Nhận dạng tam giác
lượt xem 34
download
Tham khảo tài liệu 'nhận dạng tam giác', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Nhận dạng tam giác
- CHÖÔNG XI: NHAÄN DAÏN G TAM GIAÙC I . TÍNH CAÙ C GOÙ C CUÛ A TAM GIAÙ C B aø i 201: Tính caù c goù c cuû a ΔABC n eá u : 3 sin ( B + C ) + sin ( C + A ) + cos ( A + B ) = ( *) 2 A+B+C= π Do 3 ( *) ⇔ sin A + sin B − cos C = N eâ n : 2 A+B A−B ⎛ C ⎞3 ⇔ 2 sin cos − ⎜ 2 cos2 − 1 ⎟ = 2 2 2 ⎠2 ⎝ C A−B C1 ⇔ 2 cos cos − 2 cos2 = 2 2 22 C C A−B ⇔ 4 cos2 − 4 cos cos +1 = 0 2 2 2 2 C A − B⎞ 2 A−B ⎛ ⇔ ⎜ 2 cos − cos ⎟ + 1 − cos =0 2 2⎠ 2 ⎝ 2 C A − B⎞ 2 A−B ⎛ ⎜ 2 cos − cos ⎟ + sin =0 ⇔ 2 2⎠ 2 ⎝ C A−B ⎧ ⎪2 cos 2 = cos 2 ⎪ ⇔ ⎨ ⎪sin A − B = 0 ⎪ 2 ⎩ C ⎧ ⎧C π ⎪2 cos 2 = cos 0 = 1 ⎪= ⎪ ⇔ ⎨2 3 ⇔ ⎨ A−B ⎪ ⎪A = B =0 ⎩ ⎪2 ⎩ π ⎧ ⎪A = B = 6 ⎪ ⇔ ⎨ ⎪C = 2π ⎪ 3 ⎩ T ính caù c goù c cuû a ΔABC b ieá t : B aø i 202: 5 cos 2A + 3 ( cos 2B + cos 2C ) + = 0 (*) 2 5 T a coù : ( *) ⇔ 2 cos2 A − 1 + 2 3 ⎡cos ( B + C ) cos ( B − C ) ⎤ + = 0 ⎣ ⎦2
- ⇔ 4 cos2 A − 4 3 cos A. cos ( B − C ) + 3 = 0 2 ⇔ ⎡2 cos A − 3 cos ( B − C ) ⎤ + 3 − 3 cos2 ( B − C ) = 0 ⎣ ⎦ 2 ⇔ ⎡2 cos A − 3 cos ( B − C ) ⎤ + 3 sin 2 ( B − C ) = 0 ⎣ ⎦ ⎧sin ( B − C ) = 0 ⎧B − C = 0 ⎪ ⎪ ⇔⎨ ⇔⎨ 3 3 cos ( B − C ) ⎪cos A = ⎪cos A = 2 2 ⎩ ⎩ ⎧ A = 300 ⎪ ⇔⎨ ⎪B = C = 75 0 ⎩ B aø i 203: Chöù n g minh ΔABC c où C = 1200 neá u : A B C sin A + sin B + sin C − 2 sin ⋅ sin = 2 sin (*) 2 2 2 T a coù A+B A−B C C A B C (*) ⇔ 2 sin cos + 2 sin cos = 2 sin sin + 2 sin 2 2 2 2 2 2 2 B C A−B C C A+B A ⇔ 2 cos cos + 2 sin cos = 2 cos + 2 sin sin 2 2 2 2 2 2 2 C⎛ A−B C⎞ A B ⇔ cos ⎜ cos + sin ⎟ = cos ⋅ cos 2⎝ 2 2⎠ 2 2 C⎡ A−B A + B⎤ A B ⇔ cos ⎢cos 2 + cos 2 ⎥ = cos 2 cos 2 2⎣ ⎦ C A B A B ⇔ 2 cos cos cos = cos cos 2 2 2 2 2 C1 A B AB π ⇔ cos = ( do cos > 0 v aø cos > 0 v ì 0 < ; < ) 22 2 2 22 2 ⇔ C = 1200 B aø i 204 : T ính caù c goù c cuû a ΔΑΒC b ieá t soá ño 3 goù c taï o caá p soá coä n g vaø 3+ 3 sin A + sin B + sin C = 2 K hoâ n g laø m maá t tính chaá t toå n g quaù t cuû a baø i toaù n giaû söû A < B < C T a coù : A, B, C taï o 1 caá p soá coä n g neâ n A + C = 2B π A + B + C = π neâ n B = Maø 3 3+ 3 sin A + sin B + sin C = L uù c ñoù : 2
- 3+ 3 π ⇔ sin A + sin + sin C = 3 2 3 ⇔ sin A + sin C = 2 A+C A −C 3 ⇔ 2 sin cos = 2 2 2 B A −C 3 ⇔ 2 cos cos = 2 2 2 ⎛ 3⎞ A−C 3 ⇔ 2. ⎜ ⎟ cos = ⎜2⎟ 2 2 ⎝ ⎠ C−A 3 π ⇔ cos = cos = 2 2 6 D o C > A neâ n ΔΑΒC coù : ⎧C − A π π ⎧ ⎪C = 2 ⎪ 2 =6 ⎪ ⎪ 2π π ⎪ ⎪ ⎨C + A = ⇔ ⎨A = 3 6 ⎪ ⎪ π π ⎪ ⎪ ⎪B = 3 ⎪B = 3 ⎩ ⎩ B aø i 205: T ính caù c goù c cuû a ΔABC neá u (1 ) ⎧ b2 + c 2 ≤ a 2 ⎪ ⎨ ( 2) ⎪sin A + sin B + sin C = 1 + 2 ⎩ b2 + c 2 − a 2 A Ù p duï n g ñònh lyù haø m cosin: cos A = 2bc b + c ≤ a neâ n cos A ≤ 0 D o (1): 2 2 2 πAπ π ≤A
- ⎧ ⎪sin A = 1 π ⎧ ⎪A = 2 ⎪ A 2 ⎪ ⎪ D aá u “=” taï i (2) xaû y ra ⇔ ⎨cos = ⇔ ⎨ 2 2 ⎪B = C = π ⎪ B−C ⎪ 4 ⎪ ⎩ ⎪cos 2 = 1 ⎩ B aø i 206 : ( Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i A, naê m 2004) C ho ΔABC k hoâ n g tuø thoû a ñieà u kieä n ( *) cos 2A + 2 2 cos B + 2 2 cos C = 3 T ính ba goù c cuû a ΔABC M = cos 2A + 2 2 cos B + 2 2 cos C − 3 * C aù ch 1 : Ñaët B+C B−C T a coù: M = 2 cos2 A + 4 2 cos cos −4 2 2 A B−C M = 2 cos2 A + 4 2 sin cos −4 ⇔ 2 2 A B-C sin > 0 v aø cos ≤1 Do 2 2 A N eâ n M ≤ 2 cos2 A + 4 2 sin − 4 2 π ΔABC khoâ n g tuø neâ n 0 < A ≤ M aë t khaù c : 2 ⇒ 0 ≤ cos A ≤ 1 ⇒ cos2 A ≤ cos A A M ≤ 2 cos A + 4 2 sin − 4 Do ñoù : 2 A⎞ A ⎛ ⇔ M ≤ ⎜ 1 − 2 sin2 ⎟ + 4 2 sin − 4 2⎠ 2 ⎝ A A ⇔ M ≤ −4 sin2 + 4 2 sin − 2 2 2 2 A ⎛ ⎞ ⇔ M ≤ −2 ⎜ 2 sin − 1 ⎟ ≤ 0 2 ⎝ ⎠ D o giaû thieá t (*) ta coù M=0 ⎧ ⎪cos2 A = cos A ⎪ ⎪ A = 90 0 ⎧ B−C ⎪ Vaä y : ⎨cos =1 ⇔ ⎨ 2 ⎪B = C = 45 0 ⎩ ⎪ A 1 ⎪ ⎪sin 2 = 2 ⎩ * C aù c h 2 : ( *) ⇔ cos 2A + 2 2 cos B + 2 2 cos C − 3 = 0
- B+C B−C ⇔ cos2 A + 2 2 cos cos −2=0 2 2 A B−C ⇔ ( cos2 A − cos A ) + cos A + 2 2 sin cos −2=0 2 2 A⎞ A B−C ⎛ ⇔ cos A ( cos A − 1) + ⎜ 1 − 2 sin2 ⎟ + 2 2 sin cos −2=0 2⎠ 2 2 ⎝ 2 A B − C⎞ ⎛ 2 B − C⎞ ⎛ ⇔ cos A ( cos A − 1) − ⎜ 2 sin − cos ⎟ − ⎜ 1 − cos ⎟=0 2 2⎠ ⎝ 2⎠ ⎝ 2 A B − C⎞ 2 B−C ⎛ ⇔ cos A ( cos A − 1) − ⎜ 2 sin − cos ⎟ − sin = 0 (*) 2 2⎠ 2 ⎝ D o ΔABC k hoâ n g tuø neâ n cos A ≥ 0 vaø cos A − 1 < 0 V aä y veá traù i cuû a (*) luoâ n ≤ 0 ⎧ ⎪cos A = 0 ⎪ A B−C ⎪ ⇔ ⎨ 2 sin = cos D aá u “=” xaû y ra 2 2 ⎪ B−C ⎪ ⎪sin 2 = 0 ⎩ ⎪ A = 90 0 ⎧ ⇔⎨ ⎪B = C = 45 0 ⎩ Baø i 207: C höù n g minh ΔABC coù ít nhaá t 1 goù c 60 0 k hi vaø chæ khi sin A + sin B + sin C = 3 (*) cos A + cos B + cos C T a coù : ( )( )( ) (*) ⇔ sin A − 3 cos A + sin B − 3 cos B + sin C − 3 cos C = 0 π⎞ π⎞ π⎞ ⎛ ⎛ ⎛ ⇔ sin ⎜ A − ⎟ + sin ⎜ B − ⎟ + sin ⎜ C − ⎟ = 0 3⎠ 3⎠ 3⎠ ⎝ ⎝ ⎝ ⎛ A + B π⎞ A−B π⎞ ⎛ ⇔ 2 sin ⎜ − ⎟ cos + sin ⎜ C − ⎟ = 0 ⎝2 3⎠ 2 3⎠ ⎝ ⎡⎛ π C ⎞ π ⎤ A−B ⎛C π⎞ ⎛C π⎞ ⇔ 2 sin ⎢⎜ − ⎟ − ⎥ cos + 2 sin ⎜ − ⎟ cos ⎜ − ⎟ = 0 ⎣⎝ 2 2 ⎠ 3 ⎦ 2 ⎝ 2 6⎠ ⎝ 2 6⎠ ⎛C π⎞⎡ A−B ⎛ C π ⎞⎤ ⇔ 2 sin ⎜ − ⎟ ⎢ − cos + cos ⎜ − ⎟ ⎥ = 0 ⎝ 2 6⎠⎣ 2 ⎝ 2 6 ⎠⎦ ⎛π A + B⎞ ⎛C π⎞ A−B ⎛C π⎞ ⇔ sin ⎜ − ⎟ = 0 ∨ cos = cos ⎜ − ⎟ = cos ⎜ − ⎟ ⎝ 2 6⎠ 2 ⎝ 2 6⎠ ⎝3 2⎠ C π A − B π A + B −A + B π A + B ⇔ =∨ =− ∨ =− 26 2 3 2 2 3 2 π π π ⇔C= ∨A = ∨B= 3 3 3
- B aø i 208: Cho ΔABC v aø V = cos 2 A + cos 2 B + cos 2 C – 1. Chöù n g minh: a / Neá u V = 0 thì ΔABC c où moä t goù c vuoâ n g b / Neá u V < 0 thì ΔABC c où ba goù c nhoï n c / Neá u V > 0 thì ΔABC c où moä t goù c tuø 1 1 (1 + cos 2A ) + (1 + cos 2B ) + cos2 − 1 T a coù : V = 2 2 1 ⇔ V = ( cos 2A + cos 2B ) + cos2 C 2 ⇔ V = cos ( A + B ) .cos ( A − B ) + cos2 C ⇔ V = − cos C.cos ( A − B ) + cos2 C ⇔ V = − cos C ⎡cos ( A − B ) + cos ( A + B ) ⎤ ⎣ ⎦ ⇔ V = −2 cos C cos A cos B D o ñoù : a/ V = 0 ⇔ cos A = 0 ∨ cos B = 0 ∨ cos C = 0 ⇔ ΔABC ⊥ t aï i A hay ΔABC ⊥ t aï i B hay ΔABC ⊥ t aï i C b/ V < 0 ⇔ cos A.cos B.cos C > 0 ⇔ ΔABC c où ba goù c nhoï n ( vì trong 1 tam giaùc khoâ n g theå coù nhieà u hôn 1 goùc tuø neâ n khoâ n g coù tröôø n g hôï p coù 2 cos cuø n g aâ m ) c/ V > 0 ⇔ cos A.cos B.cos C < 0 ⇔ cos A < 0 ∨ cos B < 0 ∨ cos C < 0 ⇔ ΔABC c où 1 goù c tuø . II. TAM GIAÙC VUOÂNG B a+c C ho ΔABC c où cotg B aø i 209: = 2 b C höù n g minh ΔABC v uoâ n g B a+c cotg T a coù : = 2 b B cos 2 = 2R sin A + 2R sin C = sin A + sin C ⇔ B 2R sin B sin B sin 2 B A+C A−C cos 2 sin . cos 2= 2 2 ⇔ B B B sin 2 sin . cos 2 2 2 B B A−C B cos2 = cos . cos (do sin > 0) ⇔ 2 2 2 2 B A−C B cos = cos (do cos > 0) ⇔ 2 2 2
- B A−C B C−A ⇔ = ∨= 2 2 2 2 ⇔ A = B+C∨C = A +B π π ⇔ A = ∨C= 2 2 ⇔ ΔABC vuoâng taïi A hay ΔABC vuoâng taïi C C höù n g minh ΔABC v uoâ n g taï i A neá u B aø i 210: b c a + = cos B cos C sin B sin C b c a T a coù : + = cos B cos C sin B sin C 2R sin B 2R sin C 2R sin A ⇔ + = cos B cos C sin B sin C sin B cos C + sin C cos B sin A ⇔ = cos B.cos C sin B sin C sin ( B + C ) sin A ⇔ = cos B.cos C sin B sin C cos B cos C = sin B sin C (do sin A > 0) ⇔ cos B. cos C − sin B. sin C = 0 ⇔ ⇔ cos ( B + C ) = 0 π ⇔ B+C= 2 ⇔ ΔABC vuoâng taïi A C ho ΔABC c où : B aø i 211: A B C A B C1 cos ⋅ cos ⋅ cos − sin ⋅ sin ⋅ sin = (*) 2 2 2 2 2 22 C höù n g minh ΔABC v uoâ n g T a coù : A B C1 A B C (*) ⇔ coscos cos = + sin sin sin 2 2 22 2 2 2 1⎡ A+B A − B⎤ C 1 1⎡ A+B A − B⎤ C ⇔ ⎢cos + cos cos = − ⎢cos − cos sin 2⎥ 2⎥ 2⎣ 2 2 2 2⎣ 2 2 ⎦ ⎦ C A − B⎤ C C A − B⎤ C ⎡ ⎡ ⇔ ⎢sin + cos ⎥ cos 2 = 1 − ⎢sin 2 − cos 2 ⎥ sin 2 2 2⎦ ⎣ ⎣ ⎦ C C A−B C C C C A−B C ⇔ sin cos + cos cos = 1 − sin 2 + cos = 1 − sin 2 + cos sin 2 2 2 2 2 2 2 2 2 C C A−B C C A−B C ⇔ sin cos + cos cos = cos2 + cos sin 2 2 2 2 2 2 2
- C⎡ C C⎤ A−B⎡ C C⎤ ⇔ cos ⎢sin 2 − cos 2 ⎥ = cos 2 ⎢sin 2 − cos 2 ⎥ 2⎣ ⎦ ⎣ ⎦ C C⎤ ⎡ C A − B⎤ ⎡ ⇔ ⎢sin − cos ⎥ ⎢cos − cos =0 2⎥ 2 2⎦ ⎣ 2 ⎣ ⎦ C C C A−B ⇔ sin = cos ∨ cos = cos 2 2 2 2 C C A−B C B−A ⇔ tg = 1 ∨ = ∨= 2 2 2 2 2 Cπ ⇔ = ∨ A = B+C∨B = A +C 24 π π π ⇔C= ∨A = ∨B= 2 2 2 C höù n g minh ΔABC v uoâ n g neá u : B aø i 212: 3(cos B + 2 sin C) + 4(sin B + 2 cos C) = 15 D o baá t ñaú n g thöù c Bunhiacoá p ki ta coù : 3cos B + 4 sin B ≤ 9 + 16 cos2 B + sin2 B = 15 6sin C + 8 cos C ≤ 36 + 64 sin2 C + cos2 C = 10 v aø 3(cos B + 2 sin C) + 4(sin B + 2 cos C) ≤ 15 n eâ n : ⎧ cos B sin B 4 ⎧ ⎪tgB = 3 ⎪3=4 ⎪ ⎪ Daá u “=” xaû y ra ⇔⎨ ⇔⎨ ⎪ sin C = cos C ⎪cotgC = 4 ⎪6 ⎪ 8 3 ⎩ ⎩ ⇔ tgB = cotgC π ⇔ B+C= 2 ⇔ ΔABC vuoâ n g taï i A. C ho ΔABC c où : sin 2A + sin 2B = 4 sin A.sin B B aø i 213: C höù n g minh ΔABC v uoâ n g. T a coù : sin 2A + sin 2B = 4 sin A.sin B ⇔ 2 sin(A + B) cos(A − B) = −2 [ cos(A + B) − cos(A − B)] ⇔ cos(A + B) = [1 − sin(A + B)] cos(A − B) ⇔ − cos C = [1 − sin C] cos(A − B) ⇔ − cos C(1 + sin C) = (1 − sin2 C). cos(A − B) ⇔ − cos C(1 + sin C) = cos2 C. cos(A − B) ⇔ cos C = 0 hay − (1 + sin C) = cos C. cos(A − B) (*) ⇔ cos C = 0 ( D o sin C > 0 neâ n −(1 + sin C) < −1 Maø cos C.cos(A − B) ≥ −1 .Vaä y (*) voâ nghieä m .) Do ñoù ΔABC v uoâ n g taï i C III. TAM GIAÙC CAÂN
- C B aø i 214: Chöù n g minh neá u ΔABC c où tgA + tgB = 2 cotg 2 t hì laø tam giaù c caâ n . C T a coù : tgA + tgB = 2 cotg 2 C 2 cos sin(A + B) 2 ⇔ = C cos A.cos B sin 2 C 2 cos sin C 2 ⇔ = C cos A.cos B sin 2 C C C 2 sin cos 2 cos 2 2= 2 ⇔ C cos A cos B sin 2 C C ⎛ ⎞ ⇔ sin 2 = cos A.cos B ⎜ do cos > 0 ⎟ 2 2 ⎝ ⎠ 1 1 ⇔ (1 − cos C ) = ⎡cos ( A + B ) + cos ( A − B ) ⎤ 2⎣ ⎦ 2 ⇔ 1 − cos C = − cos C + cos ( A − B ) ⇔ cos ( A − B ) = 1 ⇔A=B ⇔ ΔABC c aâ n taï i C. C höù n g minh ΔABC c aâ n neá u : B aø i 215: A B B A sin .cos3 = sin .cos3 2 2 2 2 A B B A sin .cos3 = sin .cos3 T a coù : 2 2 2 2 A⎞ B⎞ ⎛ ⎛ ⎜ sin 2 ⎟ 1 ⎜ sin 2 ⎟ 1 ⇔⎜ = A⎟ A⎜ B⎟ B ⎜ cos ⎟ cos2 ⎜ cos ⎟ cos2 2⎠ 2⎝ 2⎠ 2 ⎝ A B ( do cos > 0 vaø cos > 0 ) 2 2
- A⎛ 2 A⎞ B⎛ 2 B⎞ ⇔ tg ⎜ 1 + tg ⎟ = tg ⎜ 1 + tg ⎟ 2⎝ 2⎠ 2⎝ 2⎠ A B A B ⇔ tg 3 − tg 3 + tg − tg = 0 2 2 2 2 ⎛A B⎞⎡ A B A B⎤ ⇔ ⎜ tg − tg ⎟ ⎢1 + tg 2 + tg 2 + tg .tg ⎥ = 0 (*) ⎝2 2 ⎠⎣ 2 2 2 2⎦ A B A B AB ( v ì 1 + tg 2 + tg 2 + tg tg > 0 ) ⇔ tg = tg 2 2 2 2 2 2 ⇔A=B ⇔ ΔABC c aâ n taï i C C höù n g minh ΔABC c aâ n neá u : B aø i 216: cos2 A + cos2 B 1 = ( cotg 2 A + cotg 2B ) (*) sin 2 A + sin2 B 2 T a coù : cos2 A + cos2 B 1 ⎛ 1 1 ⎞ − 2⎟ (*) ⇔ =⎜ + sin A + sin B 2 ⎝ sin A sin B 2 2 2 2 ⎠ cos A + cos B 1⎛ 1 1⎞ 2 2 +1 = ⎜ ⇔ + ⎟ sin A + sin B 2 ⎝ sin A sin2 B ⎠ 2 2 2 2 1⎛ 1 1⎞ ⇔ =⎜ + ⎟ sin A + sin B 2 ⎝ sin A sin 2 B ⎠ 2 2 2 ⇔ 4 sin2 A sin2 B = ( sin2 A + sin2 B ) 2 ⇔ 0 = ( sin 2 A − sin2 B ) ⇔ sin A = sin B V aä y ΔABC c aâ n taï i C C höù n g minh ΔABC c aâ n neá u : B aø i 217: C a + b = tg ( atgA + btgB ) (*) 2 C ( atgA + btgB ) T a coù : a + b = tg 2 C ⇔ ( a + b ) cotg = atgA + btgB 2 C⎤ C⎤ ⎡ ⎡ ⇔ a ⎢ tgA − cotg ⎥ + b ⎢ tgB − cotg ⎥ = 0 2⎦ 2⎦ ⎣ ⎣ A + B⎤ A + B⎤ ⎡ ⎡ ⇔ a ⎢ tgA − tg ⎥ + b ⎢ tgB − tg 2 ⎥ = 0 2⎦ ⎣ ⎣ ⎦ A−B B−A a sin b sin 2 2 =0 ⇔ + A+B A+B cos A. cos cos B. cos 2 2
- A−B a b ⇔ sin = 0 hay =0 − 2 cos A cos B 2R sin A 2R sin B ⇔ A = B hay = cos A cos B ⇔ A = B hay tgA = tgB ⇔ ΔABC c aâ n taï i C IV. NHAÄN DAÏN G TAM GIAÙ C C ho ΔABC t hoû a : a cos B − b cos A = a sin A − b sin B (*) B aø i 218: C höù n g minh ΔABC v uoâ n g hay caâ n D o ñònh lyù haø m sin: a = 2R sin A, b = 2R sin B ⇔ 2R sin A cos B − 2R sin B cos A = 2R ( sin 2 A − sin 2 B ) N eâ n (*) ⇔ sin A cos B − sin B cos A = sin 2 A − sin 2 B 1 1 ⇔ sin ( A − B ) = (1 − cos 2A ) − (1 − cos 2B ) 2 2 1 ⇔ sin ( A − B ) = [ cos 2B − cos 2A ] 2 ⇔ sin ( A − B ) = − ⎡sin ( A + B ) sin ( B − A ) ⎤ ⎣ ⎦ ⇔ sin ( A − B ) ⎡1 − sin ( A + B ) ⎤ = 0 ⎣ ⎦ ⇔ sin ( A − B ) = 0 ∨ sin ( A + B ) = 1 π ⇔ A = B∨ A+B = 2 v aä y ΔABC v uoâ n g hay caâ n taï i C Caù c h khaù c sin A cos B − sin B cos A = sin 2 A − sin 2 B ⇔ sin ( A − B ) = ( sin A + sin B) ( sin A − sin B) A+B A−B A+B A−B ⇔ sin ( A − B ) = ( 2 sin cos ) (2 cos sin ) 2 2 2 2 ⇔ sin ( A − B ) = sin ( A + B ) sin ( A − B ) ⇔ sin ( A − B ) = 0 ∨ sin ( A + B ) = 1 π ⇔ A = B∨ A+B = 2 B aø i 219 ΔABC l aø tam giaù c gì neá u ( a 2 + b2 ) sin ( A − B ) = ( a 2 − b2 ) sin ( A + B ) (*) T a coù : (*) ⇔ ( 4R 2 sin 2 A + 4R 2 sin 2 B ) sin ( A − B ) = 4R 2 ( sin 2 A − sin 2 B ) sin ( A + B ) ⇔ sin 2 A ⎡sin ( A − B ) − sin ( A + B ) ⎤ + sin 2 B ⎡sin ( A − B ) + sin ( A + B ) ⎤ = 0 ⎦ ⎣ ⎦ ⎣ ⇔ 2sin2 A cos A sin ( −B ) + 2sin2 B sin A cos B = 0
- ⇔ − sin A cos A + sin B cos B = 0 ( do sin A > 0 vaø sin B > 0 ) ⇔ sin 2A = sin 2B ⇔ 2A = 2B ∨ 2A = π − 2B π ⇔ A = B∨ A+B = 2 V aä y ΔABC c aâ n taï i C hay ΔABC v uoâ n g taï i C. ΔABC laø tam giaù c gì neá u : B aø i 220: ⎧a 2 sin 2B + b2 sin 2A = 4ab cos A sin B (1) ⎨ ⎩sin 2A + sin 2B = 4 sin A sin B (2) Ta coù : (1) ⇔ 4R 2 sin 2 A sin 2B + 4R 2 sin 2 B sin 2A = 16R 2 sin A sin 2 B cos A ⇔ sin 2 A sin 2B + sin2 B sin 2A = 4 sin A sin2 B cos A ⇔ 2 sin2 A sin B cos B + 2 sin A cos A sin 2 B = 4 sin A sin2 B cos A ⇔ sin A cos B + sin B cos A = 2 sin B cos A (do sin A > 0, sin B > 0) ⇔ sin A cos B − sin B cos A = 0 ⇔ sin ( A − B ) = 0 ⇔A=B Thay vaø o (2) ta ñöôï c sin 2A = 2 sin 2 A ⇔ 2 sin A cos A = 2 sin 2 A ⇔ cos A = sin A ( do sin A > 0 ) ⇔ tgA = 1 π ⇔A= 4 D o ñoù ΔABC v uoâ n g caâ n taï i C V . TAM GIAÙ C ÑEÀ U C höù n g minh ΔABC ñeà u neá u : B aø i 221: bc 3 = R ⎡ 2 ( b + c ) − a ⎤ (*) ⎣ ⎦ T a coù : (*) ⇔ ( 2R sin B )( 2R sin C ) 3 = R ⎡2 ( 2R sin B + 2R sin C ) − 2R sin A ⎤ ⎣ ⎦ ⇔ 2 3 sin B sin C = 2 ( sin B + sin C ) − sin ( B + C ) ⇔ 2 3 sin B sin C = 2 ( sin B + sin C ) − sin B cos C − sin C cos B ⎡ ⎤ ⎡ ⎤ 1 3 1 3 ⇔ 2 sin B ⎢1 − cos C − sin C ⎥ + 2 sin C ⎢1 − cos B − sin B ⎥ = 0 2 2 2 2 ⎣ ⎦ ⎣ ⎦ ⎡ π ⎞⎤ ⎡ π ⎞⎤ ⎛ ⎛ ⇔ sin B ⎢1 − cos ⎜ C − ⎟ ⎥ + sin C ⎢1 − cos ⎜ B − ⎟ ⎥ = 0 (1) 3 ⎠⎦ 3 ⎠⎦ ⎝ ⎝ ⎣ ⎣
- π⎞ ⎛ D o sin B > 0 vaø 1 − cos ⎜ C − ⎟ ≥ 0 3⎠ ⎝ π⎞ ⎛ sin C > 0 v aø 1 − cos ⎜ B − ⎟ ≥ 0 3⎠ ⎝ N eâ n veá traù i cuû a (1) luoâ n ≥ 0 ⎧ π⎞ ⎛ ⎪cos ⎜ C − 3 ⎟ = 1 ⎪ ⎝ ⎠ D o ñoù , (1) ⇔ ⎨ ⎪cos ⎛ B − π ⎞ = 1 ⎜ ⎟ ⎪ 3⎠ ⎝ ⎩ π ⇔ ΔABC ñ eà u . ⇔C=B= 3 3 ⎧ sin B sin C = (1) ⎪ 4 ⎪ C höù n g minh ΔABC ñ eà u neá u ⎨ B aø i 222 : ⎪a 2 = a − b − c 3 3 3 (2) ⎪ a−b−c ⎩ T a coù : (2) ⇔ a 3 − a 2 b − a 2 c = a 3 − b3 − c 3 ⇔ a 2 ( b + c ) = b3 + c 3 ⇔ a 2 ( b + c ) = ( b + c ) ( b2 − bc + c2 ) ⇔ a 2 = b2 − bc + c2 ⇔ b2 + c 2 − 2bc cos A = b2 + c 2 − bc ( do ñl haø m cosin) ⇔ 2bc cos A = bc 1 π ⇔ cos A = ⇔A= 2 3 T a coù : (1) ⇔ 4 sin B sin C = 3 ⇔ 2 ⎡ cos ( B − C ) − cos ( B + C ) ⎤ = 3 ⎣ ⎦ ⇔ 2 ⎡ cos ( B − C ) + cos A ⎤ = 3 ⎣ ⎦ ⎛1⎞ π⎞ ⎛ ⇔ 2 cos ( B − C ) + 2 ⎜ ⎟ = 3 ⎜ do (1 ) ta coù A = ⎟ ⎝2⎠ 3⎠ ⎝ ⇔ cos ( B − C ) = 1 ⇔ B = C V aä y töø (1), (2) ta coù ΔABC ñeà u C höù n g minh ΔABC ñ eà u neá u : B aø i 223: sin A + sin B + sin C = sin 2A + sin 2B + sin 2C sin 2A + sin 2B = 2sin ( A + B ) cos ( A − B ) T a coù : = 2sin C cos ( A − B ) ≤ 2sin C (1) cos ( A − B ) = 1 D aá u “=” xaû y ra khi: sin 2A + sin 2C ≤ 2sin B T öông töï : ( 2)
- D aá u “=” xaû y ra khi: cos ( A − C ) = 1 sin 2B + sin 2C ≤ 2sin A T öông töï : ( 3) Daá u “=” xaû y ra khi: cos ( B − C ) = 1 T öø (1) (2) (3) ta coù: 2 ( sin2A + sin2B + sin2C) ≤ 2 ( sinC + sinB + sin A ) ⎧cos ( A − B ) = 1 ⎪ D aá u “=” xaû y ra ⇔ ⎨cos ( A − C ) = 1 ⇔ A = B = C ⎪ ⎩cos ( B − C ) = 1 ⇔ ΔABC ñeà u C ho ΔABC c où : B aø i 224: 1 1 1 1 (*) + + = sin 2A sin 2B sin C 2 cos A cos B cos C 2 2 2 C höù n g minh ΔABC ñ eà u T a coù : (*) ⇔ sin2 2B.sin2 2C + sin2 2A sin2 2C + sin2 2A sin2 2B sin 2A.sin 2B.sin 2C ⋅ ( sin 2A sin 2B sin 2C ) = 2 cos A cos B cos C = 4 sin A sin B sin C ( sin 2A sin 2B sin 2C ) M aø : 4 sin A sin B sin C = 2 ⎡ cos ( A − B ) − cos ( A + B ) ⎤ sin ( A + B ) ⎣ ⎦ = 2 ⎡cos ( A − B ) + cos C⎤ sin C ⎣ ⎦ = 2 sin C cos C + 2 cos ( A − B ) sin ( A + B ) = sin 2C + sin 2A + sin 2B Do ñoù , vôù i ñieà u kieä n ΔABC k hoâ n g vuoâ n g ta coù (*) ⇔ sin 2 2B sin 2 2C + sin 2 2A sin 2 2C + sin 2 2A sin 2 2B = sin 2A. sin 2B. sin 2C ( sin 2A + sin 2B + sin 2C ) = sin 2 2A sin 2B sin 2C + sin 2 2B sin 2A sin 2C + sin 2 2C sin 2A sin 2B 1 1 2 2 ⇔ ( sin 2B sin 2A − sin 2B sin 2C ) + ( sin 2A sin 2B − sin 2A sin 2C ) 2 2 1 + ( sin 2C sin 2A − sin 2C sin 2B ) = 0 2 2 ⎧sin 2B sin 2A = sin 2B sin 2C ⎪ ⇔ ⎨sin 2A sin 2B = sin 2A sin 2C ⎪sin 2A sin 2C = sin 2C sin 2B ⎩ ⎧sin 2A = sin 2B ⇔ A = B = C ⇔ ABC ñ eà u ⇔⎨ ⎩sin 2B = sin 2C B aø i 225 : Chöù n g minh ΔABC ñ eà u neá u : a cos A + b cos B + c cos C 2p (*) = a sin B + b sin C + c sin A 9R
- T a coù : a cos A + b cos B + c cos C = 2R sin A cos A + 2R sin B cos B + 2R sin C cos C = R ( sin 2A + sin 2B + sin 2C ) = R ⎡2 sin ( A + B ) cos ( A − B ) + 2 sin C cos C ⎤ ⎣ ⎦ = 2R sin C ⎡cos ( A − B ) − cos ( A + B ) ⎤ = 4R sin C sin A sin B ⎣ ⎦ C aù c h 1: a sin B + b sin C + c sin A = 2R ( sin A sin B + sin B sin C + sin C sin A ) ≥ 2R 3 sin 2 A sin 2 B sin2 C ( do bñt Cauchy ) a cos A + b cos B + c cos C 2 3 sin A sin B sin C ( 1) D o ñoù veá traù i : ≤ a sin B + b sin C + c sin A 3 2p a + b + c 2 = ( sin A + sin B + sin C ) Maø veá phaû i : = 9R 9R 9 2 ≥ 3 sin A sin B sin C ( 2) 3 Töø (1) vaø (2) ta coù ( * ) ⇔ sin A = sin B = sin C ⇔ ΔABC ñeà u 4 R sin A sin B sin C a+b+c Caù c h 2: T a coù : (*) ⇔ = a sin B + b sin C + c sin A 9R a ⎞⎛ b ⎞⎛ c ⎞ ⎛ 4R ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ 2R ⎠ ⎝ 2R ⎠ ⎝ 2R ⎠ = a + b + c ⇔ ⎛b⎞ ⎛ c ⎞ ca 9R a⎜ ⎟ + b⎜ ⎟+ 2R ⎠ 2R ⎠ 2R ⎝ ⎝ ⇔ 9abc = ( a + b + c ) ( ab + bc + ca ) D o baá t ñaú n g thöùc Cauchy ta coù a + b + c ≥ 3 abc ab + bc + ca ≥ 3 a 2 b2c 2 D o ñoù : ( a + b + c )( ab + bc + ca ) ≥ 9abc Daá u = xaû y ra ⇔ a = b = c ⇔ ΔABC ñ eà u . Baø i 226: Chöù n g minh ΔABC ñ eà u neá u A B C cot gA + cot gB + cot gC = tg + tg + tg ( *) 2 2 2 sin ( A + B ) sin C T a coù : cot gA + cot gB = = sin A sin B sin A sin B sin C ( do bñt Cauchy) ≥ 2 ⎛ sin A + sin B ⎞ ⎜ ⎟ 2 ⎝ ⎠
- C C C 2 sin cos 2 sin 2 2 2 = = 2 A+B 2 A−B C 2 A−B sin .cos cos cos 2 2 2 2 C ≥ 2tg ( 1) 2 B Töông töï : cot gA + cot gC ≥ 2tg ( 2) 2 A cot gB + cot gC ≥ 2tg ( 3) 2 Töø (1) (2) (3) ta coù ⎛A B C⎞ 2 ( cot gA + cot gB + cot gC ) ≥ 2 ⎜ tg + tg + tg ⎟ ⎝2 2 2⎠ D o ñoù daá u “=” taï i (*) xaû y ra A−B A−C B−C ⎧ ⎪cos = cos = cos =1 2 2 2 ⇔⎨ ⎪sin A = sin B = sin C ⎩ ⇔A=B=C ⇔ ΔABC ñeàu. BAØI TAÄP Tính caù c goù c cuû a ΔABC b ieá t : 1. 3 2π π a/ cos A = sin B + sin C − ( ÑS: B = C = ,A = ) 2 6 3 π b/ sin 6A + sin 6B + sin 6C = 0 ( ÑS: A = B = C = ) 3 c/ sin 5A + sin 5B + sin 5C = 0 Tính goù c C cuû a ΔABC b ieá t : 2. a/ (1 + cot gA ) (1 + cot gB ) = 2 ⎧ A, B nhoïn ⎪ b/ ⎨ 2 ⎪sin A + sin B = 9 sin C 2 ⎩ ⎧cos2 A + cos2 B + cos2 C < 1 Cho ΔABC c où : ⎨ 3. ⎩sin 5A + sin 5B + sin 5C = 0 C höù n g minh Δ c où ít nhaá t moä t goù c 36 0 . 4. Bieá t sin 2 A + sin 2 B + sin 2 C = m . Chöù n g minh a / m = 2 t hì ΔABC v uoâ n g b/ m > 2 t hì ΔABC n hoï n c/ m < 2 t hì ΔABC t uø . Chöù n g minh ΔABC v uoâ n g neá u : 5. b+c a/ cos B + cos C = a b c a b/ + = cos B cos C sin B sin C
- c / sin A + sin B + sin C = 1 − cos A + cos B + cos C ( b − c ) = 2 ⎡1 − cos ( B − C )⎤ 2 ⎣ ⎦ d/ b 1 − cos 2B 2 Chöù n g minh ΔABC c aâ n neá u : 6. 1 + cos B 2a + c a/ = sin B a 2 − c2 sin A + sin B + sin C A B = cot g . cot g b/ sin A + sin B − sin C 2 2 c / tgA + 2tgB = tgA.tg B 2 C C⎞ ⎛ ⎞ ⎛ d / a ⎜ cot g − tgA ⎟ = b ⎜ tgB − cot g ⎟ 2 2⎠ ⎝ ⎠ ⎝ C B e / ( p − b ) cot g = ptg 2 2 C f / a + b = tg ( atgA + btgB ) 2 ΔABC l aø Δ g ì neá u : 7. A+B a/ atgB + btgA = ( a + b ) tg 2 b / c = c cos 2B + b sin 2B c / sin 3A + sin 3B + sin 3C = 0 d / 4S = ( a + b − c )( a + c − b ) Chöù n g minh ΔABC ñ eà u neá u 8. a/ 2 ( a cos A + b cos B + c cos C ) = a + b + c b / 3S = 2R 2 ( sin 3 A + sin 3 B + sin 3 C ) c / sin A + sin B + sin C = 4 sin A sin B sin C 9R v ôù i ma , m b , mc laø 3 ñöôø n g trung tuyeá n d/ ma + m b + mc = 2 Th.S Ph ạm H ồ ng Danh – T T luyệ n thi Vĩ nh Vi ễ n
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chương XI: Nhận dạng tam giác
17 p | 1435 | 220
-
Phần 10: Nhận dạng tam giác
17 p | 495 | 108
-
Nhận dạng tam giác - Th.S Phạm Hồng Danh
17 p | 557 | 87
-
ÔN THI ĐẠI HỌC MÔN ĐẠI SỐ - NHÂN DẠNG TAM GIÁC
17 p | 270 | 78
-
Bài tập nhận dạng tam giác
17 p | 404 | 74
-
Ôn thi môn toán - Nhận dạng tam giác
17 p | 225 | 57
-
Toán lượng giác - Chương 11: Nhận dạng tam giác
17 p | 450 | 55
-
Giới thiệu các phương pháp giải toán hệ thức lượng trong tam giác: Phần 2
150 p | 221 | 42
-
Chương VI: NHẬN DẠNG TAM GIÁC
17 p | 231 | 32
-
Chủ đề Nhận diện tam giác - Tuyển tập Đề thi vào Đại học, Cao đẳng từ năm 1970 đến 2000-2001 toàn quốc: Phần 1
132 p | 190 | 22
-
Tổng ôn tập luyện thi Đại học môn Toán - Hình học lượng giác: Phần 2
72 p | 159 | 21
-
Chủ đề Nhận diện tam giác - Tuyển tập Đề thi vào Đại học, Cao đẳng từ năm 1970 đến 2000-2001 toàn quốc: Phần 2
139 p | 162 | 15
-
Bài giảng Toán 5 chương 3 bài 1: Hình tam giác
28 p | 126 | 9
-
Kế hoạch chủ đề Toán 8 năm học 2014 - 2015: Vận dụng các trường hợp đồng dạng của hai tam giác vuông vào bài toán thực tế
7 p | 157 | 8
-
Bài giảng Lĩnh vực phát triển nhận thức - Bài: Nhận biết, phân biệt hình vuông, chữ nhật, tam giác, hình tròn
30 p | 100 | 7
-
Giáo án môn Toán 6: Tam giác đều hình vuông, lục giác đều
15 p | 39 | 4
-
Bài giảng Toán lớp 8 bài 8: Các trường hợp đồng dạng của tam giác vuông - GV. Phí Trung Đức
26 p | 15 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn