Khoá luận tốt nghiệp: Lịch sử vật lý hạt nhân từ năm 1932 đến năm 1983 qua nghiên cứu tương tác nucleon - nucleon
lượt xem 10
download
Mục tiêu nghiên cứu của khoá luận là tìm hiểu quá trình hình thành và phát triển của Vật lý hạt nhân thông qua các lý thuyết về tương tác nucleon – nucleon. Bổ sung kiến thức về Vật lý hạt nhân. Mời các bạn cùng tham khảo!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Khoá luận tốt nghiệp: Lịch sử vật lý hạt nhân từ năm 1932 đến năm 1983 qua nghiên cứu tương tác nucleon - nucleon
- TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KHOA VẬT LÝ KHÓA LUẬN TỐT NGHIỆP LỊCH SỬ VẬT LÝ HẠT NHÂN TỪ NĂM 1932 ĐẾN NĂM 1983 QUA NGHIÊN CỨU TƯƠNG TÁC NUCLEON - NUCLEON Sinh viên thực hiện: Nguyễn Ngọc Bích Thư Ngành: Sư Phạm Vật lý Giảng viên hướng dẫn: TS. Bùi Minh Lộc TP. HỒ CHÍ MINH, THÁNG 07 NĂM 2020 1
- TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KHOA VẬT LÝ KHÓA LUẬN TỐT NGHIỆP LỊCH SỬ VẬT LÝ HẠT NHÂN TỪ NĂM 1932 ĐẾN NĂM 1983 QUA NGHIÊN CỨU TƯƠNG TÁC NUCLEON - NUCLEON Sinh viên thực hiện: Nguyễn Ngọc Bích Thư Ngành: Sư Phạm Vật lý Giảng viên hướng dẫn: TS. Bùi Minh Lộc TP. HỒ CHÍ MINH, THÁNG 07 NĂM 2020
- CHỮ KÍ XÁC NHẬN Cán bộ phản biện Cán bộ hướng dẫn TS. Nguyễn Văn Hoa TS. Bùi Minh Lộc 3
- LỜI CẢM ƠN Khóa luận tốt nghiệp này được hoàn thành với sự nỗ lực hết mình từ bản thân, cùng với sự giúp đỡ, động viên của thầy, gia đình và bạn bè. Lời đầu tiên, tôi xin chân thành cám ơn TS. Bùi Minh Lộc, cám ơn Thầy đã tận tình hướng dẫn, giúp đỡ, có những ý tưởng mới để luôn trợ giúp cho tôi hoàn thành tốt nhất khóa luận này. Nhờ Thầy mà tôi biết thêm được nhiều kiến thức, kĩ năng trong quá trình giảng dạy và cũng nỗ lực tìm hiểu hơn rất nhiều để nâng cao năng lực của mình. Cảm ơn gia đình, bạn bè, những người đã luôn động viên, khuyến khích và hỗ trợ, giúp đỡ tôi hết mình mỗi khi tôi gặp khó khăn trong quá trình thực hiện khóa luận. Một lần nữa, xin gửi đến tất cả mọi người lòng biết ơn chân thành và sâu sắc nhất. Tp. Hồ Chí Minh, tháng 7 năm 2020 Sinh viên thực hiện Nguyễn Ngọc Bích Thư 4
- MỤC LỤC Bảng 1. CÁC SỰ KIỆN NỔI BẬT CỦA VẬT LÝ HẠT NHÂN TRONG NGHIÊN CỨU TƯƠNG TÁC NUCLEON – NUCLEON TỪ 1932 – 1983 .............................. 9 A. MỞ ĐẦU ................................................................................................................... 10 I. LÝ DO CHỌN ĐỀ TÀI ......................................................................................... 10 II. MỤC TIÊU ĐỀ TÀI .............................................................................................. 11 B. NỘI DUNG ............................................................................................................... 12 CHƯƠNG 1: SỰ RA ĐỜI CỦA VẬT LÝ HẠT NHÂN .......................................... 12 1.1. Khởi đầu của lĩnh vực VLHN (từ những năm cuối thế kỷ 19) .......................... 13 1.2. Thí nghiệm của Rutherford (1909) ..................................................................... 15 CHƯƠNG 2: TƯƠNG TÁC NUCLEON – NUCLEON .......................................... 18 2.1. Deuteron - Người anh em của Hydro ................................................................. 19 2.1.1. Nucleon ........................................................................................................ 23 2.1.1.1. Proton ................................................................................................... 23 2.1.1.2. James Chadwick và hạt mới neutron. ................................................... 24 2.1.2. Thuyết Yukawa về tương tác hạt nhân ........................................................ 26 2.1.2.1. Hideki Yukawa ..................................................................................... 26 2.1.2.2. Lý thuyết của Yukawa về sự tương tác hạt nhân. ................................ 26 2.2. Tán xạ NN .......................................................................................................... 30 2.3. Quark .................................................................................................................. 33 2.3.1. Gell – Mann: Cha đẻ của mô hình hạt cơ bản quark ................................... 33 2.3.2. Quark ........................................................................................................... 34 CHƯƠNG 3: LỊCH SỬ NGHIÊN CỨU TƯƠNG TÁC NUCLEON – NUCLEON ....................................................................................................................................... 36 3.1. Tương tác Skyrme .............................................................................................. 36 5
- 3.1.1. Tony Skyrme ............................................................................................... 36 3.1.2. Tương tác Skyrme ....................................................................................... 38 3.2. Lực Migdal ......................................................................................................... 39 3.2.1. Arkady Migdal............................................................................................. 39 3.2.2. Lực Migdal .................................................................................................. 41 3.3. Tương tác Gogny ................................................................................................ 44 3.3.1. Daniel Marc Gogny ..................................................................................... 44 3.3.2. Tương tác Gogny ......................................................................................... 45 3.4. Tương tác trên bề mặt delta ................................................................................ 45 3.5. Xác định tương tác hiệu dụng bằng thực nghiệm............................................... 46 3.6. Kết luận .............................................................................................................. 47 KẾT LUẬN VÀ KIẾN NGHỊ ..................................................................................... 49 PHỤ LỤC ..................................................................................................................... 51 TÀI LIỆU THAM KHẢO........................................................................................... 53 6
- DANH MỤC BẢNG Bảng 1. Các sự kiện nổi bật của vật lý hạt nhân trong nghiên cứu tương tác nucleon – nucleon từ 1932 – 1983 ....................................................................................................... 9 Bảng 2.1. Các tính chất cơ bản của deuteron .................................................................... 22 Bảng 2.2. Phân loại quark.................................................................................................. 34 Bang 3.1. Các tham số của lực Gogny .............................................................................. 45 7
- DANH MỤC HÌNH ẢNH 1.1. Nhà triết học Democritus............................................................................................ 12 1.2. Henri Becquerel (1852 – 1908) .................................................................................. 13 1.3. Một tấm ảnh được thực hiện bởi Henri Becquerel cho thấy những ảnh hưởng của việc tiếp xúc với phóng xạ. ....................................................................................................... 14 1.4. Vợ chồng Marie – Pierre Curie .................................................................................. 15 1.5. Ernest Rutherford (1871 – 1937) và thí nghiệm tán xạ hạt alpha .............................. 17 2.1. Harold Clayton Urey (1893-1981) ............................................................................. 20 2.2. Ba đồng vị của Hydro: Hyrogen, Deuterium, Tritium .............................................. 21 2.3. Niels Bohr (1885 – 1962) ........................................................................................... 24 2.4. James Chadwick (1891 – 1974) ................................................................................. 24 2.5. Hideki Yukawa (1907 – 1981) ................................................................................... 26 2.6. Carl David Anderson (1905 – 1991) .......................................................................... 28 2.7. Cecil Frank Powel (1903 – 1969) ............................................................................... 28 2.8. Giản đồ minh họa tương tác NN trong lý thuyết Yukawa ......................................... 29 2.9. Giản đồ Feynman ....................................................................................................... 30 2.10. Gell – Mann (1929 – 2019) ...................................................................................... 33 2.11. Cấu trúc quark của meson và baryon ....................................................................... 35 2.12. Cấu trúc quark của proton và neutron ...................................................................... 35 3.1. Tony Hilton Skyrme (1922 – 1987) ........................................................................... 36 3.2. Arkady Migdal ............................................................................................................ 39 3.3. Daniel Marc Gogny .................................................................................................... 44 3.4. Steven A. Moszkowski ............................................................................................... 46 8
- Bảng 1. CÁC SỰ KIỆN NỔI BẬT CỦA VẬT LÝ HẠT NHÂN TRONG NGHIÊN CỨU TƯƠNG TÁC NUCLEON – NUCLEON TỪ 1932 – 1983 NĂM SỰ KIỆN - Sự phát hiện ra Deuterium (Urey*, Brickwedde, Murphy) 1932 - Sự phát hiện ra neutron (Chadwick*) - Mô hình hạt nhân proton – neutron (Heisenberg*) 1935 - Giả thuyết về hạt meson (Yukawa*) 1947 - Tìm được pi – meson (Powel*) 1964 - Quark model of hadrons (Gell Mann Zweig) 1974 - Charmed quark được xác nhận (Richer Ting) 1977 - Bottom quark (Lenderman) - Operation of proton – antiproton collider at 300 GeV (CERN) 1983 - Phát hiện weak boson (Rubbia) 9
- A. MỞ ĐẦU I. LÝ DO CHỌN ĐỀ TÀI Vật lý Hạt nhân (VLHN) đã có nền tảng với những bước đi đầu tiên như phát hiện hiện tượng phóng xạ vào năm 1896 hay thí nghiệm Rutherford. Tuy nhiên chỉ đến khi Chadwick tìm ra neutron vào năm 1932, thành phần của hạt nhân mới được hiểu rõ. Các công trình của Cơ học lượng tử ngay lập tức được ứng dụng để nghiên cứu cấu trúc hạt nhân. Trong vòng 50 năm tiếp theo, sự phát triển của VLHN đóng một vai trò then chốt trong sự phát triển của vật lý hiện đại, góp phần tìm ra được các hạt mới (muon, pion, …). VLHN có nhiều ứng dụng trong nhiều lĩnh vực đặc biệt là y học hạt nhân, ví dụ như hình ảnh cộng hưởng từ, … Ngay từ ban đầu, tương tác nucleon – nucleon (NN) đã trở thành một trong những vấn đề được quan tâm nghiên cứu hàng đầu. Khác với tương tác điện từ có thể được xây dựng từ những nguyên lý ban đầu của lý thuyết điện động lực học lượng tử, tương tác NN là đối tượng nghiên cứu rất phức tạp. Hơn nữa nucleon không phải là hạt cơ bản mà là trạng thái cân bằng lượng tử của quark và gluon. Sự hiểu biết về tương tác NN quyết định thành công của nghiên cứu VLHN. Hiện nay, tại Việt Nam, đã có các giáo trình phục vụ cho việc dạy học lịch sử của ngành Vật lý, trong đó, “Lịch sử Vật lý” của Thạc sĩ Nguyễn Thị Thếp là một trong những giáo trình được sử dụng phổ biến nhất ở các trường Đại học cũng như có nội dung tương đối đầy đủ và chính xác khi tóm tắt các sự kiện từ thời Vật lý cổ đại đến những năm đầu của Vật lý hiện đại ở các ngành Cơ, Nhiệt, Điện, Quang. Tuy vậy, sự phát triển của Vật lý học sau sự ra đời của thuyết tương đối và thuyết lượng tử chỉ được tóm gọn một cách sơ lược ở những trang cuối cùng của sách, trong đó, VLHN chỉ được đề cập một vài thành tựu nhất định và kết thúc ở lý thuyết về quark của Gell Mann vào năm 1963 (trang 198). Bên cạnh đó, có một sự thật không thể phủ nhận, đó là một bộ phận sinh viên chuyên ngành Vật lý nhưng lại thiếu đam mê trong việc học môn Vật lý, làm ảnh hưởng đến quá trình tiếp thu kiến thức, hệ quả là sinh viên bị điểm kém, và nó làm cho các bạn không còn động lực để học Vật lý. Cách giải quyết hiệu quả nhất lúc này là cho sinh viên tiếp xúc với Vật lý thông qua lịch sử. Lịch sử Vật lý sẽ giúp sinh viên bổ sung những kiến thức còn thiếu cũng như hệ thống lại các kiến thức rời rạc. Tương tự, lịch sử VLHN cũng sẽ đem lại các tích cực cho sinh viên. Khi được tìm hiểu về VLHN thông qua các sự kiện và nhân vật 10
- lịch sử, sinh viên sẽ tìm thấy được động lực cho bản thân, từ đó lấy lại được đam mê, hiệu quả học tập được nâng cao. II. MỤC TIÊU ĐỀ TÀI Tìm hiểu quá trình hình thành và phát triển của VLHN thông qua các lý thuyết về tương tác NN. Bổ sung kiến thức về VLHN. 11
- B. NỘI DUNG CHƯƠNG 1: SỰ RA ĐỜI CỦA VẬT LÝ HẠT NHÂN VLHN là ngành nghiên cứu về hạt nhân nguyên tử. Loại lực đặc trưng cho các tính chất của hạt nhân có nguồn gốc từ tương tác mạnh. Tuy nhiên, cả tương tác yếu lẫn tương tác điện từ cũng đóng một vai trò quan trọng. Vì những lí do này, VLHN trở thành một ngành vô cùng cần thiết để có thể kiểm chứng các đặc điểm cơ bản của hạ nguyên tử cũng như nghiên cứu các định luật nền tảng của Vật lý. Các nghiên cứu về tính chất cơ bản của vật chất vốn đã được nhen nhóm bởi những nhà triết học người Hy Lạp từ rất lâu về trước, đặc biệt là Democritus sống ở thế kỉ thứ 4 trước công nguyên. Ông tin rằng vũ trụ này được cấu thành từ hai thực thể: nguyên tử và chân không, trong đó “nguyên tử là các hạt vật chất cực nhỏ, không nhìn thấy được, không thể phân chia nhỏ hơn được nữa”. Trong vòng 2400 năm tiếp theo, quan điểm của Democritus vẫn chỉ là một dự đoán. Cho đến tận đầu thế kỉ Hình 1.1. Nhà triết học 19, khi khoa học thực nghiệm ra đời và được áp dụng, người Democritus (thế kỉ 4 TCN) ta tìm ra được các bằng chứng về sự tồn tại của nguyên tử và Nguồn: wikipedia từ đó, ý tưởng về “nguyên tử” trở thành lý thuyết khoa học toàn diện. Một khi các nhà hóa học làm sáng tỏ, hệ thống được các nguyên tử và giải thích các quy luật ảnh hưởng đến sự kết hợp của nguyên tử trong vật chất thì hiển nhiên sẽ xuất hiện nhu cầu nghiên cứu về các đặc tính cơ bản của từng nguyên tử trong nguyên tố, đó chính là Vật lý nguyên tử. Từ đó đặt nền tảng cho các công cuộc nghiên cứu nguyên tử và dần dần mở cánh cửa cho các nhà khoa học đến với VLHN. 12
- 1.1. Khởi đầu của lĩnh vực VLHN (từ những năm cuối thế kỷ 19) Sự khởi đầu của VLHN được đánh dấu bằng việc khám phá ra một dạng bức xạ mới từ muối urani của Henri Becquerel. Henri Becquerel là một nhà khoa học người Pháp, tháng 2/1896, Becquerel hi vọng sẽ chứng minh được liên hệ giữa các khoáng chất phát sáng khi tiếp xúc với ánh sáng mạnh (huỳnh quang) và một loại bức xạ điện từ mới vừa được phát hiện – tia X. Becquerel lên kế hoạch phơi một vật liệu huỳnh quang với Hình 1.2. Henri ánh nắng mặt trời, rồi đặt nó và một vật bằng kim loại trên một Becquerel (1852 – 1908) Nguồn: wikipedia tấm phim chưa phơi sáng. Nếu tấm phim ghi lại hình ảnh của vật thể, ông có thể kết luận rằng các vật liệu huỳnh quang thực sự phát ra tia X. Nhưng thời tiết liên tục có mây, buộc ông phải trì hoãn thí nghiệm của mình trong nhiều ngày. Ông quấn các tinh thể huỳnh quang của mình – một hợp chất uranium có tên là potassium uranyl sulfate – trong một tấm vải màu đen, cùng với tấm phim và một cây thánh giá đồng Maltese, và chờ một ngày nắng hơn. Vài ngày sau, khi lấy dụng cụ ra khỏi ngăn kéo, Becquerel đã vô cùng ngạc nhiên khi phát hiện hình ảnh cây thánh giá xuất hiện trên phim – mặc dù nó chưa từng bị phơi nắng. Kết luận duy nhất là các tinh thể tự phát ra bức xạ. Becquerel quyết định lặp lại các điều kiện của thí nghiệm: Ông đặt trực tiếp một tinh thể muối uranium lên một tấm phim, đặt gián tiếp qua một tấm nhôm và kính trên hai tấm phim khác. Sau khi được đặt trong bóng tối vài giờ, tất cả ba tấm bị làm đen bởi bức xạ (tinh thể tiếp xúc trực tiếp với phim cho thấy sự đen tối mạnh nhất). “Bây giờ tôi tin rằng muối uranium tạo ra bức xạ vô hình, ngay cả khi chúng được giữ trong bóng tối” – ông viết trong nhật ký thí nghiệm của mình – Đó chính là hiện tượng phóng xạ tự nhiên. 13
- Hình 1.3. Một tấm ảnh được thực hiện bởi Henri Becquerel cho thấy những ảnh hưởng của việc tiếp xúc với phóng xạ. Một cây thánh giá bằng kim loại đặt giữa tấm phim và muối unrni phóng xạ đã để lại một cái bóng rõ ràng trên tấm phim (nguồn: https://timeline.web.cern.ch/becquerel-discovers-radioactivity) Trước cuối thế kỉ 19, phần lớn các hiện tượng Vật lý quan sát được đều được giải thích bằng Vật lý cổ điển. Tuy nhiên, phóng xạ là một những bài toán mà Vật lý cổ điển không thể giải quyết được. Và chính khát khao tìm câu trả lời cho những hiện tượng này, đồng thời thiết lập một hệ thống các định luật Vật lý đã tạo cơ hội cho Vật lý hiện đại được hình thành. Nhờ có phát minh của Becquerel, người ta quan tâm nhiều hơn về các chất phóng xạ. Năm 1898, Pierre và Marie Curie đã phát hiện hai nguyên tố phóng xạ mới được gọi là poloni và radi (Becquerel cùng với Pierre và Marie Curie đạt giải Nobel Vật lý năm 1903). Cũng trong năm này, trong thời gian làm việc tại phòng thí nghiệm Cavendish của trường Đại học Cambridge, Ernest Rutherford đã thông báo về sự tồn tại của hai tia phóng xạ trong bức xạ urani và chỉ ra một số tính chất của chúng. Ông đặt tên cho tia dễ dàng bị chặn lại hơn (hay khó có khả năng đâm xuyên) là tia alpha (α) gồm các hạt 4He mang điện tích dương, còn tia dễ đâm xuyên hơn là tia beta (β) gồm các hạt electron hoặc positron, theo tên hai kí tự đầu tiên của bảng chữ cái Hi Lạp. Rutherford cũng chứng minh rằng phóng xạ là một hiện tượng phân rã tự phát của hạt nhân. Năm 1900, Paul Villard (nhà khoa học 14
- người Pháp) đã phát hiện thêm 1 dạng bức xạ mới. Năm 1903, Ernest Rutherford đặt tên cho nó là tia gamma (γ). Hình 1.4. Vợ chồng Marie – Pierre Curie Marie Curie là phụ nữ đầu tiên được nhận giải Nobel danh giá và đồng thời cũng là người duy nhất nhận được hai giải thưởng Nobel ở hai lĩnh vực khác nhau: hóa học và vật lý. (nguồn: Wikipedia) 1.2. Thí nghiệm của Rutherford (1909) Năm 1909, dưới sự chỉ đạo của Ernest Rutherford, tại phòng thí nghiệm vật lý của Đại học Manchester, Hans Geiger (phụ tá của Rutherford) và Ernest Marsden (sinh viên) thực hiện thí nghiệm chiếu dòng hạt alpha vào các lá vàng mỏng và đo số hạt alpha truyền qua và tán xạ. Kết quả đáng chú ý nhất xảy ra với lá vàng dày 60 nanomet: hầu hết các hạt alpha đi qua lá vàng mà không bị lệch hướng, một số hạt bị lệch hướng, và cứ khoảng chừng 8000 hạt thì có một hạt bị tán xạ ngược lại và góc tán xạ lớn hơn 90o . Rutherford đã mô tả lại kết quả này một cách đầy hình tượng: “Đó là sự kiện đáng chú ý nhất trong cuộc đời tôi. Điều này giống như khi bạn bắn một phát súng đại bác vào một mảnh giấy và viên đạn bay ngược trở lại trúng vào bạn”. Kết quả này đã đưa ra một cái nhìn hoàn toàn khác với giả thuyết trước đó về nguyên tử, mô hình “pudding mận” (“plum pudding”) của Joseph John Thomson (đạt giải Nobel Vật lý năm 1906). Nếu cấu trúc nguyên tử giống như bánh pudding mận, khi mà điện tích 15
- âm và điện tích dương trộn lẫn với nhau, giống như quả mận được trộn lẫn trong bánh, nó sẽ trung hòa điện tích và gần như không có lực tĩnh điện giữa các nguyên tử và các hạt alpha, thì các hạt alpha sẽ đi xuyên qua lá vàng. Rutherford suy luận rằng sự phản xạ của hạt alpha đã cho minh chứng nguyên tử có một lõi nhỏ giống như là những lá chắn cứng đối với các hạt alpha. Hạt alpha có tốc độ rất lớn, khoảng 10.000 km/s. Để đẩy bật ngược được nó, thì phải có một lực đẩy tĩnh điện rất mạnh từ các điện tích dương của nguyên tử trong lá vàng. Điều đó chỉ có thể xảy ra khi mà toàn bộ điện tích dương tập hợp lại trong một thể tích rất nhỏ. Năm 1911, Rutherford đã giải thích kết quả thí nghiệm dựa trên giả thuyết về “mẫu hành tinh nguyên tử”: nguyên tử có cấu tạo rỗng chứa một hạt nhân nhỏ mang điện tích dương trong lõi với các điện tử mang điện tích âm chuyển động xung quanh nó trên những quỹ đạo khác nhau, giống như các hành tinh quay xung quanh Mặt trời. Phần lõi này được gọi là hạt nhân nguyên tử. Do những giới hạn mà thời điểm đó, người ta chưa thể hiểu biết nhiều về cấu trúc của thế giới vi mô như ngày nay. Mô hình nguyên tử của Rutherford là mô hình đầu tiên đề xuất một hạt nhân nhỏ bé nằm tại tâm của nguyên tử, có thể coi là sự khai sinh cho khái niệm hạt nhân nguyên tử. Sau khám phá này, việc nghiên cứu về nguyên tử được tách ra làm hai nhánh, Vật lý hạt nhân nghiên cứu về hạt nhân nguyên tử và Vật lý nguyên tử nghiên cứu về cấu trúc của các electron bay quanh. 16
- Hình 1.5. Ernest Rutherford (1871 – 1937) và thí nghiệm tán xạ hạt alpha Ernest Rutherford là một nhà Vật lý người New Zealand hoạt động trong lĩnh vực phóng xạ và cấu tạo nguyên tử - “cha đẻ” của VLHN. Nhờ làm sáng tỏ hiện tượng tán xạ trong thí nghiệm với lá vàng mà ông được giải Nobel hóa học vào năm 1908. (nguồn: https://www.iespfq.cat/moodle) Có thể nói, khám phá của Rutherford vô cùng quan trọng và chính là tiền đề cho sự phát triển của VLHN hiện đại sau này vì vậy, Ernest Rutherford được mệnh danh là “cha đẻ” của VLHN. 17
- CHƯƠNG 2: TƯƠNG TÁC NUCLEON – NUCLEON Lực hạt nhân (hay là sự tương tác giữa nucleon với nucleon hoặc là phần thặng dư của lực tương tác mạnh) là lực tương tác giữa hai hay nhiều nucleon. Nó là nguyên nhân gây ra sự gắn kết của các proton và các neutron ở trong hạt nhân nguyên tử. Những đặc điểm cơ bản của lực hạt nhân: Lực hạt nhân có cường độ rất lớn. Tương tác hạt nhân là tương tác mạnh. Ví dụ, năng lượng liên kết do lực hạt nhân gây ra đối với hạt nhân deutron bằng 2,23 MeV, trong khi năng lượng liên kết do lực điện từ gây ra đối với hydrogen bằng 13,6 eV. Lực hạt nhân có tầm tác dụng ngắn cỡ fermi, tức là cỡ 1013 cm. Điều này suy ra từ thí nghiệm của Rutherford vè tán xạ của hạt alpha trên hạt nhân. Lực hạt nhân có tính bão hòa, mỗi nucleon trong hạt nhân chỉ tương tác với một số nucleon quanh nó mà thôi, điều này thể hiện ở năng lượng liên kết trung bình trên nucleon hầu như giống nhau đối với các hạt nhân khác nhau. Lực hạt nhân có tính độc lập điện tích. Trong các thí nghiệm về tán xạ NN, bao gồm tán xạ n-n, n-p, p-p, sau khi loại bỏ phần tương tác Coulomb trong tán xạ p-p, người ta thấy có sự đồng nhất về dáng điệu tán xạ của ba quá trình trên. Do đó, về phương diện lực hạt nhân thì ba quá trình tương tác trên là như nhau. Lực hạt nhân phụ thuộc vào spin hạt nhân, tức là phụ thuộc vào sự định hướng tương đối giữa spin của các nucleon. Điều này thể hiện trong tán xạ neutron – proton năng lượng thấp. Lực hạt nhân không đối xứng tâm, tức là có tính chất tensor. Điều đó có nghĩa là phương của lực tác dụng tương hỗ giữa hai nucleon không trùng với phương nối hai nucleon đo.s Khi đó, lực hạt nhân không bảo toàn moment quỹ đạo. Tính không xuyên tâm của lực hạt nhân suy từ sự có mặt của moment tứ cực điện của deutron. Lực hạt nhân có tính trao đổi. Khi va chạm nhau, các nucleon trao đổi với nhau điện tích, hình chiếu spin, … tính chất trao đổi này suy ra từ các thí nghiệm tán xạ neutron năng lượng cao lên proton. 18
- Lực hạt nhân có lõi đẩy mạnh, tức là khi đạt đến khoảng cách đủ nhỏ, lực hạt nhân không hút các nucleon lại nữa mà trở thành đẩy chúng với cường độ lớn. Lõi đẩy bắt đầu xuất 13 hiện ở khoảng cách cỡ 0,5 fermi, tức là cỡ 0,5.10 cm. Lực hạt nhân có thể phụ thuộc mạnh vào vận tốc các hạt va chạm. 2.1. Deuteron - Người anh em của Hydro Deuterium, hay còn gọi là hydro nặng, là một đồng vị bền của hydro có mặt phổ biến trong các đại dương của Trái Đất với tỉ lệ khoảng 1 nguyên tử trong 6400 nguyên tử hydro (khoảng 156,25 ppm). Deuterium chiếm khoảng 0,0156% (tương đương về khối lượng: 0,0312%) trong tổng số hydro tự nhiên trong các đại dương của Trái Đất; mức độ phong phú thay đổi nhỏ theo từng loại hình nước tồn tại trong tự nhiên. Hạt nhân của deuterium (được gọi là deuteron) chứa 1 proton và 1 neutron, trong khi các hạt nhân của hydro thông thường không có neutron. Tên đồng vị này có nguồn gốc từ tiếng Hy Lạp deuteros nghĩa là "2", ám chỉ có 2 hạt cấu tạo nên hạt nhân. Vào những năm 1920, William Giauque và Herrick Johnston đã phát hiện ra các đồng vị bền của oxy. Ở thời điểm đó, đồng vị chưa được hiểu rõ; James Chadwick cũng không khám phá ra neutron cho đến tận năm 1932. Người ta phân loại các đồng vị dựa trên các tính chất hóa học và vật lý. Loại thứ hai được xác định bằng máy quang phổ khối. Vì người ta biết rằng trọng lượng nguyên tử của oxy nặng gần gấp 16 lần so với hydro, Raymond Birge và Donald Menzel đưa ra giả thuyết rằng hydro cũng có nhiều hơn một đồng vị. Dựa trên sự khác biệt giữa kết quả của hai phương pháp, họ dự đoán rằng chỉ có một nguyên tử hydrogen trong 4500 đồng vị nặng. Năm 1931, Urey bắt đầu tìm kiếm đồng vị hydro. Urey và George Murphy đã tính toán từ dãy Balmer rằng đồng vị nặng sẽ có các vạch được dịch chuyển từ 1,1 đến 1,8 ångströms ( 1,1.1010 ~ 1,8.1010 m ). Urey đã truy cập vào 6,4 m lưới quang phổ, một thiết bị nhạy cảm được cài đặt gần đây tại Columbia và có khả năng giải quyết các dãy Balmer. Với độ phân giải 1 Å trên mỗi milimet, máy sẽ tạo ra sự khác biệt khoảng 1 milimét. Tuy nhiên, vì chỉ có một nguyên tử trong 4500 là nặng, nên đường kẻ trên máy quang phổ rất mờ nhạt. Do đó, Urey quyết định trì hoãn công bố kết quả của họ cho đến khi ông có thêm bằng chứng thuyết phục rằng đó là hydro nặng. 19
- Hình 2.1. Harold Clayton Urey (1893-1981) là nhà hóa học người Mỹ được coi là người mở hướng đi mới cho công nghệ năng lượng hạt nhân. (nguồn: https://genk.vn) Urey và Murphy tính toán từ mô hình Debye rằng đồng vị nặng sẽ có điểm sôi cao hơn một chút so với các đồng vị nhẹ. Bằng cách làm ấm cẩn thận hydro lỏng, 5 lít hydro lỏng có thể được chưng cất thành 1 mililit, sẽ được tăng thêm trong đồng vị nặng từ 100 đến 200 lần. Để có được năm lít hydro lỏng, họ đã đi đến phòng thí nghiệm đông lạnh tại Cục Tiêu chuẩn Quốc gia ở Washington, DC, nơi họ có được sự giúp đỡ của Ferdinand Brickwedde , người mà Urey đã biết tại Johns Hopkins. Mẫu đầu tiên mà Brickwedde gửi đi đã bốc hơi ở 20 K (−253,2 ° C; −423,7 ° F) ở áp suất 1 khí quyển tiêu chuẩn (100 kPa). Trước sự ngạc nhiên của họ, điều này cho thấy không có bằng chứng của sự tăng thêm. Brickwedde sau đó đã chuẩn bị một mẫu thứ hai bay hơi ở 14 K (−259,1 ° C; −434,5 ° F) ở áp suất 53 mmHg (7,1 kPa). Trên mẫu này, các dòng Balmer cho hydro nặng gấp 7 lần. Bài báo công bố phát hiện ra hydro nặng, sau này được đặt tên là deuterium, được Urey, Murphy và Brickwedde cùng xuất bản năm 1932. Urey được trao giải thưởng Nobel về hóa học năm 1934 "vì phát hiện ra hydro nặng". Ông từ chối tham dự buổi lễ tại Stockholm, để ông có thể có mặt khi con gái Mary Alice được sinh ra. 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Khóa luận tốt nghiệp Văn hóa du lịch: Tìm hiểu các di tích lịch sử văn hóa nhằm phát triển du lịch văn hóa ở huyện Duy Tiên - Tỉnh Hà Nam trong giai đoạn hiện nay
80 p | 452 | 79
-
Khóa luận tốt nghiệp Văn hóa du lịch: Tìm hiểu các di tích lịch sử văn hoá ở huyện Đông Triều – Quảng Ninh phục vụ cho phát triển du lịch
112 p | 312 | 62
-
Khóa luận tốt nghiệp Văn hóa du lịch: Khai thác các giá trị lịch sử - văn hóa của làng Cổ Loa, huyện Đông Anh, thành phố Hà Nội phục vụ phát triển du lịch
94 p | 249 | 41
-
Khóa luận tốt nghiệp Văn hóa du lịch: Tìm hiểu về công tác tổ chức sự kiện “Năm du lịch quốc gia 2013” tại Hải Phòng
85 p | 221 | 33
-
Khóa luận tốt nghiệp Văn hóa du lịch: Một số di tích lịch sử tôn giáo tín ngưỡng ở Đồ sơn và vai trò của nó đối với sự phát triển du lịch
78 p | 149 | 33
-
Khóa luận tốt nghiệp Văn hóa du lịch: Nghiên cứu sức hấp dẫn của di tích lịch sử văn hoá tại nội thành Hải Phòng với du khách
90 p | 180 | 30
-
Khóa luận tốt nghiệp Văn hóa du lịch: Nghiên cứu sức hấp dẫn của các di tích lịch sử văn hóa tại thành phố Nam Định và các huyện lân cận với du khách
109 p | 177 | 29
-
Khóa luận tốt nghiệp Văn hóa du lịch: Bảo tàng Hải Phòng trong phát triển du lịch thành phố
167 p | 191 | 29
-
Khóa luận tốt nghiệp Văn hóa du lịch: Nghiên cứu phát triển du lịch văn hoá ở huyện Thủy Nguyên, Hải Phòng
81 p | 136 | 28
-
Khóa luận tốt nghiệp Văn hóa du lịch: Tìm hiểu các di tích lịch sử văn hóa tiêu biểu của tỉnh Quảng Ninh phục vụ khai thác phát triển du lịch
109 p | 126 | 26
-
Khóa luận tốt nghiệp Văn hóa du lịch: Tháp Tường Long - di tích lịch sử văn hóa trong sự phát triển du lịch Hải Phòng
113 p | 148 | 24
-
Khóa luận tốt nghiệp Văn hóa du lịch: Tìm hiểu giá trị lịch sử, văn hóa của làng ca trù Lỗ Khê, xã Liên Hà huyện Đông Anh, Hà Nội
104 p | 161 | 21
-
Khóa luận tốt nghiệp Văn hóa du lịch: Khai thác giá trị lịch sử, văn hoá các di tích thờ tướng quân nhà Trần ở huyện Thuỷ Nguyên – Hải Phòng phục vụ cho du lịch
96 p | 120 | 18
-
Khóa luận tốt nghiệp Lịch sử: Trung Quốc đối với cuộc kháng chiến chống Pháp của Việt Nam
81 p | 34 | 14
-
Khóa luận tốt nghiệp: Lịch sử Tuyến đường sắt răng cưa Tháp Chàm – Đà Lạt (1898 – 1945)
77 p | 49 | 11
-
Khóa luận tốt nghiệp: Tìm hiểu đền thờ và lễ hội đền Nam Hải Đại Thần Vương tại Đồ Sơn, Hải Phòng phục vụ phát triển du lịch
64 p | 12 | 7
-
Khóa luận tốt nghiệp Lịch sử: Xây dựng thư viện điện tử hổ trợ cho dạy học lịch sử Việt Nam (Chương trình lớp 11-12)
132 p | 43 | 6
-
Khóa luận tốt nghiệp: Thực trạng và giải pháp nâng cao chất lượng quản trị nhân lực tại khách sạn Nhật Hạ 3 (Nhat Ha L’Opera hotel)
76 p | 16 | 6
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn