Luận văn thạc sĩ: Ứng dụng logic mờ xây dựng hệ trợ giúp chẩn đoán bệnh thần kinh - tâm thần

Chia sẻ: Sdfas Vfdtg | Ngày: | Loại File: PDF | Số trang:26

0
90
lượt xem
32
download

Luận văn thạc sĩ: Ứng dụng logic mờ xây dựng hệ trợ giúp chẩn đoán bệnh thần kinh - tâm thần

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Ứng dụng logic mờ xây dựng hệ trợ giúp chẩn đoán bệnh thần kinh - tâm thần nhằm góp phần phát triển phương pháp luận phục vụ cho việc thu thập tri thức chuyên gia y tế trong môi trường thông tin mờ.

Chủ đề:
Lưu

Nội dung Text: Luận văn thạc sĩ: Ứng dụng logic mờ xây dựng hệ trợ giúp chẩn đoán bệnh thần kinh - tâm thần

  1. -1- B GIÁO D C VÀ ĐÀO T O Đ I H C ĐÀ N NG VĂN Đ C M VÂN NG D NG LOGIC M XÂY D NG H TR GIÚP CH N ĐOÁN B NH TH N KINH - TÂM TH N Chuyên ngành: KHOA H C MÁY TÍNH Mã s : 60.48.01 TÓM T T LU N VĂN TH C SĨ K THU T Đà N ng - 2010
  2. -2- Công trình ñư c hoàn thành t i Đ I H C ĐÀ N NG Ngư i hư ng d n khoa h c: PGS.TS. Phan Huy Khánh Ph n bi n 1: PGS.TS. ĐOÀN VĂN BAN Ph n bi n 2: TS. HUỲNH CÔNG PHÁP Lu n văn ñư c b o v t i H i ñ ng ch m Lu n văn t t nghi p Th c sĩ k thu t h p t i Đ i h c Đà N ng vào ngày 17 tháng 12 năm 2010. * Có th tìm hi u Lu n văn t i: - Trung tâm Thông tin - H c li u, Đ i h c Đà N ng - Trung tâm H c li u, Đ i h c Đà N ng.
  3. -3- M Đ U 1. Lý do ch n ñ tài Chu n ñoán b nh trong y h c nói chung cũng như trong lĩnh v c th n kinh, tâm th n nói riêng là m t lĩnh v c tương ñ i ph c t p, lĩnh v c này có nh ng ñ c ñi m khác bi t ñó là m i quan h tương h gi a lý thuy t và th c hành. Đ i tư ng c a lĩnh v c này là nh ng b nh nhân, nh ng con ngư i th c s . Đó là nh ng th c th s ng ñư c t ch c r t ph c t p v m t sinh h c kèm theo ñó là hàng lo t nh ng quá trình s ng tác ñ ng qua l i, nh hư ng l n nhau. Nh ng quá trình này luôn b chi ph i b i ñi u ki n môi trư ng như: xu t hi n ñ i kháng m i, b nh t t, m m b nh, và ngu n b nh… Ki n th c y h c cũng khá ph c t p. Đ tìm ra nh ng ki n th c m i, phương pháp truy n th ng là d a trên s mô t c a các ca b nh, t p h p nh ng ca b nh và các nghiên c u tĩnh khác (thí nghi m) và nó ñư c s p x p trong nh ng danh sách riêng và nh ng ngu n như h sơ b nh án, nh t ký y khoa, cơ s d li u ñ tài nghiên c u… Chính vì th mà ngư i bác sĩ thư ng b tràn ng p trong núi d li u kh ng l . Và ñ c bi t là nh ng d li u ñó m i b nh nhân l i có s mơ h khác nhau, g n v i c m xúc c a m i ngư i. Ngư i bác sĩ luôn ph i làm vi c trong tr ng thái căng th ng trong khi yêu c u ph i ñưa ra ñư c nh ng quy t ñ nh ñúng ñ n hi u qu nh t. Nh ng b nh liên quan ñ n th n kinh, tâm th n t trư c t i nay ñã nh n ñư c s quan tâm ñ c bi t trong gi i y khoa. Trong xã h i ngày nay, khi mà áp l c cu c s ng ngày càng l n hơn, môi trư ng ngày càng ô nhi m,… thì nh ng ch ng b nh v th n kinh, tâm th n l i càng nhi u. Nh ng b nh này có th x y ra m i l a tu i và là nguyên nhân ch y u nh hư ng t i t vong ho c tr thành ngư i vô d ng c ñ i.
  4. -4- Vi t Nam cũng s không tránh kh i quy lu t này trong b i c nh ñ t nư c ñang chuy n sang giai ño n công nghi p hóa, hi n ñ i hóa. S chuy n ñ i v l i s ng, nh p s ng công nghi p chưa có s thích ng và cân b ng ñang t o ñi u ki n cho căn b nh tâm th n phát tri n. Theo s li u th ng kê c a B nh vi n Tâm th n Trung ương Vi t Nam, năm 2003 c nư c có trên 10 tri u ngư i ñang b r i lo n tâm th n, c n có s chăm sóc. Trong khi ñó, s bác sĩ chuyên khoa tâm th n l i ñang thi u tr m tr ng. C nư c ch có hơn 850 bác sĩ chuyên v lĩnh v c này, chi m t l 1/100.000 dân, quá th p so v i các nư c trong khu v c. Nh m hư ng ng tinh th n ngày Th gi i v s c kh e tinh th n, thông t n xã Vi t Nam cho bi t T ch c Y t Th gi i (WHO) kêu g i các cơ quan y t và c ng ñ ng nâng cao nh n th c, giúp phát hi n, ñ phòng và ñi u tr các b nh v tinh th n, trong ñó ho t ñ ng tuyên truy n qua các phương ti n truy n thông ñóng vai trò h t s c quan tr ng. Trong tình hình th c t vào trư c nh ng năm 1965 h u h t các bài toán ñ u s d ng lý thuy t t p rõ, nên có r t nhi u h n ch v i các l p bài toán trong môi trư ng thông tin không chính xác, không ch c ch n. Trong lĩnh v c y t tri th c chuyên gia là r t quan tr ng và nh ng tri th c này ph n l n ñư c phát bi u b ng ngôn ng v i các thông tin m và không ch c ch n, chuyên gia càng làm vi c lâu năm thì càng tích lu nhi u kinh nghi m, nhưng kinh nghi m này không t n t i mãi mãi v i th i gian, vì vòng ñ i c a con ngư i là có gi i h n. Vì v y, nghiên c u phát tri n phương pháp lu n nh m thu th p, duy trì và khai thác ñ phát huy ñư c các tri th c chuyên gia này là m t nhu c u r t c n thi t.
  5. -5- Xu t phát t nh ng phân tích và quan sát trên, nhi m v nghiên c u c a ñ tài “ ng d ng logic m xây d ng h tr giúp ch n ñoán b nh th n kinh tâm th n”, nh m góp ph n phát tri n phương pháp lu n ph c v vi c thu th p các tri th c chuyên gia y t trong môi trư ng thông tin m , không ch c ch n và xây d ng m t h h tr ch n ñoán, giúp ñem l i cơ h i ch a tr và ch a lành b nh cho b nh nhân. 2. M c ñích nghiên c u Tìm hi u logic m ñ v n d ng xây d ng h tr giúp ch n ñoán b nh th n kinh tâm th n. K t qu ñ tài cho phép tìm gi i pháp Tin h c x lý các v n ñ v ch n ñoán b nh, t o ñi u ki n thu n l i trong ñánh giá và ư c lư ng. 3. Đ i tư ng và ph m vi nghiên c u - Nghiên c u v lý thuy t m ñ xây d ng cơ s tri th c v các bi u hi n c a b nh “viêm não c p” và “viêm màng não”. - Nghiên c u các phương pháp ch n ñoán b nh “viêm não c p” và “viêm màng não”. - Nghiên c u cơ ch suy di n lùi ñ thông d ch cho cơ s tri th c. 4. Phương pháp nghiên c u - Thu th p, tìm hi u, phân tích các tài li u và thông tin có liên quan ñ n lu n văn. - Phân tích thi t k h th ng chương trình. - Tri n khai xây d ng chương trình. - Ki m th , ñưa ra nh n xét và ñánh giá k t qu . 5. K t qu d ki n - N m ñư c ki n th c v logic m , c u trúc c a h chuyên gia m .
  6. -6- - Tìm hi u v Tâm th n h c – Th n kinh h c. - Xây d ng cơ s d li u th c nghi m, trên cơ s ñó xây d ng cơ s d li u m ph c v cho cơ ch suy di n. - Xây d ng b suy di n cho h tr giúp. - Xây d ng h tr giúp d a trên logic m ñ ch n ñoán b nh th n kinh tâm th n. 6. B c c lu n văn Lu n văn g m 3 chương: - Chương 1 tác gi trình bày v các khái ni m và nh ng v n ñ liên quan ñ n Logic m và h chuyên gia m . - Trong chương 2 tác gi s trình bày v m t s v n ñ liên quan ñ n vi c ch n ñoán b nh th n kinh – tâm th n. Trên cơ s lý thuy t v logic m và h chuyên gia m ñã trình bày trong chương 1, ng d ng ñ xay d ng h tr giúp ch n ñoán b nh th n kinh – tâm th n. - Cu i cùng, chương 3 tác gi tri n khai cài ñ t và ñưa ra k t qu minh h a c a lu n văn. 7. Ý nghĩa khoa h c và th c ti n c a lu n văn - Hi u và ñánh giá các y u t cơ b n c a logic m và ng d ng. - Hi u ñư c phương pháp ch n ñoán b nh th n kinh tâm th n. - ng d ng ñư c lý thuy t logic m trong CNTT vào h h tr ch n ñoán b nh th n kinh tâm th n. - Mang tính nhân văn, xã h i. 8. Đ t tên ñ tài “ NG D NG LOGIC M XÂY D NG H TR GIÚP CH N ĐOÁN B NH TH N KINH – TÂM TH N”
  7. -7- CHƯƠNG 1: CƠ S LÝ THUY T C A Đ TÀI 1.1. TÌM HI U LOGIC M 1.1.1. Khái quát v Logic m Logic truy n th ng Logic truy n th ng ch quan tâm ñ n 2 giá tr tuy t ñ i (ñúng ho c sai). Logic truy n th ng luôn tuân theo 2 gi thuy t. M t là tính thành viên c a t p h p: V i m t ph n t và m t t p h p b t kỳ, thì ph n t ho c là thu c t p h p ñó, ho c thu c ph n bù c a t p ñó. Gi thi t th hai là ñ nh lu t lo i tr trung gian, kh ng ñ nh m t ph n t không th v a thu c m t t p h p v a thu c ph n bù c a nó. Logic m Logic m là s m r ng c a logic nh phân c ñi n. Có s tương ng gi a t p h p c ñi n và logic nh phân, gi a t p m và logic m . Ví d , phép toán “hơp” tương ng v i logic OR, phép toán “giao” tương ng v i phép AND, và phép toán “bù” tương ng v i phép NOT. 1.1.2. T p h p c ñi n và t p h p m T p h p c ñi n T ph pm a. Các khái ni m Theo lý thuy t t p m hàm thành viên µ A (x) : ñ c trưng cho m c ñ t n t i c a ph n t x trong t p A: µ A (x) ∈ [0, 1] Kí hi u: A = {( µ A ( x) | x) : x ∈ X } X là t p toàn th . A là t p m con (g i t t là t p m ) c a t p X. µ A ñư c g i là hàm thành viên c a A. µ A ( x ) g i là ñ thu c c a x vào t p m A.
  8. -8- b. Các toán t - Phép h p: Cho A và B là hai t p m trong t p cơ s X. T p m c a phép toán h p A và B cũng là t p m trong X v i hàm liên thu c như sau: µ A∪ B ( x ) = µ A ( x) ∨ µ B ( x) = max(µ A ( x), µ B ( x)) - Phép giao: Cho A và B là hai t p m trong t p cơ s X. T p m c a phép toán giao A và B cũng là t p m trong X v i hàm liên thu c như sau: µ A∩ B ( x ) = µ A ( x) ∧ µ B ( x) = min(µ A ( x), µ B ( x)) - Phép bù: Cho A là t p bù c a t p m A trong t p cơ s X. Ph n bù c a t p m A cũng là t p m trong X v i hàm liên thu c như sau: µ A ( x ) = 1 − µ A ( x) - Phép kéo theo: µ A→ B ( x ) = µ A ∪B ( x ) = max[(1 − µ A ( x)), µ B ( x)] - Phép bao hàm: A ⊆ B ⇒ µ A ( x) ≤ µ B ( x) 1.1.3. M nh ñ m Trong logic rõ thì m nh ñ là m t câu phát bi u có giá tr ñúng ho c sai. Trong logic m thì m i m nh ñ m là m t câu phát bi u không nh t thi t là ñúng ho c sai. M nh ñ m ñư c gán cho m t giá tr trong kho ng t 0 ñ n 1 ñ ch m c ñ ñúng (ñ thu c v ) c a nó. 1.1.4. Bi n ngôn ng Logic m liên quan ñ n l p lu n trên các thu t ng m và mơ h trong ngôn ng t nhiên c a con ngư i. Bi n nh n các t trong ngôn ng t nhiên làm giá tr g i là bi n ngôn ng . Bi n ngôn ng dùng ñ mô hình hóa nh ng tri th c không chính xác hay mơ h v m t bi n mà giá tr chính xác có th chưa bi t
  9. -9- M t bi n ngôn ng là m t b ba (V, U, Tv), trong ñó: - V là m t bi n ngôn ng xác ñ nh trên m t t p tham chi u X. - U làm mi n giá tr mà V có th nh n. - T p Tv = {A1, A2, …}, h u h n hay vô h n, ch a các t p con m ñư c chu n hóa c a X, ñư c dùng ñ ñ c trưng V. Ví d 8 Cho V là ñ s t c a m t ngư i, Tv = {SN, S, SC, SRC}, các t “SN”, “S”, “SC”, “SRC” ñư c xác ñ nh b i t p m trong Hình 1.10. V= ñ s t, U = [370… 410], Tv = {SN, S, SC, SRC}. Hình 1.10. Ví d v bi n ngôn ng (V, U, Tv) dùng ñ mô t ñ s t b nh nhân. 1.2. H TH NG D A TRÊN T P LU T M 1.2.1. Các d ng lu t c ñi n 1.2.1.1. Các lu t gán 1.2.1.2. Các lu t ñi u ki n 1.2.1.3. Các lu t không ñi u ki n 1.2.2. Phân rã các lu t ph c h p 1.3. H CHUYÊN GIA M 1.3.1. Khái quát 1.3.2. C u trúc và ho t ñ ng c a h chuyên gia m
  10. - 10 - Hình 1.11. C u trúc mô hình m . - Cơ s lu t: ch a ñ ng t p các lu t m IF – THEN, th c ch t là m t t p các phát bi u hay quy t c mà con ngư i có th hi u ñư c, mô t hành vi c a h th ng. H at ñ ng suy di n c a m t mô hình m . - B tham s mô hình: quy ñ nh hình d ng hàm thu c c a giá tr ngôn ng ñư c dùng ñ bi u di n bi n m và các lu t m . Giá tr các tham s có th ñư c ñánh giá b ng kinh nghi m c a các chuyên gia con ngư i hay là k t qu c a quá trình khai phá tri th c t th c nghi m. Thông thư ng, cơ s lu t và b tham s ñư c g i chung là cơ s tri th c. - Cơ ch suy di n: có nhi m v th c hi n th t c suy di n m d a trên cơ s tri th c và các giá tr ñ u vào ñ ñưa ra m t giá tr d ñoán ñ u ra. - Giao di n m hóa: th c hi n chuy n ñ i các ñ u vào rõ thành m c ñ tr c thu c các giá tr ngôn ng . - Giao di n kh m : có th có ho c không, th c hi n chuy n ñ i k t qu suy di n m thành giá tr ñ u ra rõ. 1.3.3. Thu th p tri th c trong môi trư ng m 1.3.4. Lĩnh v c ng d ng c a Logic m 1.4. CÁCH TI P C N B NH TH N KINH
  11. - 11 - Trong ph n này, tôi xin gi i thi u sơ lư c v các k năng ch n ñóan và m t s cách l p lu n lâm sàng trong th n kinh h c. 1.4.1. K năng lâm sàng th n kinh 1.4.2. Ch n ñoán b nh 1.4.3. M t s cách l p lu n lâm sàng trong th n kinh h c 1.5. M T S B NH TH N KINH TÂM TH N PH BI N Nh ng b nh liên quan ñ n th n kinh, tâm th n t trư c ñ n nay ñã nh n ñư c s quan tâm ñ c bi t trong gi i y khoa. Trong xã h i ngày nay, khi mà áp l c cu c s ng ngày càng l n, môi trư ng ngày càng ô nhi m,… thì các ch ng b nh v th n kinh, tâm th n l i càng nhi u. Trong ph m vi lu n văn này, tôi gi i h n ch n ñoán 2 b nh “viêm não” và “viêm màng não” cho ñ i tư ng trong ñ tu i “tr em”. 1.5.1. Nguyên nhân gây b nh 1.5.2. Bi u hi n lâm sàng c a b nh viêm não và viêm màng não 1.5.3. Cách ñi u tr b nh viêm não và viêm màng não 1.5.4. Cách phòng b nh viêm não và viêm màng não Tóm l i, trong chương này tôi trình bày cơ s lý thuy t c a ñ tài: logic m , h chuyên gia m , và m t s cách l p lu n, ch n ñoán b nh th n kinh – tâm th n, làm ti n ñ cho vi c xây d ng h tr giúp ch n ñoán b nh th n kinh – tâm th n.
  12. - 12 - CHƯƠNG 2: NG D NG LOGIC M XÂY D NG H TR GIÚP CH N ĐOÁN B NH TH N KINH – TÂM TH N 2.1. MÔ T H TH NG Trong ph n này tôi s gi i thi u, kh o sát, phân tích hi n tr ng t i Trung tâm Y t Qu n Thanh Khê làm cơ s xây d ng và tri n khai h tr giúp ch n ñoán b nh th n kinh – tâm th n. Cách khám và làm b nh án là giai ño n quan tr ng trong quá trình ch n ñóan. 2.1.1. H i b nh 2.1.2. Khám b nh 2.1.3. N i dung c a m t b nh án 2.2. THU TH P D LI U D li u ñư c thu th p t i b nh viên Tâm th n, và Trung tâm Y t Qu n Thanh Khê v i các thông tin liên quan ñ n các b nh r i lo n th n kinh th c v t, r i lo n ti n ñình, ñ ng kinh, viêm não, viêm màng não. 2.2.1. Thu th p d li u t ngu n b nh án Tác gi th c hi n ñ tài ñã ti n hành thu th p các b nh án có liên quan ñ n b nh viên não, viêm màng não. 2.2.2. Thu th p d li u t các Chuyên gia – Bác s Ch y u thu th p các quy lu t ch n ñoán b nh ñã ñư c tích lũy qua nhi u năm kinh nghi m. Tri th c v ch n ñoán b nh viêm màng não, viêm não c p ñư c thu th p t vi c ph ng v n t 5 chuyên gia – bác s . 2.2.3. Lư ng giá k t qu thu th p ñư c 2.3. XÂY D NG VÀ BI U DI N TRI TH C 2.3.1. Mô hình ki n trúc h th ng
  13. Tri th c chuyên - 13 - gia – bác s CSDL k t qu Đ u vào (giá tr rõ) B nh án Cơ s tri th c M B Cơ s lu t Giao di n CSDL hóa tham s ngư i s d ng tt p rõ rõ H th ng Cơ ch suy di n thông tin Ngư i s d ng Hình 2.1. Mô hình ki n trúc h th ng. 2.3.2. Tham s hóa bi n m Các bi n m ñ u ñư c tham s hóa theo nguyên t c sau: M i thành ph n bi n m Xi, i = 1,…,l trong vector bi n tr ng thái c a mô hình ñư c xác ñ nh thông qua b t sau: Xi = {x, U, T(x), M(x)} (2.1) Trong ñó: - x là nhãn text xác ñ nh tên bi n m , ch ng h n như “ñ s t”, “ñ ñau”,… - T p vũ tr U ≡ [UL, UU] là kho ng giá tr th c mà bi n rõ tương ng c a h th ng (vi, i = 1,…, l-1 ho c r, i = l) có th thu c. - T(x) là t p các giá tr ngôn ng ñư c s d ng ñ bi u di n bi n m . 2.3.3. Bi u di n các tri u ch ng Trong lu n văn này nêu ra d ng hàm thành viên ñ c trưng cho các bi n ngôn ng tri u ch ng, có các giá tr ngôn ng tương ng. Các tri u ch ng là các t p m , và m i t p m có m t hàm thu c có d ng sau:
  14. - 14 -  0, w∉ S  1 w − SL e  ( ) , w ∈ [ S L , a]  2 a − SL 1 − 1 ( b − w ) e , w ∈ [a, b]  (2.2) µ i ( w) =  2 b − a j 1, w ∈ [b, c]  1 w−c e 1 − ( ) , w ∈ [c , d ]  2 d −c  1 SU − w e  ( ) , w ∈ [d , S U ]  2 SU − d Trong lu n văn xây d ng hàm thu c cho bi n m “Do_Sot” T p giá tr ngôn ng HDo-Sot = {SotNhe, SotVua, SotCao} T p vũ tr U = [37, 42] Kho ng giá tr th c S ng v i bi n m “Do_Sot”: S = [38, 40] µ Do _ Sot T p tham s P ñ nh nghĩa hàm thu c : P = [38.5, 39, 39.5], t p tham s P này ch có 3 tham s a, b, c Áp d ng hàm thu c t ng quát 2.2, ta có ñ th hàm thu c µ Do _ Sot ( w) SotVua như sau:  0, w∉ S  1 w − 38 2  ( ) , w ∈ [38,38.5] 2 38.5 − 38  1 39 − w 1 − ( )2 , w ∈ [38.5,39]  2 39 − 38.5 µ Do _ Sot ( w) =  SotVua 1, w = 39  1 w − 39 2 1 − ( ) , w ∈ [39,39.5]  2 39.5 − 39  1 40 − w 2  2 ( 40 − 39.5 ) , w ∈ [39.5,40]  V i giá tr rõ w = 38.56, ta có µDo_ Sot(38.56) = 0.61 SotVua
  15. - 15 - Hình 2.5. Đ th hàm thu c c a bi n m “Đ _S t” ng v i giá tr ngôn ng SotVua. 2.3.4. Xây d ng cơ s lu t m cho h tr giúp ch n ñoán b nh Th n kinh – Tâm th n T các d li u th c nghi m ñã thu th p ñư c b i nhi u chuyên gia - bác sĩ, ta ti n hành xây d ng các lu t m , ñánh giá m c ñ tin c y c a các lu t m . Các lu t m IF – THEN ñư c xây d ng hoàn toàn d a trên t p d li u th c nghi m. M i b n ghi trong t p d li u th c nghi m có th s n sinh ra m t hay m t t p các lu t m . 2.4. SUY DI N 2.4.1. Các phương pháp suy di n Có nhi u phương pháp t ng quát ñ suy lu n trong các chi n lư c gi i quy t v n ñ c a h chuyên gia. Nh ng phương pháp hay g p là suy di n ti n (foward chaining), suy di n lùi (backward chaining) và ph i h p hai phương pháp này (mixed chaining). Nh ng phương pháp khác là phân tích phương ti n (means-end analysis), rút g n v n ñ (problem reduction), quay lui (backtracking), ki m tra l p k ho ch (plan-generate-test), l p k ho ch phân c p (hierachical planning)... 2.4.2. Gi i thu t suy di n lùi S d ng 2 c u trúc Goal và Vet d ng Stack
  16. - 16 - GOAL: Là t p lưu các m nh ñ c n ph i ch ng minh ñ n th i ñi m ñang xét VET: Là t p ch a các lu t ñã ñư c s d ng ñ ch ng minh các ñích (k c ñích trung gian) {(1) If (KL ⊂ GT) Then Exit(“Thành công”); Else {(2) GOAL = ∅; VET = ∅; CMñư c = True; For each q ∈ KL Do GOAL= GOAL ∪ {(q,0)}; Repeat {(3) (f, i) ← Get(GOAL); //L y m t c p (f, i) t GOAL If (f ∉ GT) Then {(4) Tìm_lu t (f, i, RULE, j); // Tìm lu t rj: leftj → f If (j ≤ m) Then { VET = VET ∪ {(f, j)}; For each t ∈ leftj \ GT Do GOAL = GOAL ∪ {(t, 0)}; } Else {(5) back = True; // Bi n này dùng ñ quay lui While (f ∉ KL and back) do {(6) Repeat {
  17. - 17 - (g, k) ← Get(VET); // L y lu t rk: leftk → g t VET ñ quay lui ñ n lu t khác mà cũng → g GOAL = GOAL \ leftk; } Until (f ∈ leftk); Tìm_lu t (g, k, RULE, s); // Tìm lu t rs: lefts → g If (s ≤ m) Then { For each t ∈ lefts \ GT Do GOAL = GOAL ∪ {(t, 0)}; VET = VET ∪ {(g, s)}; back = False; } Else f = g; }(6) If (f ∈ KL and back) then CMñư c = False; }(5) }(4) }(3) Until (GOAL = ∅ or not(CMñư c)); If (CMñư c) Then Exit(“thành công”) Else Exit(“Không thành công”); }(2) }(1) Ví d : Gi s cho :S t c: Mê S ng e: Kém Linh Ho t b: Co Gi t d: Nôn h: Ho o: Qu y Khóc m: Viêm Não C p Cho trư c t p các s ki n gi thi t GT = {a, b}. S d ng t p RULE các lu t:
  18. - 18 - r1: a ^ b → c, r3. b ^ c → e, r5. a ^ b → o, r2. a ^ h → d, r4. a ^ d → m, r6. o ^ e → m, C n suy ra KL = {m}. Ban ñ u GOAL = VET =Ø ; Áp d ng th t c Tìm_Lu t(m, 0, RULE, j), ta ñư c j = 4 (r4 là lu t ñ u tiên sinh ra m). Khi ñó VET = {(m,4)}; GOAL = {(d,0)} (vì a ∈ GT nên ch c n xét (d,0)). Ta ti p t c quá trình và có B ng 2.13. B ng 2.13. B ng giá tr minh h a cho suy di n lùi. Quay Goal (f,i) CMĐư c j Leftj\GT V (g,k) s Lefts\GT lui (m,0) (m,0) True 4 D (m,4) (d,0) (d,0) 2 H (m,4), (d,2) (h,0) (h,0) 7 (m,4) (d,2) 7 True Ø d Ø (m,4) 6 o,e (o,0), (e,0) 3 C (m,6), False (e,0) (e,3) (o,0), (c,0) 1 Ø (m,6), (c,0) (e,3), (c,1) (o,0) (o,0) 5 Ø (m,6), (e,3), (c,1), (o,5) Ø Ta có th bi u di n quá trình suy di n lùi trên ñây thông qua ñ th (VÀ/HO C) suy di n lùi như Hình 2.12.
  19. - 19 - {m } * r4 r 6 {a, d}k { o , e} * * {o} {e}* {d}k r5 r3 r2 {a, h}k {a, b}* {b, c}* * * {a} {b}* {b}* {c}* {a} {h}k r1 {a, b}* * {a} {b}* Hình 2.12. Đ th suy di n lùi. T ñ th suy lùi hình 3.11 ta bi t tri u ch ng “s t” (a), “co gi t” (b) thì suy ra ñư c b nh nhân b “mê s ng” (c), bi t “s t” (a), mê s ng (c) thì suy ra ñư c b nh nhân “kém linh ho t” (e). T tri u ch ng “s t” (a), “co gi t” (b) thì suy ra b nh nhân “qu y khóc” (o), k t h p tri u ch ng “qu y khóc” và “kém linh ho t” như trên ñ th suy di n lùi thì ch n ñóan b nh nhân “Viêm não c p”. Do ñó n u gi thi t bi t trư c hai tri u ch ng “S t” và “Co gi t” thì theo phương pháp suy di n lùi ch n ñóan b nh nhân b “Viêm não c p”. 2.4.3. Cơ ch suy di n Tóm l i, trong chương này tôi ñã trình bày v n ñ thu th p tri th c t các b nh án cũng như t các chuyên gia bác s là ti n ñ cho vi c xây d ng h tr giúp ch n ñoán b nh Th n kinh – Tâm th n, t các tri th c thu th p ñư c tôi ñã trích l c ra t p các tri u ch ng liên quan ñ n b nh Viêm não và Viêm não c p, t t p tri u ch ng xây d ng nên các t p m . M i t p m có hàm thu c tương ng riêng. Ngoài ra, thành ph n cơ b n cho h tr giúp ñó là t p
  20. - 20 - các cơ s lu t. T cơ s lu t này sinh ra ñư c các t p lu t m . Và thành ph n cũng không kém ph n quan tr ng là cơ ch suy di n. Trong lu n văn này, tôi ñã ch n cơ ch suy di n lùi ñ ñưa ra k t qu ch n ñoán b nh viêm não và viêm não c p.

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản