không hội tụ. Lúc đó đại lƣợng ( ) | ( )| sẽ không có ý nghĩa mật độ xác suất. Tuy nhiên trong trƣờng hợp này, tỉ số giữa các đại lƣợng| ( )| ở các điểm khác nhau vẫn xác định xác suất tỉ đối của các điểm tƣơng ứng. 1.4.Phƣơng trình Schrodinger Phƣơng trình Schrodinger đƣa ra, đƣợc coi là một trong những cơ sở của cơ học lƣợng tử. Giải phƣơng trình Schrodinger chúng ta tìm đƣợc hàm sóng φ(x,y,z,t) và năng lƣợng E. Thông thƣờng với các trƣờng hợp năng lƣợng E của hạt có giá trị xác định chúng ta có thể viết φ(x,y,z,t)=φ0(x,y,z).f(t), trong đó φ0(x,y,z) là hàm sóng chỉ phụ thuộc tọa độ. 1.4.1.Phương trình Schrodinger dừng Phƣơng trình Schrodinger dừng có dạng sau: H0 ( x, y, z) E0 ( x, y, z ) , trong đó H là Hamiltonian (tức toán tử năng lƣợng) của hạt H ( / 2m) U ( x, y, z) 2 2 2 2 2 2, x y z là toán tử Laplace và U(x,y,z) là thế năng của hạt trong trƣờng lực. 1.4.2.Phương trình Schrodinger thời gian Phƣơng trình Schrodinger thời gian xác định sự phụ thuộc của hàm sóng theo thời gian: ( x, y, z, t ) i H ( x, y , z , t ) (1.18a) t 13
- Với các trƣờng hợp năng lƣợng E của hạt có giá trị xác định, toán tử Hamilton H không phụ thuộc tƣờng minh vào thời gian, hàm sóng φ(x,y,z,t) là nghiệm của các phƣơng trình Schrodinger: H ( x, y, z, t ) E ( x, y, z, t ) (1.18b) Suy ra ( x, y, z, t ) 0 ( x, y, z)exp iEt / (1.19a) Trƣờng hợp hệ N hạt các công thức (1.18) và (1.19) có dạng tƣơng tự: (q, t ) i H ( q, t ) t (q, t ) 0 (q)exp iEt / Trong đó q là tập các biến xác định trạng thái của hệ. 1.4.3.Tính chất của phương trình Schrodinger Xuất phát từ dạng chung của phƣơng trình Schrodinger, chúng ta có thể thấy phƣơng trình này có một số tính chất chung nhƣ sau: 1.3.3.1.Nghiệm của phương trình Schodinger thỏa mãn tất cả các tính chất của hàm sóng. 1.3.3.2.Năng lượng trung bình bao giờ cũng lớn hơn thế năng cực tiểu trung bình Vì H=T+U suy ra = E = + , do đó E ≥ ≥ Umin 1.3.3.3.Với U≠0 trạng thái ứng với E0, do đó hạt với E
- và động lƣợng có thể đồng thời xác định chính xác, chúng ta nhận đƣợc các kết quả phù hợp với cơ học cổ điển. Vậy cơ học cổ điển có thể coi là giới hạn của cơ học lƣợng tử khi cho h tiến tới 0 1.5.2.Cơ học cổ điển là cơ sở của cơ học lượng tử Nhƣ tr n đã biết, để làm biểu hiện ra tính chất của hạt vi mô cần cho nó tƣơng tác với một đối tƣợng nào đó. Căn cứ vào sự thay đổi trạng thái của đối tƣợng tƣơng tác ta suy ra t nh chất của hạt vi mô. Để nghiên cứu định lƣợng các tính chất của hạt vi mô phải dùng đối tƣợng tƣơng tác với hạt vi mô là máy đo. Máy đo thực chất là các giác quan của con ngƣời, có thể đƣợc mở rộng bởi các thiết bị hỗ trợ. Kết quả do thiết bị hiển thị ra mà giác quan của con ngƣời có thể nhận biết đƣợc đều là giá trị trung bình vĩ mô, vì thế bộ phận hiển thị kết quả của thiết bị đo và cơ quan cảm nhận của giác quan con ngƣời phải là hệ cổ điển, hoạt động tr n cơ sở của cơ học cổ điển. Điều đó có nghĩa là nếu không có cơ học cổ điển thì chúng ta không thể nào nghiên cứu đƣợc hạt vi mô. Vì vậy cơ học cổ điển là một trong những cơ sở của cơ học lƣợng tử. 15
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Khóa luận tốt nghiệp Đại học: Khảo sát ảnh hưởng của một số yếu tố trong quá trình lên men tỏi đen và phân tích một số hoạt chất trong tỏi đen
51 p | 380 | 104
-
Đề cương Khóa luận Tốt nghiệp Đại học: Hiệu quả sử dụng vốn tại Công ty Xuất Nhập Khẩu An Giang Angimex
71 p | 705 | 71
-
Khóa luận tốt nghiệp đại học: Nghiên cứu khả năng sinh trưởng và phát triển của chủng nấm sò trắng (Pleurotus florida) trên giá thể mùn cưa bồ đề
48 p | 326 | 68
-
Khóa luận tốt nghiệp Đại học: Thực trạng kế toán nguyên vật liệu tại Công ty Cổ phần Việt Trì Viglacera
89 p | 288 | 51
-
Khóa luận tốt nghiệp Đại học: Thiết kế phần mở đầu và củng cố bài giảng môn Hóa học lớp 11 THPT theo hướng đổi mới
148 p | 186 | 40
-
Khóa luận tốt nghiệp đại học: Người kể chuyện trong tiểu thuyết Tạ Duy Anh
72 p | 201 | 27
-
Tóm tắt Khóa luận tốt nghiệp Đại học: Quản lý rác thải tại bệnh viện đa khoa Thủ Đức hiện trạng một số giải pháp
20 p | 177 | 24
-
Khóa luận tốt nghiệp Đại học ngành Công nghệ thông tin: Phân đoạn từ Tiếng Việt sử dụng mô hình CRFs
52 p | 191 | 24
-
Khóa luận tốt nghiệp Đại học: Khảo sát khả năng hấp phụ Amoni của vật liệu đá ong biến tính
59 p | 134 | 23
-
Khóa luận tốt nghiệp Đại học: Kỹ năng nhập vai của nhà báo viết điều tra - Nguyễn Thùy Trang
127 p | 179 | 22
-
Khóa luận tốt nghiệp Đại học ngành Công nghệ sinh học: Khảo sát hiệu quả của thanh trùng lên một số chỉ tiêu chất lượng của rượu vang
53 p | 188 | 21
-
Khóa luận tốt nghiệp đại học: Nghiên cứu tình trạng methyl hóa một số chỉ thị phân tử ở bệnh nhân ung thư đại trực tràng Việt Nam
47 p | 77 | 15
-
Khóa luận tốt nghiệp Đại học: Khảo sát hiệu ứng trùng phùng tổng trong đo phổ Gamam
74 p | 92 | 12
-
Khóa luận tốt nghiệp Đại học: Xác định hoạt động phóng xạ trong mẫu môi trường bằng phương pháp FSA
65 p | 93 | 12
-
Khóa luận tốt nghiệp Đại học: Xây dựng quy trình chế tạo mẫu chuẩn Uran và Kali để xác định hoạt độ phóng xạ trong mẫu đất
54 p | 110 | 11
-
Khóa luận tốt nghiệp Đại học: Xây dựng chương trình mô phỏng vận chuyển Photon Electron bằng phương pháp Monte Carlo
71 p | 94 | 11
-
Khóa luận tốt nghiệp đại học: Nghiên cứu tình trạng methyl hoá chỉ thị phân tử SEPT9 ở bệnh nhân ung thư đại trực tràng Việt Nam
84 p | 69 | 11
-
Khóa luận tốt nghiệp Đại học: Xây dựng chương trình hiệu chỉnh trùng phùng cho hệ phổ kế gamma
69 p | 104 | 10
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn