KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2011 Môn: Toán - Khối A, B
lượt xem 7
download
Tham khảo tài liệu 'kỳ thi tuyển sinh đại học, cao đẳng năm 2011 môn: toán - khối a, b', tài liệu phổ thông phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2011 Môn: Toán - Khối A, B
- KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2011 Môn: Toán. Khối A , B . Thời gian làm bài: 180 phút (Không kể thời gian giao đề) 2x 1 Câu I. (2 điểm). Cho hàm số (1). y x 1 1) Khảo sát và vẽ đồ thị (C) của hàm số (1). 2) Tìm đ iể m M thuộc đồ thị (C) để tiếp tuyến của (C) tại M với đường thẳng đi qua M và giao điểm hai đường tiệm cận có tích hệ số góc bằng - 9. Câu II. (2 điểm) 1 1 2. 1) Giải phương trình sau: x 2 x2 sin 4 2 x c os 4 2 x c os 4 4 x . 2) Giải phương trình lượng giác: tan( x ). tan( x ) 4 4 Câu III. (1 điểm) Tính giới hạn sau: 3 ln(2 e e.c os2 x ) 1 x 2 L lim x2 x0 Câu IV . (2 điểm) Cho hình nón đỉnh S có độ dài đường sinh là l, bán kính đường tròn đáy là r. Gọi I là tâm mặt cầu nội tiếp hình nón (mặt cầu bên trong hình nón, tiếp xúc với tất cả các đường sinh và đường tròn đáy của nón gọi là mặt cầu nội tiếp hình nón). 1. Tính theo r, l diện tích mặt cầu tâm I; 2. Giả sử độ dài đường sinh của nón không đổi. Với điều kiện nào c ủa bán kính đáy thì diện tích mặt cầu tâm I đạt giá trị lớn nhất? Câu V (1 điểm) Cho các số thực x, y, z thỏa mãn: x2 + y2 + z2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: P = x3 + y3 + z3 – 3xyz. 1 Câu VI. (1 đ iểm) Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có tâm I ( ; 0) 2 Đường thẳng AB có phương trình: x – 2 y + 2 = 0, AB = 2AD và hoành độ điểm A âm. Tìm tọa độ các đỉnh của hình chữ nhật đó. Câu VII. (1 điểm) Giải hệ phương trình : x 2 2010 2 2 2009 y x y 2 2010 3 log 3 ( x 2 y 6) 2 log 2 ( x y 2) 1 --------------- HẾT --------------- Ghi chú: - Thí sinh không được sử dụng bất cứ tài liệu gì! - Cán bộ coi thi không giải thích gì thêm! Họ và tên thí sinh: ……….…………………Số báo danh:
- HƯỚNG DẪN CÂU NỘI DUNG ĐIỂM I.1 2x 1 3 Hàm số: y 2 x 1 x 1 +) Giới hạn, tiệm cận: lim y 2; lim y 2; lim y ; lim y x ( 1) x ( 1) x x - TC đ ứng: x = -1; TCN: y = 2. 3 +) y ' 0, x D 2 x 1 +) BBT: x - -1 + y' + || + y 2 || 2 +) ĐT: 1 điểm 8 6 4 2 5 10 -10 -5 -2 -4 -6 I.2 y yI 3 3 +) Ta có I(- 1 ; 2). Gọi M (C ) M ( x0 ; 2 ) k IM M xM xI ( x0 1) 2 x0 1 3 +) Hệ số góc của tiếp tuyến tại M: kM y '( x0 ) 1 điểm 2 x0 1 +) ycbt kM .k IM 9 +) Giải đ ược x0 = 0; x0 = -2. Suy ra có 2 điểm M thỏa mãn: M(0; - 3), M(- 2 ; 5) II.1 +) ĐK: x ( 2; 2) \ {0} x y 2 xy 2 x 2 , y 0 Ta có hệ: 2 +) Đặt y 2 x y 2 1 3 1 3 x x 1 điểm 2; 2 +) Giải hệ đx ta đ ược x = y = 1 và 1 3 1 3 y y 2 2 1 3 +) Kết hợp điều kiện ta đ ược: x = 1 và x 2 II.2 +) ĐK: x k ,k Z 4 2 ) tan( x) tan( x) tan( x) cot( x) 1 4 4 4 4 1 điểm 12 11 sin 2 x cos 2 x 1 sin 4 x cos 2 4 x 4 4 2 22 pt 2 cos 4 4 x cos 2 4 x 1 0
- +) Giải pt đ ược cos24x = 1 cos8x = 1 x k và cos24x = -1/2 (VN) 4 +) Kết hợp ĐK ta được nghiệm của phương trình là x k ,k Z 2 III 3 3 ln(2 e e.c os2 x ) 1 x 2 ln(1 1 c os2 x ) 1 1 x 2 L lim lim x2 x2 x 0 x 0 2 2 x) 1 3 1 x 2 2 2 x) ln(1 2 sin lim ln(1 2 sin 1 1 điểm lim x 0 x0 x2 3 (1 x 2 ) 2 3 1 x 2 1 x2 x2 2 sin 2 x 2 sin 2 x 2 sin 2 x 2 sin 2 x 15 2 33 IV.1 +) Gọi rC là bán kính mặt cầu nội tiếp nón, và cũng là bán kính đường tròn nội tiếp tam giác SAB. S 1 S SAB prC (l r ).rC SM . AB 2 l 2 2 1 điểm l r .2r l r Ta có: rC r 2(l r ) lr I lr 2 2 +) Scầu = 4 r C 4 r l r r A M B +) Đặt : IV.2 lr 2 r 3 y (r ) ,0 r l lr 5 1 r l 2 2 2r (r rl l ) 2 ) y '(r ) 0 (l r ) 2 5 1 r l 2 +) BBT: 1 điểm r 5 1 l 0 l 2 y'(r) y(r) ymax 5 1 +) Ta có max Scầu đạt y(r) đạt max r l 2 +) Ta có V P ( x y z )( x 2 y 2 z 2 xy yz zx ) x 2 y 2 z 2 ( x y z )2 P ( x y z) x2 y 2 z 2 2 2 ( x y z )2 ( x y z )2 P ( x y z) 2 ( x y z ) 3 2 2 1 điểm 13 +) Đặt x + y + z = t, t 6 ( Bunhia cov xki) , ta được: P (t ) 3t t 2 +) P '(t ) 0 t 2 , P( 6 ) = 0; P( 2) 2 2 ; P( 2) 2 2 +) KL: MaxP 2 2; MinP 2 2
- VI 5 = 5 AB = 2 5 BD = 5. +) d ( I , AB) AD 2 +) PT đường tròn Đ K BD: (x - 1/2)2 + y2 = 25/4 x 2 1 25 ( x )2 y 2 y 2 A( 2; 0), B(2; 2) hệ: 2 +) Tọa độ A, B là nghiệm của 4 x 2 x 2y 2 0 y 0 C (3;0), D(1; 2) VII x 2 2010 2 2 2009 y x (1) y 2 2010 3 log 3 ( x 2 y 6) 2 log 2 ( x y 2) 1(2) +) ĐK: x + 2y = 6 > 0 và x + y + 2 > 0 +) Lấy loga cơ số 2009 và đưa về pt: x 2 log 2009 ( x 2 2010) y 2 log 2009 ( y 2 2010) +) Xét và CM HS f (t ) t log 2009 (t 2010), t 0 đồng biến, từ đó suy ra x2 = y2 x= y, x = - y +) Với x = y thế vào (2) và đưa về pt: 3log3(x +2) = 2log2(x + 1) = 6t t t 1 8 Đưa pt về dạng 1 , cm pt nà y có nghiệm duy nhất t = 1 9 9 x = y =7 +) Với x = - y thế vào (2) đ ược pt: log3(y + 6) = 1 y = - 3 x = 3 Ghi chú: - Các cách giải khác với cách giải trong đáp án mà vẫn đúng, đủ thì cũng cho điểm tối đa. - Người chấm có thể chia nhỏ thang điểm theo gợi ý các bước giải.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2008 môn Toán, khối A (Đáp án chính thức) - Bộ GD&ĐT
5 p | 95 | 6
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2006 môn Toán, khối B (Đáp án chính thức) - Bộ GD&ĐT
3 p | 83 | 6
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học năm 2014 môn Toán, khối A & A1 (Đáp án chính thức) - Bộ GD&ĐT
3 p | 83 | 6
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học năm 2010 môn Toán, khối A (Đáp án chính thức) - Bộ GD&ĐT
4 p | 84 | 6
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2002 môn Toán, khối B (Đáp án chính thức) - Bộ GD&ĐT
7 p | 95 | 5
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2008 môn Toán, khối D (Đáp án chính thức) - Bộ GD&ĐT
4 p | 77 | 5
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2010 môn Toán, khối D (Đáp án chính thức) - Bộ GD&ĐT
4 p | 69 | 5
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2003 môn Toán, khối A (Đáp án chính thức) - Bộ GD&ĐT
5 p | 81 | 5
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2004 môn Toán, khối B (Đáp án chính thức) - Bộ GD&ĐT
4 p | 83 | 5
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2005 môn Toán, khối D (Đáp án chính thức) - Bộ GD&ĐT
0 p | 76 | 4
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học năm 2010 môn Toán, khối B (Đáp án chính thức) - Bộ GD&ĐT
4 p | 54 | 4
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2012 môn Toán, khối D (Đáp án chính thức) - Bộ GD&ĐT
4 p | 80 | 4
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2005 môn Toán, khối A (Đáp án chính thức) - Bộ GD&ĐT
0 p | 74 | 4
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học năm 2012 môn Toán, khối A (Đáp án chính thức) - Bộ GD&ĐT
4 p | 72 | 3
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học năm 2012 môn Toán, khối B (Đáp án chính thức) - Bộ GD&ĐT
4 p | 59 | 3
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2007 môn Toán, khối A (Đáp án chính thức) - Bộ GD&ĐT
4 p | 88 | 3
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2004 môn Toán, khối A (Đáp án chính thức) - Bộ GD&ĐT
4 p | 95 | 3
-
Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2002 môn Toán, khối A (Đáp án chính thức) - Bộ GD&ĐT
8 p | 102 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn