intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Ôn thi Đại số THCS: Một số dạng và phương pháp giải Toán tìm GTLN và GTNN

Chia sẻ: Nguyen Pham Duc Huy | Ngày: | Loại File: DOC | Số trang:7

588
lượt xem
110
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Có nhiều phương pháp để giải bài toán tìm GTLN và GTNN của một hàm số, một biểu thức. Tài liệu này gồm ba dạng toán, mỗi dạng sẽ đưa ra các ví dụ, cách giải chung của các ví dụ, bài tập tự giải và kết quả của từng bài. Giúp các em ôn luyện chuẩn bị cho các kì thi sắp tới được tốt hơn.

Chủ đề:
Lưu

Nội dung Text: Ôn thi Đại số THCS: Một số dạng và phương pháp giải Toán tìm GTLN và GTNN

  1. PP tìm GTLN và GTNN trong Đại số THCS MỘT SỐ DẠNG VÀ PHƯƠNG PHÁP GIẢI TOÁN TÌM GTLN VÀ GTNN TRONG ĐẠI SỐ THCS A/ NỘI DUNG GỒM: Dạng I: Các bài toán mà biểu thức là đa thức Dạng II: Các bài toán mà biểu thức là phân thức Dạng III: Các bài toán mà biểu thức là căn thức Mỗi dạng gồm có: - Các ví dụ - Cách giải chung của các ví dụ - Bài tập tự giải và kết quả của từng bài B/ MỘT SỐ ĐIỀU CẦN GHI NHỚ: Có nhiều phương pháp để giải bài toán tìm GTLN và GTNN của một hàm số, một biểu thức. Một trong những phương pháp có hiệu quả là dùng bất đẳng thức quen thuộc, nhưng cũng chính phương pháp này đã gây ra những sai l ầm, nếu chúng ta không nắm vững bản chất của nó. Khi dùng bất đẳng thức ta chứng minh được f ( x ) ≥ K hay f ( x ) ≤ K ( K là một hằng số) thì không được kết luận vội vàng là K là GTLN (hay GTNN) c ủa f ( x ) . Mà ta phải chứng tỏ rằng dấu “=” xảy ra khi và chỉ khi nhận được giá trị cụ thể, thỏa điều kiện của bài toán rồi mới kết luận. C/ CÁC DẠNG TOÁN CỤ THỂ: Dạng I: Các bài toán mà biểu thức là đa thức 1/ Ví dụ: Ví dụ 1: Tìm GTNN của các biểu thức sau: a / f ( x) = x 2 + 3x + 3 b / g ( x) = x( x − 5) Giải 2 3 9 3  3 3 a / f ( x) = x + 3x + 3 = x + 2 x.. + + =  x +  + 2 2 2 4 4  2 4 2 2  3  3 3 3 Ta có  x +  ≥ 0, nên  x +  + ≥  2  2 4 4 2 3  3 3 Vậy: f(x) đạt GTNN bằng khi  x +  = 0 ⇔ x=− 4  4 2 Phạm Văn Tung-Trường THCS Chu Văn An-Đăk Hà-Kon Tum 1
  2. PP tìm GTLN và GTNN trong Đại số THCS 2  5 25 b / g ( x) = x( x − 5) = x − 5 x =  x −  − 2  2 4 2 2  5  5 25 25 Ta có  x −  ≥ 0, nên  x −  − ≥ −  2  2 4 4 2 25  5 5 Vậy: g(x) đạt GTNN bằng − khi  x −  = 0 ⇔ x= 4  2 2 Cách giải chung của bài toán trên là: Ta biến đổi đa thức đã cho về dạng: [ h( x ) ] 2 + a trong đá a là một hằng số. Vì [ h( x ) ] 2 ≥ 0 nên [ h( x ) ] 2 + a ≥ a . Do đó GTNN của biểu thức đã cho bằng a khi h(x) =0. Ví dụ 2: Tìm GTLN của các biểu thức sau: a / f ( x) = − x 2 − 2 x + 14 b / g ( x) = x − x 2 Giải a / f ( x) = − x − 2 x + 14 = −( x + 1) + 15 2 2 Ta có ( x + 1) 2 ≥ 0 nên − ( x + 1) 2 ≤ 0 ⇒ − ( x + 1) + 15 ≤ 15 2 Vậy: f(x) đạt GTLN bằng 15 khi ( x + 1) 2 = 0 ⇔ x = −1 2  1 1 b / g ( x) = x − x 2 = − x −  +  2 4 2 2 2  1  1  1 1 1 Ta có  x −  ≥ 0 nên −  x −  ≤ 0 ⇒ −  x −  + ≤  2  2  2 4 4 2 1  1 1 Vậy: g(x) đạt GTLN bằng khi  x −  = 0 ⇔ x = 4  2 2 Cách giải chung của bài toán trên là: Ta biến đổi đa thức đã cho về dạng: − [ h( x ) ] 2 + a trong đá a là một hằng số. Vì [ h( x ) ] 2 ≥ 0 nên − [ h( x ) ] 2 + a ≤ a . Do đó GTLN của biểu thức đã cho bằng a khi h(x) =0. 2/ Bài tập tự giải: Bài tập 1: Tìm GTLN của các biểu thức sau: f ( x ) = −2 x 2 + 3 x + 1 17 3 Đáp số: f(x) đạt GTLN bằng khi x = 8 4 Phạm Văn Tung-Trường THCS Chu Văn An-Đăk Hà-Kon Tum 2
  3. PP tìm GTLN và GTNN trong Đại số THCS 1 x Bài tập2 : Tìm GTNN của các biểu thức sau: g ( x) = x 2 − − 1 4 6 37 1 Đáp số: g(x) đạt GTNN bằng − khi x = 36 3 Bài tập 3: a/ Tìm GTNN của các biểu thức sau: f ( x) = ( x + 1)( x + 2)( x + 3)( x + 4) −5± 5 Đáp số: f(x) đạt GTNN bằng − 1 khi x1, 2 = 2 b/ Giải phương trình trên khi f(x)=3 − 5 ± 13 Đáp số: Phương trình có nghiệm x1, 2 = 2 Bài 4: Cho phương trình ( m 2 + m + 1) x 2 − ( m 2 + 8m + 3) x − 1 = 0 Gọi x1 , x 2 là hai nghiệm của phương trình trên. Tìm GTLN và GTNN c ủa biểu tổng S= x1 + x 2 2 13 13 − 4 3 Đáp số: S đạt GTLN bằng khi m = 3 3 − 2 13 2 13 13 + 4 3 S đạt GTNN bằng − khi m = − 3 3 + 2 13 Bài 5: Cho x và y thỏa mãn điều kiện : 3x + y = 1 a/ Tìm GTNN của biểu thức: M = 3x 2 + y 2 1 1 1 Đáp số: M đạt GTNN bằng khi x = ; y = 4 4 4 b/ Tìm GTLN của biểu thức: N = 2xy 1 1 1 Đáp số: N đạt GTLN bằng khi x = ; y = 6 6 2 Phạm Văn Tung-Trường THCS Chu Văn An-Đăk Hà-Kon Tum 3
  4. PP tìm GTLN và GTNN trong Đại số THCS Dạng II: Các bài toán mà biểu thức là phân thức F ( x) Đường lối chung để giải dạng toán này: Cho biểu thức A = G ( x) . Biểu thức A đạt GTLN khi F(x) đạt GTLN và G(x) đạt GTNN; bi ểu thức A đ ạt GTNN khi F(x) đạt GTNN và G(x) đạt GTLN. 1/ Ví dụ: 3x 2 − 18 x + 35 Ví dụ 1: Tìm GTLN của biểu thức: A = 2 x − 6 x + 10 Giải 3x − 18 x + 35 2 5 5 A= = 3+ 2 = 3+ x − 6 x + 10 2 x − 6 x + 10 ( x − 3) 2 + 1 A đạt GTLN khi ( x − 3) 2 + 1 đạt GTNN, mà ( x − 3) 2 + 1 ≥ 1 5 Vậy GTLN của A = 3 + = 8 khi ( x − 3) 2 = 0 ⇔ x = 3 1 Cách giải chung của bài toán trên là: Ta thấy bậc của tử thức bằng bậc của mẫu thức, ta thực hiện phép chia để N đưa biểu thức về dạng A = M + f (x) (M, N là hằng số). Do đó biểu thức A đạt GTLN khi biểu thức f(x) đạt GTNN. 2x + 1 Ví dụ 2: Tìm GTNN của biểu thức: A = ( x ≠ 0) x2 Giải Ta có thể viết: 2 x + 1 x 2 + 2 x + 1 − x 2 ( x + 1) − x 2  x + 1  2 2 A= = = =  −1 x2 x2 x2  x  Do đó: 2  x + 1 A +1 =   ⇒ A +1 ≥ 0 ⇔ A ≥ −1  x  x +1 Dấu “=” xảy ra khi và chỉ khi =0 ⇔ x +1 = 0 ⇔ x = −1 x Phạm Văn Tung-Trường THCS Chu Văn An-Đăk Hà-Kon Tum 4
  5. PP tìm GTLN và GTNN trong Đại số THCS Vậy biểu thức A đạt GTNN bằng -1 khi x=-1 Cách giải chung của bài toán trên là: Ta thấy bậc của tử thức nhỏ hơn bậc của mẫu th ức, ta th ực hi ện phép 2   f ( x)  biến đổi để đưa biểu thức về dạng A =  F    + K (K là hằng số). Do đó    g ( x )  f ( x) biểu thức A đạt GTNN là K khi biểu thức g ( x) =0. 2/ Bài tập tự giải: Bài 1: Tìm GTLN của hàm số: x2 1 f ( x) = ( x ≠ 0) ; Đáp số: f(x) đạt GTLN bằng khi x = ±1 x4 +1 2 Bài 2: Cho x>0. Tìm giá trị của x để biểu thức x M = ( x + 2009) 2 đạt GTLN. 1 Đáp số: M đạt GTLN bằng khi x=2009 4.2009 x 2 − 2 x + 2009 x3 Bài 3: Cho biểu thức: M = : 3 ( x − 1) ( x − 2) x − 3x 2 + 2 x x 2 − 2 x + 2009 a/ Rút gọn M Đáp số: M = ( x ≠ 1; x ≠ 2; x ≠ 0) x2 2008 b/ Tìm GTNN của M. Đáp số: M đạt GTNN bằng khi x = 2009 2009 3 x 2 − x 3 x 3 − x 2 + 12 x − 4 Bài 4: Cho biểu thức: N = : 3x + 2 x + 2( x + 1) x  1 2 a/ Rút gọn N . Đáp số: N = x ≠ ;x ≠ −  x +4 2  3 3 b/ Tìm GTNN và GTLN của N 1 Đáp số: N đạt GTNN bằng − khi x = −2 4 1 Đáp số: N đạt GTLN bằng khi x = 2 4 1 1 1 Bài 5: Cho a, b, c là ba số dương thỏa mãn điều kiện: + + =2 1+ a 1+ b 1+ c Tìm GTLN của biểu thức abc: Phạm Văn Tung-Trường THCS Chu Văn An-Đăk Hà-Kon Tum 5
  6. PP tìm GTLN và GTNN trong Đại số THCS 1 1 Đáp số: abc đạt GTLN bằng khi a = b = c = 8 2 Dạng III: Các bài toán mà biểu thức là căn thức 1/ Ví dụ: Ví dụ 1:Cho biểu thức: f ( x) = 2 − x − 1 + x . Tìm giá trị của x để f(x) đạt GTLN. Giải Biểu thức f(x) có nghĩa khi: 2 − x ≥ 0  ⇔ −1 ≤ x ≤ 2 1 + x ≥ 0 Trong điều kiện này ta có f(x) ≥ 0 nên f(x)đạt GTLN khi và chỉ khi [ f ( x ) ] 2 đạt GTLN. Ta có: [ f ( x ) ] 2 = 2 − x + 1 + x + 2 ( 2 − x )(1 + x ) = 3 + 2 2 + x − x 2 2 9 1 9  1 = 3+ 2 − x2 + x + = 3 + 2 −x−  4 4 4  2 1 1 Do đó [ f ( x ) ] 2 đạt GTLN khi và chỉ khi x − = 0 ⇔ x = 2 2 1 1 1 Vậy khi x = thì GTLN của biểu thức f (x) = 2 − + 1 + = 6 2 2 2 Cách giải chung của bài toán trên là: Ta cần xác điều kiện các biểu thức dưới dấu căn để cho căn thức có nghĩa, sau đó tìm điều kiện để biểu thức [ f ( x ) ] 2 đạt GTLN . Điều kiện đó cũng chính là điều kiện để biều thức f(x) đạt GTLN. x−3 Ví dụ 2: Cho biểu thức: f ( x) = . Tìm giá trị của x để f(x) đạt GTNN. x −1 − 2 Giải Biểu thứ f(x) có nghĩa khi: x − 1≥ 0 x ≥ 1  ⇔   x−1− 2 ≠ 0 x ≠ 3 Ta biến đổi: x− 3 x − 1− 2 ( x − 1 − 2 )( x − 1 + 2) f ( x) = = = = x−1+ 2 x−1− 2 x−1− 2 x−1 2 Phạm Văn Tung-Trường THCS Chu Văn An-Đăk Hà-Kon Tum 6
  7. PP tìm GTLN và GTNN trong Đại số THCS Do đó: f ( x) = x − 1 + 2 nên f ( x ) đạt GTNN khi và chỉ khi x −1 đạt GTNN mà x − 1 ≥ 0 nên x − 1 đạt GTNN bằng 0 khi x = 1 Vậy f(x) đạt GTNN bằng 2 khi x = 1 Cách giải chung của bài toán trên là: Ta cần xác điều kiện để biểu thức có nghĩa và phân tích đa thức thành nhân tử sau đó rút gọn biểu thức đã cho. 2/ Bài tập tự giải: 1 x2 + 21 Bài 1: Cho biểu thức: M = + − ( 2(1 + x ) 2 1 − x 1 − x 2 ) 1 a/ Rút gon biểu thức M. Đáp số: M = − 2 ( x ≥ 0; x ≠ 1) x + x +1 b/ Tìm GTNN của M Đáp số: M đạt GTNN bằng -1 khi x=0  x−2 x+2  −2 Bài 2: Cho biểu thức M =    x − 1 − x + 2 x + 1  : (1 − x ) 2   a/ Rút gọn biểu thức M. Đáp số: M= x − x ( x ≥ 0; x ≠ 1) 1 1 b/Tìm GTLN của M. Đáp số: M đạt GTLN bằng khi x = 4 4 1 Bài 3: Tìm GTLN của biểu thức M = 2x − x + 1 8 1 Đáp số: M đạt GTLN bằng khi x = 7 16 1 Bài 4: Tìm GTLN và GTNN của biểu thức: M = 3 − 1− x2 1 Đáp số: M đạt GTLN bằng khi x = 0 2 1 M đạt GTNN bằng khi x = ±1 3 Bài 5:Tìm GTNN của biểu thức: M = ( x − 2008) 2 + ( x − 2009) 2 Đáp số: M đạt GTNN bằng1 khi 2008 ≤ x ≤ 2009 Phạm Văn Tung-Trường THCS Chu Văn An-Đăk Hà-Kon Tum 7
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2