Tóm tắt Luận án Tiến sĩ Khoa học giáo dục: Vận dụng phép biện chứng duy vật nhằm phát triển năng lực toán học cho học sinh khá và giỏi toán trong dạy học nội dung vectơ và tọa độ ở trường trung học phổ thông
lượt xem 33
download
Luận án đề xuất các biện pháp vận dụng phép BCDV trong quá trình dạy học nội dung vectơ và tọa độ để phát triển năng lực toán học cho học sinh khá và giỏi toán, góp phần nâng cao chất lượng dạy và học môn toán ở trường trung học phổ thông theo hướng tiếp cập năng lực người học.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tóm tắt Luận án Tiến sĩ Khoa học giáo dục: Vận dụng phép biện chứng duy vật nhằm phát triển năng lực toán học cho học sinh khá và giỏi toán trong dạy học nội dung vectơ và tọa độ ở trường trung học phổ thông
- Bé gi¸o dôc vµ ®µo t¹o Trêng ®¹i häc s ph¹m hµ néi ------------------- Lª thiÕu tr¸ng VẬN DỤNG PHÉP BIỆN CHỨNG DUY VẬT NHẰM PHÁT TRIỂN NĂNG LỰC TOÁN HỌC CHO HỌC SINH KHÁ VÀ GIỎI TOÁN TRONG DẠY HỌC NỘI DUNG VECTƠ VÀ TỌA ĐỘ Ở TRƯỜNG TRUNG HỌC PHỔ THÔNG Chuyªn ngµnh : LL& PPDH Bé m«n to¸n M· sè : 62 .14. 01. 11 Tãm t¾t LuËn ¸n tiÕn sÜ khoa häc gi¸o dôc hµ néi - 2015
- LuËn ¸n ®îc hoµn thµnh t¹i: Trêng ®¹i häc s ph¹m hµ néi Ngêi híng dÉn khoa häc: 1. TS. TrÇn LuËn 2. PGS. TS. Vò D¬ng Thôy Ph¶n biÖn 1: GS.TS. §µo Tam Trêng §¹i häc Vinh Ph¶n biÖn 2: PGS.TS. §µo Th¸i Lai ViÖn Khoa häc gi¸o dôc ViÖt Nam Ph¶n biÖn 3: TS. NguyÔn §øc Hoµng Trêng §¹i häc S ph¹m Hµ Néi LuËn ¸n ®îc b¶o vÖ t¹i: Héi ®ång chÊm LuËn ¸n cÊp Trêng Häp t¹i: Trêng §¹i häc S ph¹m Hµ Néi Vµo håi ..... giê ..... ngµy ..... th¸ng ..... n¨m 2015 Cã thÓ t×m ®äc luËn ¸n t¹i: - Th viÖn Quèc gia
- - Th viÖn Trêng §¹i häc S ph¹m Hµ Néi
- DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA TÁC GIẢ 1. Lê Thiếu Tráng (2010), Áp dụng tư duy biện chứng trong dạy học toán giúp học sinh chủ động và sáng tạo trong học tập, Tạp chí Giáo dục, Bộ Giáo dục và Đào tạo, số 247, Kỳ 1 tháng 7 (tr.45). 2. Lê Thiếu Tráng (2013), Sử dụng phạm trù "vận động" xây dựng nhóm bài tập từ một bài tập cơ bản trong hình học lớp 10 nhằm phát triển tư duy biện chứng cho học sinh, Tạp chí Giáo dục, Bộ Giáo dục và Đào tạo, số 320, Kỳ 2 tháng 10 (tr.46). 3. Lê Thiếu Tráng (2014), Sử dụng mối quan hệ nhânquả trong giảng dạy để phát triển năng lực toán học cho học sinh trung học phổ thông, Tạp chí Giáo dục, Bộ Giáo dục và Đào tạo, số 336, Kỳ 2 tháng 6 (tr.51). 4. Lê Thiếu Tráng (2014), Phân tích cấu trúc của năng lực và ứng dụng trong quá trình giảng dạy toán cho học sinh trung học phổ thông, Tạp chí Giáo dục, Bộ Giáo dục và Đào tạo, Số đặc biệt tháng 6 (tr.193). 5. Lê Thiếu Tráng (2014), Phát triển năng lực toán học cho học sinh trung học phổ thông dựa trên nguyên lí về mối liên hệ phổ biến trong phép biện chứng duy vật, Tạp chí Khoa học, Volume 59, Number 2A, trường ĐHSP Hà Nội (tr.182).
- 1 MỞ ĐẦU 1. Lý do chọn đề tài 1.1. Dạy học theo hướng phát triển năng lực của học sinh là một mục tiêu đang hướng tới của giáo dục Việt Nam Theo điều 28.2 Luật Giáo dục: "Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác, chủ động, sáng tạo của học sinh;...bồi dưỡng phương pháp tự học, khả năng làm việc theo nhóm; rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn;... Nghị quyết Hội nghị lần thứ 8, Ban Chấp hành Trung ương khóa XI chỉ rõ mục tiêu Giáo dụcĐào tạo cần đạt: "Phát triển giáo dục và đào tạo là nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài. Chuyển mạnh quá trình giáo dục từ chủ yếu trang bị kiên th ́ ưc sang phát tri ́ ển toàn diện năng lực và phẩm chất người học. Học đi đôi với hành; lí luận gắn với thực tiễn;...Giáo dục con người Việt Nam phát triển toàn diện và phát huy tốt nhất tiềm năng, khả năng sáng tạo của mỗi cá nhân;...". Boyatzis và các đồng sự từ năm 1995 đã tổng kết các nhược điểm của giáo dục: Quá nặng về phân tích, không định hướng thực tiễn và hành động; Thiếu và yếu trong phát triển kĩ năng quan hệ qua lại giữa các cá nhân; Thiển cận, hạn hẹp, không có tiếp cận toàn diện tổng thể trong những giá trị và tư duy của nó; Không giúp người học làm việc tốt trong các nhóm và đội làm việc. Rausch, Sherman, và Washbush năm 2001 cho rằng: “Thiết kế một cách cẩn thận các chương trình giáo dục và đào tạo chú trọng vào kết quả đầu ra và dựa trên năng lực có thể xem là một giải pháp tự nhiên để giải quyết hầu hết, nếu khô ng phải là tất cả, những nhược điểm này”. Nhóm tác giả: Phạm Văn Hoàn, Nguyễn Gia Cốc, Trần Thúc Trình nêu quan điểm: “Phát triển những năng lực toán học ở học sinh là một nhiệm vụ đặc biệt quan trọng của thầy giáo vì hai lí do: thứ nhất, toán học có một vai trò to lớn trong sự phát triển của các ngành khoa học, kĩ thuật và sự nghiệp cách mạng cần thiết có một đội ngũ những người có năng lực toán học; thứ hai, “Trên cơ sở những đòi hỏi tất yếu của cuộc sống cộng đồng,..."phải" bảo đảm sự phát triển phong phú của nhân cách, bồi dưỡng và phát huy sở trường và năng khiếu cá nhân”. Tuy nhiên, rất đáng tiếc, hiện nay chúng ta vẫn chưa có những công trình nghiên cứu tỉ mỉ về cấu trúc của năng lực tư duy toán học của học sinh nước ta, để từ đó có nội dung, phương pháp bồi dưỡng năng lực sáng tạo toán học cho học sinh một cách chủ động. Bộ giáo dục và Đào tạo năm 2013 đã có hướng dẫn "Thí điểm chương trình giáo dục định hướng phát triển năng lực học sinh". Năm 2014, trong Dự thảo Chương trình tổng thể giáo dục phổ thông của Bộ Giáo dục và Đào tạo đề ra mục tiêu: Chương trình giáo dục phổ thông nhằm tạo ra những con người Việt Nam phát triển hài hòa về thể chất và tinh thần,...có học vấn phổ thông; có năng lực chung: Tự học và quản lí bản thân; phát hiện và giải quyết vấn đề; giao tiếp và hợp tác; sử dụng ngôn ngữ, tính toán, công nghệ thông tin và truyền thông làm cơ sở cho việc lựa chọn nghề nghiệp.
- 2 Do đó, việc nghiên cứu về phương pháp dạy học phát triển năng lực cho học sinh là một vấn đề cần thiết cho việc đổi mới giáo dục trong thời gian tới ở Việt Nam. 1.2. Vận dụng phép biện chứng duy vật trong dạy học Toán là một phương pháp phát triển năng lực hiệu quả cho học sinh ở trường trung học phổ thông Muốn dạy tốt môn toán trong nhà trường phổ thông, giáo viên cần có những hiểu biết nhất định về khoa học toán học...Tất cả các lĩnh vực ấy đều dựa trên cơ sở triết học nhất định. Vì vậy để dạy tốt môn toán, trước tiên chúng ta hãy tìm hiểu những đặc điểm của khoa học toán học theo quan điểm triết học DVBC, bao gồm những nội dung: Đối tượng, nguồn gốc, phương pháp của Toán học về tiêu chuẩn chân lí của khoa học này. Để nhận thức mặt nội dung của "hiện thực" cần có tư biện chứng, và để nhận thức mặt hình thức của "hiện thực" cần có tư duy lôgic; nên tư duy toán học cũng phải là sự thống nhất biện chứng giữa tư duy lôgic và tư duy biện chứng. Từ yêu cầu đổi mới phương pháp dạy học theo hướng tiếp cận năng lực người học, qua khảo sát thực trạng dạy và học Toán hiện nay, chúng tôi chọn đề tài: “VẬN DỤNG PHÉP BIỆN CHỨNG DUY VẬT NHẰM PHÁT TRIỂN NĂNG LỰC TOÁN HỌC CHO HỌC SINH KHÁ VÀ GIỎI TOÁN TRONG DẠY HỌC NỘI DUNG VECTƠ VÀ TỌA ĐỘ Ở TRƯỜNG TRUNG HỌC PHỔ THÔNG” 2. Lịch sử vấn đề nghiên cứu 2.1. Tình hình nghiên cứu trên thế giới Về vận dụng phép BCDV trong dạy học Toán có tác phẩm “Một số quan điểm Triết học trong toán học” của Rudavin, Nưxanbaep, Sliakhin; Về năng lực: Công trình “Tâm lí năng lực toán học của học sinh” năm 1973 của Crutecxki V.A người Nga, đã xác định khái quát cấu trúc năng lực toán học của học sinh. Trong công trình "Về Toán học phổ thông và những xu hướng phát triển", năm 1980 của tác giả Maxlôva G.G đã khẳng định vấn đề tăng cường các ứng dụng toán học là xu thế chung trong những thập kỉ gần đây. Trong nghiên cứu "Dạy học Toán" của Xtôlia A.A, tác giả cũng nhấn mạnh quan điểm dạy học phát triển năng lực toán cho học sinh chính là dạy học sinh biết thực hiện các hoạt động toán học... J.Guilford đưa ra quan điểm phải đánh giá nội dung học tập theo quan điểm giá trị của chúng đối với hoạt động sáng tạo và đã giải quyết bằng cách xây dựng một mô hình tham số các năng lực trí tuệ. Hội đồng Quốc tế về giáo dục cho thế kỷ XXI được UNESCO năm 1996, Hội đồng đã xuất bản ấn phẩm “Học tập: một kho báu tiểm ẩn”, trong đó đã xác định vấn đề "học tập suốt đời" dựa trên bốn trụ cột là: Học để biết, học để làm, học để chung sống với nhau, học để làm người. Các nghiên cứu xoay quanh vấn đề “ học để làm” liên hệ mật thiết với việc phát triển năng lực của học sinh. 2.2. Tình hình nghiên cứu trong nước
- 3 Ở Việt Nam, đã có một số công trình nghiên cứu về vận dụng phép BCDV trong giảng dạy Toán, phát triển tư duy biện chứng cho học sinh: Tiêu biểu là tác phẩm “Tập cho học sinh giỏi Toán làm quen dần với nghiên cứu toán học” của Giáo sư TSKH Nguyễn Cảnh Toàn, dựa trên 10 chủ đề tiêu biểu, tác giả đã sử dụng một số nguyên lí và các cặp phạm trù cơ bản của phép BCDV, phân tích sâu sắc việc sử dụng chúng trong quá trình học toán và nghiên cứu toán học. Tác giả Nguyễn Thái Hòe, “Vận dụng những hiểu biết về triết học (các qui luật cơ bản và các cặp phạm trù của phép BCDV) vào việc định hướng đường lối giải các bài toán”, Thông báo khoa học, ĐHSP Vinh, 1990. "Phát triển tư duy biện chứng của học sinh trong dạy học hình học ở trường trung học phổ thông" luận án tiến sĩ của Nguyễn Thanh Hưng Đại học Tây Nguyên, 2008. Về năng lực, ở Việt Nam đã có một số tác phẩm, bài báo đề cập đến, đặc biệt là trong một số năm gần đây đã có nhiều cuộc Hội thảo bàn về vấn đề phát triển năng lực chung và năng lực Toán học cho học sinh. Tác phẩm "Giáo dục học môn Toán" của Phạm Văn Hoàn, Nguyễn Gia Cốc, Trần Thúc Trình, đã phân tích và minh họa phát triển năng lực toán học trong quá trình dạy học và phát triển tư duy sáng tạo cho học sinh phổ thông. Tác phẩm “Khuyến khích một số hoạt động trí tuệ của học sinh qua môn Toán ở trường THCS” của Nguyễn Bá Kim, Vương Dương Minh, Tôn Thân, các tác giả cũng đề cập sâu sắc đến việc phát triển năng lực toán học của học sinh thông qua các hoạt động trí tuệ tiêu biểu. Một số bài viết khác như: Đào Tam (2007), “Rèn luyện cho học sinh phổ thông một số thành tố của năng lực kiến tạo kiến thức trong dạy học toán ”, Tạp chí giáo dục; TS Trần Luận (1990), “Về cấu trúc năng lực toán học của học sinh”, Tư liệu Hội thảo môn toán, Viện khoa học giáo dục, Hà Nội; Kỷ yếu hội thảo khoa học quốc gia: “Nghiên cứu giáo dục toán học theo hướng phát triển năng lực người học, giai đoạn 20142020” ... Qua việc tìm hiểu, nghiên cứu chúng tôi nhận thấy: Các công trình nghiên cứu trong nước và trên thế giới về sử dụng phép BCDV trong giảng dạy và phát triển năng lực cho học sinh đã nghiên cứu đề cập đến các vấn đề sau: Về phép BCDV, đã chỉ ra sự phát triển và phát minh Toán học đều dựa trên các nguyên lí và qui luật tất yếu của triết học DVBC; đã minh họa một số bài toán tiêu biểu vận dụng các cặp phạm trù trên cơ sở của triết học DVBC; phát triển tư duy biện chứng cho học sinh thông qua dạy học hình học ở trường trung học phổ thông. Về phát triển năng lực, các tác giả đã phân tích theo nhiều góc độ để đưa ra những quan điểm về năng lực chung, năng lực toán học, tuy nhiên cũng chưa có sự thống nhất giữa các tác giả và các quốc gia. Hiện nay việc chốt lại khung năng lực chung và năng lực toán học cần phát triển cho học sinh phổ thông chưa có sự thống nhất. Chúng tôi nhận thấy, nếu kế thừa các kết quả của các tác giả đi trước, áp dụng vào thực tế ở Việt Nam với một khung năng lực chung và năng lực toán học phù hợp đặc điểm tâm sinh lí của học sinh Việt Nam, thì việc vận dụng phép BCDV là một trong những biện pháp phát triển năng lực toán học cho học sinh đạt hiệu quả cao. Phép BCDV có thể được vận dụng để phát triển năng lực được ở nhiều nội dung dạy
- 4 học, nhiều môn học, chủ đề vectơ và tọa độ có nhiều ý nghĩa trong lịch sử phát triển Toán học và thực tiễn, có quan hệ mật thiết với các thành phần của năng lực toán học. Hơn nữa, qua kinh nghiệm của tác giả vận dụng trong giảng dạy đã đạt được hiệu quả nhất định. Do đó, chúng tôi lựa chọn đề tài này nhằm mục đích sau: 3. Mục đích nghiên cứu Luận án đề xuất các biện pháp vận dụng phép BCDV trong quá trình dạy học nội dung vectơ và tọa độ để phát triển năng lực toán học cho học sinh khá và giỏi toán, góp phần nâng cao chất lượng dạy và học môn toán ở trường trung học phổ thông theo hướng tiếp cập năng lực người học. 4. Nhiệm vụ nghiên cứu Để đạt được mục đích nghiên cứu trên, luận án có nhiệm vụ góp phần làm sáng tỏ các vấn đề sau: 4.1. Lí luận về phép BCDV, các nguyên lí và phạm trù của phép BCDV, phân tích mối liên hệ giữa toán học và các đặc trưng cơ bản của phép BCDV, minh họa những tri thức tiêu biểu trong quá trình giảng dạy hình học. 4.2. Tìm hiểu, tổng hợp một số khái niệm, công trình về năng lực, năng lực toán học và các đặc trưng của nó, đưa ra quan điểm phù hợp trong giai đoạn hiện nay ở Việt Nam. 4.3. Tìm hiểu năng lực toán học của học sinh trong học tập hình học ở trường phổ thông và mối quan hệ của nó với phép BCDV. 4.4. Xác định một số căn cứ, định hướng của việc đề ra các biện pháp sư phạm phát triển năng lực toán học dựa trên cơ sở phép BCDV. 4.5. Đề xuất các biện pháp sư phạm vận dụng phép BCDV trong dạy học nội dung vectơtọa độ ở trường phổ thông nhằm phát triển năng lực toán học cho học sinh khá giỏi. 5. Phạm vi nghiên cứu Đề tài nghiên cứu trong phạm vi nội dung chương trình hình học, chủ yếu là nội dung liên quan đến vectơ và tọa độ ở trường trung học phổ thông. 6. Khách thể và đối tượng nghiên cứu 6.1. Khách thể nghiên cứu Hoạt động dạy và học hình học, nội dung vectơ và tọa độ theo hướng phát triển năng lực toán học của giáo viên và học sinh ở trường trung học phổ thông. 6.2. Đối tượng nghiên cứu Khái niệm, đặc trưng của năng lực toán học, lí luận của phép BCDV, việc vận dụng phép BCDV của giáo viên để phát triển năng lực toán học cho học sinh khá giỏi toán ở trường trung học phổ thông. 7. Giả thuyết khoa học Trong quá trình dạy học nội dung vectơ và tọa độ, nếu vận dụng phép BCDV bằng những biện pháp sư phạm phù hợp thì sẽ góp phần phát triển năng lực toán học cho học sinh, từ đó nâng cao được hiệu quả dạy học Toán ở trường trung học phổ thông. 8. Phương pháp nghiên cứu 8.1. Nghiên cứu lí luận: Các tài liệu về năng lực, năng lực toán học, tài liệu về triết học DVBC, các tài liệu về Tâm lí học, Giáo dục học, các văn bản về giáo dục, luật giáo dục.
- 5 8.2. Phương pháp điều tra, quan sát: Sử dụng phiếu hỏi, phiếu thăm dò các giáo viên dạy Toán về sự quan tâm việc phát triển năng lực toán học cho học sinh, việc sử dụng phép BCDV trong giảng dạy Toán. Dự giờ một số giờ dạy Toán của giáo viên trung học phổ thông để nắm được thực tế việc dạy và học nội dung vectơ và tọa độ của giáo viên và học sinh. 8.3. Phương pháp chuyên gia: Xin ý kiến của các chuyên gia trong lĩnh vực giáo dục toán học, triết học và tâm lí học để điều chỉnh và hoàn thành luận án. 8.4. Phương pháp thực nghiệm sư phạm: Tổ chức thực nghiệm sư phạm để đánh giá tính khả thi và tính hiệu quả của luận án. Đánh giá kết quả bằng phương pháp thống kê trong khoa học giáo dục. 9. Những vấn đề đưa ra bảo vệ 9.1. Kết quả tổng hợp, phân tích và đánh giá các quan điểm về năng lực và năng lực toán học của học sinh từ một số tài liệu đã có để đưa ra một khung năng lực toán học cần phát triển trong dạy học nội dung vectơ và tọa độ đối với học sinh khá và giỏi toán ở trường trung học phổ thông của Việt Nam. 9.2. Quan điểm về cách đánh giá mối quan hệ giữa phép BCDV với các thành phần năng lực toán học của học sinh trong học tập hình học ở trường trung học phổ thông. 9.3. Các căn cứ và định hướng của việc đề ra các biện pháp sư phạm phát triển năng lực toán học cho học sinh khá và giỏi toán ở trường trung học phổ thông của Việt Nam . 9.4. Các biện pháp sư phạm đề xuất vận dụng phép BCDV nhằm phát triển năng lực toán học cho học sinh khá và giỏi toán trong dạy học nội dung vectơ và tọa độ ở trường trung học phổ thông. 10. Những đóng góp mới của luận án 10.1. Về mặt lí luận Phân tích, minh họa được mối liên hệ giữa các nguyên lí, qui luật và phạm trù của phép BCDV với các thành phần năng lực và năng lực toán học cho học sinh trong dạy học hình học. Tổng hợp, phân tích khái niệm và đặc trưng về năng lực, năng lực toán học, lựa chọn khung năng lực nói chung và năng lực toán học nói riêng cho học sinh Việt Nam. Đề xuất được 5 biện pháp dạy học vận dụng phép BCDV phát triển năng lực toán học cho học sinh khá và giỏi toán trong dạy học nội dung vectơ và tọa độ ở trường trung học phổ thông. 10.2. Về mặt thực tiễn Xây dựng được một phương pháp phát triển năng lực toán học cho học sinh khá và giỏi toán thông qua giảng dạy chủ đề phương pháp vectơ và tọa độ trong hình học. Xây dựng được 5 biện pháp phát triển năng lực toán học cho học sinh khá và giỏi toán ở trường trung học phổ thông. Xây dựng được một số chủ đề tiêu biểu và hệ thống ví dụ minh họa trong giảng dạy của luận án là tài liệu tham khảo cho giáo viên khi thực hiện Kế hoạch giáo dục theo định hướng phát triển năng lực người học của Bộ Giáo dục và Đào tạo trong những năm tới. Chương 1 CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN
- 6 1.1. Khái niệm, hình thức, đặc trưng và vai trò của phép biện chứng, p hép biện chứng duy vật 1.1.1. Một số khái niệm a. Biện chứng: Là phương pháp triết học xem xét những sự vật hiện tượng và những phản ánh của chúng vào tư duy, chủ yếu là trong mối liên hệ qua lại, trong sự phát sinh và sự tiêu vong của chúng. b. Siêu hình: Là phương pháp xem xét sự vật trong trạng thái đứng im, không vận động, cô lập và tách biệt nhau. 1.1.2. Các hình thức cơ bản của phép biện chứng a. ''Phép BC chất phác”; b. ''Phép BC duy tâm”; c. ''Phép BCDV”. 1.1.3. Phép biện chứng duy vật, đặc trưng và vai trò của phép biện chứng duy vật về phương pháp luận Phép BCDV là khoa học về các qui luật chung nhất về sự phát triển của thế giới vật chất, đồng thời là lí luận nhận thức và lôgic học. Các qui luật nhận thức và các hình thức tư duy không tách rời lí luận về các qui luật và các hình thức vận động của tồn tại. Phép BCDV của chủ nghĩa MácLênin có hai đặc trưng cơ bản sau: Một là, phép BCDV của chủ nghĩa MácLênin là phép biện chứng được xác lập trên nền tảng của thế giới quan duy vật khoa học. Hai là, trong phép BCDV của chủ nghĩa MácLênin có sự thống nhất giữa nội dung của thế giới quan (DVBC) với phương pháp luận (BCDV). 1.1.4. Hai nguyên lí cơ bản của triết học duy vật biện chứng a. Nguyên lí về mối liên hệ phổ biến; b. Nguyên lí về sự phát triển Nguyên lí về sự phát triển 1.1.5. Ba qui luật cơ bản của triết học duy vật biện chứng Qui luật chuyển hóa từ những sự thay đổi về lượng thành những sự thay đổi về chất và ngược lại; Qui luật thống nhất và đấu tranh giữa các mặt đối lập; Qui luật phủ định của phủ định. 1.2. Một số quan điểm về năng lực và năng lực toán học 1.2.1. Năng lực Theo từ điển Tiếng Việt, năng lực có hai nghĩa: (1). Khả năng, điều kiện chủ quan hoặc tự nhiên sẵn có để thực hiện một hoạt động nào đó; (2). Phẩm chất tâm lí và sinh lí tạo cho con người khả năng hoàn thành một loại hoạt động nào đó với chất lượng cao. Theo Tâm lí học: "Năng lực là tập hợp các tính chất hay phẩm chất của tâm lí cá nhân, đóng vai trò là điều kiện bên trong, tạo thuận lợi cho việc thực hiện tốt một dạng hoạt động nhất định”. Luận án lấy quan điểm theo kết luận của Hội nghị giữa Hội đồng giáo dục và các Bộ trưởng Giáo dụcĐào tạoViệc làm của Australia (9/1992), một kiến nghị về bảy năng lực cơ bản của người lao động cần có được đề ra là: (1) Năng lực thu thập, phân tích và tổ chức thông tin, (2) Năng lực giao tiếp, truyền đạt ý tưởng thông tin, (3) Năng lực lập kết hoạch và tổ chức hoạt động, (4) Năng lực làm việc với đối tác theo nhóm, (5) Năng lực sử dụng tư duy toán học và kỹ thuật, (6) Năng lực giải quyết vấn đề, (7) Năng lực sử dụng công nghệ. 1.2.2. Năng lực của học sinh phổ thông
- 7 Singapo đề ra tám nhóm năng lực thiết yếu của học sinh là: (1) Năng lực phát triển tính cách; (2) Năng lực tự điều khiển bản thân; (3) Năng lực xã hội và hợp tác; (4) Năng lực đọc viết; (5) Năng lực giao tiếp; (6) Năng lực xử lí thông tin; (7) Năng lực suy nghĩ và sáng tạo; (8) Năng lực ứng dụng kiến thức. Phần Lan cũng đề ra tám năng lực của học sinh gồm: (1) Năng lực giao tiếp tiếng mẹ đẻ; (2) Năng lực toán học và khoa học cơ bản; (3) Năng lực sáng tạo và lãnh đạo; (4) Năng lực sử dụng công nghệ; (5) Năng lực thực hiện nghĩa vụ công dân và xã hội; (6) Năng lực nhận thức và thể hiện văn hóa; (7) Năng lực sử dụng công nghệ số; (8) Năng lực học cách học. Đối với Việt Nam, trong Dự thảo chương trình tổng thể giáo dục phổ thông của Bộ Giáo dục và Đào tạo năm 2014, phần phụ lục 1: Chuẩn đầu ra phẩm chất năng lực chung của chương trình giáo dục các cấp, nêu chín phẩm chất về năng lực chung cần đạt là: (1) Năng lực tự học; (2) Năng lực giải quyết vấn đề; (3) Năng lực sáng tạo; (4) Năng lực tự quản lí; (5) Năng lực giao tiếp; (6) Năng lực hợp tác; (7) Năng lực sử dụng công nghệ thông tin và truyền thông; (8) Năng lực sử dụng ngôn ngữ; (9) Năng lực tính toán. 1.2.3. Năng lực toán học a. Khái niệm năng lực toán học trong tâm lí học Trong tâm lý học người ta hiểu khái niệm năng lực toán học dưới hai khía cạnh: Đó là những năng lực sáng tạo trong hoạt động nghiên cứu toán học với tư cách là khoa học; người có năng lực sáng tạo toán học cống hiến cho loài người những công trình toán học có ý nghĩa đối với sự phát triển của khoa học toán học nói riêng, có ý nghĩa đối với hoạt động thực tiễn của xã hội nói chung; Đó là những năng lực trong học tập, trong việc nắm vững toán học với tư cách là môn học; người học sinh có năng lực toán học nắm được nhanh chóng và có kết quả những kiến thức, kĩ năng, kĩ xảo tương ứng. b. Một số quan điểm khác Trong cuốn sách của Viện sĩ Toán học A.N. Kôlmôgôrôp "Về nghề nghiệp của nhà toán học". Các thành phần năng lực được minh họa trong sơ đồ 1.1. Những năng lực Tính sẵn sàng bắt tay vào hoạt động Những điều kiện tâm lý chung, cần thiết để đảm bảo thực hiện thắng lợi hoạt động Khuynh hướng Các nét tính Các tình trạng Kiến thức kỹ hứng thú cách tâm lý năng kỹ xảo Sơ đồ 1.1 Trong Hội thảo về năng lực toán học của học sinh của Viện Khoa học Giáo dục Việt Nam đề xuất hai nhóm: Năng lực trí tuệ chung và năng lực toán học đặc thù.
- 8 (1) Nhóm các năng lực trí tuệ chung bao gồm các thành phần sau (1.1) Năng lực hệ thống hoá và trừu tượng hoá toán học; (1.2) Năng lực sử dụng các sơ đồ, hệ thống tín hiệu và những cái trừu tượng; (1.3) Năng lực suy luận lôgic được phân nhỏ hợp lý, tuần tự, có liên quan đến nhu cầu phải chứng minh, luận chứng, kết luận; (1.4) Năng lực khái quát hoá toán học và tri giác khái quát tình huống; (1.5) Năng lực phân tích triệt để cấu trúc toán học, tái phối hợp các yếu tố của nó; (1.6) Tính linh hoạt của các quá trình tư duy; (1.7) Năng lực hệ thống hoá chặt chẽ thông tin toán học; (1.8) Năng lực ghi nhớ lôgic và sử dụng nhanh chóng, dễ dàng các thông tin đã được ghi nhớ; (1.9) Năng lực diễn đạt một cách chính xác ý nghĩa toán học. (2) Trong nhóm các năng lực toán học đặc thù bao gồm những thành phần sau (2.1) Năng lực tưởng tượng không gian;(2.2) Năng lực biểu diễn trực quan các quan hệ và phụ thuộc trừu tượng; (2.3) Tính sâu sắc và cặn kẽ các quá trình tư duy trong hoạt động toán học;(2.4) Năng lực trực giác toán học. c. Quan điểm của luận án về năng lực Toán học của học sinh Luận án lấy theo quan điểm của Kỷ Yếu Hội thảo quốc tế Việt Nam Đan Mạch về Giáo dục Toán học theo hướng tiếp cận năng lực, Viện KHGD Việt Nam, 2014 đề xuất sáu năng lực cần đạt: (1) Năng lực tư duy; (2) Năng lực giải quyết vấn đề; (3) Năng lực mô hình hóa toán học; (4) Năng lực giao tiếp sử dụng ngôn ngữ toán học; (5) Năng lực sử dụng các công cụ, phương tiện học toán; (6) Năng lực học tập độc lập. 1.2.4. Sự cần thiết của việc phát triển năng lực toán học cho học sinh: Phát triển những năng lực toán học của học sinh là một nhiệm vụ đặc biệt quan trọng của thầy giáo vì hai lí do: Thứ nhất, toán học có một vai trò to lớn trong sự phát triển của các ngành khoa học, kĩ thuật và sự nghiệp cách mạng cần thiết có một đội ngũ những người có năng lực toán học. Thứ hai, Văn kiện Đại hội IV của Đảng đánh giá: “Tập trung nâng cao chất lượng giáo dục, đào tạo, coi trọng giáo dục đạo đức, lối sống, năng lực sáng tạo, kĩ năng thực hành, khả năng lập nghiệp”; “Đổi mới nội dung, phương pháp dạy và học theo định hướng “coi trọng việc bồi dưỡng năng lực tự học của học sinh”. 1.3. Mục tiêu bồi dưỡng học sinh khá và giỏi toán ở trường trung học phổ thông, vai trò của của phép biện chứng duy vật đối với sự phát triển năng lực toán học của học sinh khá và giỏi toán ở trường trung học phổ thông 1.3.1. Mục tiêu bồi dưỡng học sinh khá và giỏi toán ở trường trung học phổ thông Mục tiêu chính của chương trình dành cho học sinh giỏi và học sinh tài năng ở các nước đều hướng đến một số điểm chính sau: Phát triển phương pháp suy nghĩ ở trình độ cao phù hợp với khả năng trí tuệ của trẻ; Bồi dưỡng sự lao động, làm việc sáng tạo; Phát triển các kĩ năng, phương pháp và thái độ tự học suốt đời; Nâng cao ý thức và khát vọng của trẻ về sự tự chịu trách nhiệm; Khuyến khích sự phát triển về lương tâm và ý thức trách nhiệm trong đóng góp cho xã hội. 1.3.2. Vai trò của của phép biPhươện ch ứng duy v ng pháp d t đối với sự phát triển năng lực ạy họậc môn Toán toán học của học sinh khá và giỏi toán ở trường trung học phổ thông Mối quan hệ giữa phương pháp dạy học môn toán với những khoa học khác được thể hiToán ện trong sơ đồ 1.2 [24, tr.2225]. GD Tâm Lôgic Tin học học lí học học học ........ Triết học duy vật biện chứng
- 9 Sơ đồ 1.2 1.3.2.1. Phép biện chứng duy vật thể hiện khi định nghĩa khái niệm Dựa trên hình ảnh minh họa thực tế (trực quan sinh động), dẫn đến khái niệm hai vectơ cùng phương, dẫn đến biểu thức (tư duy trừu tượng) để hai vectơ cùng phương và khái niệm tọa độ trên trục, hệ trục, từ không gian một chiều, hai chiều đến ba chiều. 1.3.2.2. Phép biện chứng duy vật thể hiện trong các định lí và ví dụ Để học sinh thấy sự tổng quát, sự "vận động" của bài toán khi đưa ra định lí côsin trong tam giác. Trước hết xét trường hợp ABC vuông tại A. Khi A không vuông thì có kết quả mới, tổng quát hơn và không phủ định kết quả cũ: uuur2 uuur2 uuur2 uuur uuur BC = AC + AB − 2 AC . AB .cos A , hay: a2=b2+c22bc.cosA. 1.3.2.3. Phép biện chứng duy vật thể hiện trong hệ thống bài tập: Hệ thống bài tập SGK được xây dựng theo qui trình: Từ khái niệm và định lí bài tập cơ bản (gốc) bài tập nâng cao (tổng quát hơn, độ suy luận phức tạp hơn). Chẳng hạn hệ thống bài tập về trọng tâm hệ n điểm, n > 2: uuurốc 1: Bài toán g uuur Cho 2 đi r ểm A, B phân biệt, G là trung đi uuur uuurểm đo ạn thẳng AB . Chứng uuur minh: GA + GB = 0 và với mọi điểm M ta có: MA + MB = 2MG . Nếu nhìn bài toán dưới góc độ “vận động” theo hai hướng sau, ta sẽ phát triển được thành một hệ thống bài tập tổng quát (Sơ đồ 1.4): Hướng khai thác Bài toán cơ bản Sự “vận động” của bài toán Giả Hướng 1 Cho 2 điểm A, B phân biệt Cho n điểm A1, A2,...,An, n > 2 thiế Hướng 2 G chia uur uur AB theo t ỉ s ố k=1 G chia AB theo tỉ số k 1 t uuur uuur r Kết 1) GA +uuur 0 r uuur Xây dựng đẳng thức tổng quát GB = uuu luận 2) M: MA + MB = 2MG Sơ đồ 1.4 Hướng 1: Điểm G thay đổi trên đouuu ạn AB. H r ọc sinh có thể nhận thấy: Bài toán tổng quát 1: Điểm G chia AB theo tỉ số k≠1 thì: và M ta có: uuuur uuur uuuur β MA − kMB = (1 − k)MG . Đặc biệt hóa giá trị k: Đặt k= với + ≠0, ta có: α Bài toán tổng quát 2: Cho hai điểm A, B phân biệt và hai s uuur ốuuu thrực r , sao cho + 0: a) Tồn tại duy nh uuur ất điểuuu m G sao cho: r αGA + βGB = 0 . uuur b) M ta có: α MA + βMB = (α + β)MG . Hướng 2: Xét sự "vận động" theo hướng số lượng đi uuuể r m ban đ uuur uuuầu thay đ r r ổi: Bài uuur gốuuu uuur toán c r 2: N ếru G là trọng tâm ABC thì: GA + GB + GC = 0 và M ta có: uuuu MA + MB + MC = 3MG . Đối với học sinh khá giỏi, thì các em đã tự tìm được kết quả:
- 10 Bài toán tổng quát 1: Cho n điểm A1uuuu , Ar2,...,A n, n > 2 thì: uuuur uuuuur r 1) Tồn tạ i duy nh ấ uuuuur uuuuur t đi ểm G: GA + GA uuuuur 1 uuuur 2 + ... + GA n = 0. 2) M: MA1 + MA 2 + ... + MA n = nMG . Bài toán tổng quát 2: Cho ABC, các số thực uuu, r , uuu thrỏa mãn: uuur r+ + 0 thì: 1) Tồn tại duy nh uuur uuu ất đi r ểuuum G sao cho: r αGAuuur+ βGB + γ GC = 0 . 2) M: α MA + β MB + γ MC = ( α + β + γ ) MG . Bài toán tổng quát 3: Cho n điểm: A1, A2,...,An, với n > 2 và n số thực 1, 2,..., n thỏa mãn: α1 + α 2 + ... + α n 0 thì: uuuur uuuur uuuuur r 1) Tồn tại duy nh uuuuur ấ t đi ểm G: uuuuur α GA 1 uuuuu + α 1 r 2 GA 2 + ... + α n GA =r0 . nuuuu 2) M: α1 MA1 + α 2 MA 2 + ... + α n MA n = (α1 + α 2 + ... + α n )MG . 1.3.2.4. Phép biện chứng duy vật thể hiện trong mối liên hệ giữa mặt phẳng và không gian Bài toán 1.6: Sự tương tự giữa tam giác vuông và tứ diện vuông (Sơ đồ 1.5) Tam giác ABC A Tứ diện ABCD A vuông tại A, vuông tại A, đường cao AH: đường cao AH: B D AB =BC.BH; AC =BC.HC 2 2 H B H C S2ABC = SBCD .SBHC ; S2ACD = SBCD .SCHD ; C S2ADB = SBCD .SBHD . BC =AB +AC 2 2 2 1 1 1 S2BCD = SABC 2 2 + SACD 2 + SABD . = + ... 1 1 1 1 AH 2 AB2 AC 2 = + + ... 2 2 2 AH AB AC AD 2 Sơ đồ 1.5 1.4. Các phương pháp tiếp cận hình học ở trường trung học phổ thông 1.4.1. Phương pháp tổng hợp: Để chứng minh một mệnh đề hình học có thể người ta phải xem xét những trường hợp khác nhau của hình vẽ. 1.4.2. Phương pháp tọa độ (giải tích): Descartes và Fermat xây dựng phương pháp giải tích, thông qua trung gian là một hệ tọa độ, thay thế các đối tượng và các quan hệ hình học thành những đối tượng và quan hệ đại số, dẫn đến giải các phương trình, hệ phương trình đại số. Cách giải không phụ thuộc hình vẽ nên có tính khái quát cao. 1.4.3. Phương pháp vectơ: Leibniz là người khởi xướng đến với ý tưởng xây dựng một phương pháp mới để nghiên cứu hình học sao cho có thể sử dụng các phương tiện của đại số nhưng vẫn ở phạm vi hình học. 1.4.4. Những con đường trình bày hình học ở trường trung học phổ thông: Trình tự con đường có thể tiến hành dạy và học hình học ở trường trung học phổ thông (Sơ đồ 1.7): PP vectơ PP giải tích PP tổng Đại số hóa hợp PP giải tích PP vectơ hình học PP vectơ PP giải tích
- 11 Sơ đồ 1.7 1.5. Sự cần thiết của việc kết hợp các phương pháp dạy hình học ở trường trung học phổ thông: Dựa trên ý nghĩa và vai trò của: Hình học và trí tưởng tượng không gian; hình học và tư duy lôgic; Hình học và cuộc sống; Hình học và phương diện thẩm mỹ; Hình học và Toán học; Hình học và các môn khoa học khác. 1.6. Quan điểm dạy hình học ở trường trung học phổ thông: Hiện nay SGK xây dựng dựa trên Quan điểm thực nghiệm và Quan điểm tiên đề. Cần kết hợp hai quan điểm thực nghiệm và tiên đề thích hợp cho từng cấp học, cho từng phần kiến thức sao cho phù hợp tâm sinh lí của học sinh, vẫn vận dụng được kiến thức vào thực tế đồng thời vẫn dần từng bước nâng cao yêu cầu suy luận, diễn dịch, phát triển tư duy lôgic có cơ sở thông qua các tiên đề. 1.7. Thực trạng và nguyên nhân việc phát triển năng lực toán học cho học sinh dựa trên phép biện chứng duy vật trong giảng dạy 1.7.1. Thực trạng: Tác giả đã khảo sát giáo viên dạy toán ở 10 trường phổ thông của tỉnh Tuyên Quang, 05 trường phổ thông của tỉnh Thái Nguyên và 05 trường phổ thông của tỉnh Yên Bái, gồm 196 giáo viên dạy toán, chúng tôi có kết quả sau: a) Về việc phát triển năng lực toán học cho học sinh: Giáo viên đã đề cập đến nhưng chưa có tiêu chí rõ ràng và thường xuyên, với lượng thời gian phân phối chương trình mới dừng lại ở việc truyền tải kiến thức SGK và chữa các bài tập theo từng bài, từng chương. b) Về việc sử dụng phép BCDV trong giảng dạy: Hầu hết giáo viên không áp dụng hoặc cũng chưa nắm được đầy đủ về phép BCDV, cho nên khi giảng dạy cũng không đề cập đến, không chủ định phát triển theo khía cạnh của phép BCDV. Qua kết quả điều tra thực tế giảng dạy toán ở các trường phổ thông được khảo sát, chúng tôi thấy tình hình phát triển năng lực toán học cho học sinh, sử dụng phép BCDV trong giảng dạy để phát triển năng lực toán học cho học sinh của giáo viên hiện nay còn hạn chế, chưa được quan tâm đúng mức với ý nghĩa và tầm quan trọng của nó. 1.7.2. Nguyên nhân: Giáo viên chưa hiểu một cách đầy đủ về phát triển năng lực nói chung và năng lực toán học nói riêng, chưa thấy tầm quan trọng của việc phát triển năng lực là xu thế chung của giáo dục học hiện đại trên thế giới hiện nay; giáo viên chưa nắm được đầy đủ về phép BCDV, hoặc sử dụng không rõ nét trong quá trình giảng dạy. Chưa thấy ý nghĩa của việc dùng phép BCDV để phát triển năng lực toán học cho học sinh; Một số giáo viên có chú trọng đến việc phát triển năng lực toán học cho học sinh, nhưng không có công cụ để làm hoặc chỉ làm theo quan điểm cá nhân như tăng cường luyện tập hoặc sử dụng phương pháp tương tự khi luyện tập...; Hiện nay các tài liệu về phát triển năng lực, năng lực toán học không nhiều và khó tìm, hoặc có nhưng không rõ nét, không phù hợp với dạy học toán ở trường phổ thông. 1.8. Kết luận chương 1 Phát triển năng lực nói chung, năng lực toán học nói riêng cho học sinh phổ thông là một trong những khâu quyết định đến chất lượng học tập và giảng dạy môn Toán. Việc dạy học theo hướng tiếp cận năng lực của học sinh là đòi hỏi cấp thiết. Trong thế giới bùng nổ thông tin, học sinh phải biết chọn lọc các kiến thức cần thiết cho môn học, bên cạnh đó vẫn phải có kiến thức tổng hợp, cập nhật trong sự tiến bộ của khoa học thế giới, phát triển năng lực nói chung và năng lực toán học nói riêng giúp
- 12 các em lĩnh hội được môn học vững chắc hơn, có bản lĩnh trong học tập cũng như trong công việc sau này. Trong chương 1, từ cơ sở lý luận về phép BCDV, phân tích các khái niệm, đặc trưng và cấu trúc năng lực, năng lực toán học của học sinh, qua khảo sát thực tế, luận án đã xác lập các yêu cầu cần đạt cho việc sử dụng phép BCDV trong giảng dạy để phát triển năng lực toán học cho học sinh, những yếu tố cơ bản tác động đến việc phát triển năng lực toán học cho học sinh toán học phổ thông, bằng những lí luận về phép BCDV trong giảng dạy, luận án xây dựng những căn cứ và định hướng để đưa ra các biện pháp mà luận án sẽ trình bày trong chương 2. CHƯƠNG 2 MỘT SỐ BIỆN PHÁP VẬN DỤNG PHÉP BIỆN CHỨNG DUY VẬT NHẰM PHÁT TRIỂN NĂNG LỰC TOÁN HỌC CHO HỌC SINH KHÁ VÀ GIỎI TOÁN TRONG DẠY HỌC NỘI DUNG VECTƠ VÀ TỌA ĐỘ Ở TRƯỜNG TRUNG HỌC PHỔ THÔNG 2.1. Những căn cứ của việc xây dựng và sử dụng các biện pháp vận dụng phép biện chứng duy vật nhằm phát triển năng lực toán học cho học sinh khá và giỏi toán trong dạy học nội dung vectơ và tọa độ ở trường trung học phổ thông 2.1.1. Căn cứ vào đặc điểm môn hình học và phương pháp vectơtọa độ liên hệ với đặc trưng của phép biện chứng duy vật: Hình học có tính lôgic và tính thực nghiệm, phương pháp cơ bản của hình học là suy diễn lôgic không dựa trên thực nghiệm, môn hình học có mối quan hệ BCDV, thể hiện giữa lí luận (tính lôgic) và thực tiễn (tính thực nghiệm). 2.1.2. Căn cứ vào nhu cầu thực tiễn và sự tích hợp của phương pháp vectơtọa độ với các môn học khác 2.1.3. Căn cứ vào mối quan hệ giữa các thành phần của năng lực toán học thể hiện trong học tập hình học ở trường trung học phổ thông: a) Năng lực tưởng tượng không gian; b) Năng lực biểu diễn trực quan các quan hệ và phụ thuộc trừu tượng; c) Tính sâu sắc và cặn kẽ các quá trình tư duy trong hoạt động toán học; d) Năng lực trực giác toán học. 2.1.4. Căn cứ vào thành tựu nghiên cứu phát triển năng lực toán học và phép biện chứng duy vật trong nước và trên thế giới : Việc vận dụng phép BCDV để phát triển năng lực toán học cho học sinh trung học phổ thông phải kế thừa và phát huy các thành quả của thế hệ đi trước. Mặt khác luận án cũng bày tỏ quan điểm riêng của mình trên cơ sở nghiên cứu và thực tế giảng dạy hiện nay sao cho hiệu quả đạt được cao nhất và phù hợp với đối tượng học sinh ở Việt Nam. 2.2. Những định hướng của việc vận dụng phép biện chứng duy vật trong dạy học nội dung vectơ và tọa độ nhằm phát triển năng lực toán học cho học sinh khá và giỏi toán ở trường trung học phổ thông 2.2.1. Vận dụng phép biện chứng duy vật phát triển năng lực toán học cho học sinh khá và giỏi toán phải đáp ứng mục đích dạy và học môn Toán ở trường trung học phổ thông: Giúp học sinh lĩnh hội và phát triển một hệ thống kiến thức, kĩ năng, thói quen cần thiết cho: Cuộc s ống hàng ngày với những đòi hỏi đa dạng của cá nhân, của gia đình và cộng đồng; Tiếp tục học tập, tìm hiểu toán học dưới bất kì hình thức nào của giáo dục thường xuyên, giáo dục suốt đời; Học tập, tìm hiểu các bộ môn khoa học khác hoặc lĩnh vực khác; Hình thành và phát triển các phẩm chất tư duy cần thiết của một người có học vấn trong xã hội hiện đại, cùng những phẩm chất, thói quen khác như đầu óc duy lí, tính chính xác...; Góp phần quan trọng trong
- 13 việc hiện thực hóa khả năng hình thành thế giới quan khoa học qua học t ập môn Toán...; Hiểu rõ nguồn gốc thực tiễn của toán học và vai trò của nó trong quá trình phát triển cùng với những tiến bộ của khoa h ọc kĩ thuật và công nghệ. 2.2.2. Vận dụng phép biện chứng duy vật khai thác nội dung chương trình và sách giáo khoa để phát triển năng lực toán học cho học sinh khá và giỏi toán trong giảng dạy 2.2.3. Vận dụng phép biện chứng duy vật phát triển năng lực toán học cho học sinh cần dựa trên định hướng đổi mới phương pháp dạy học hiện nay a. Xác lập vị trí chủ thể của người học, bảo đảm tính tự giác, tích cực, chủ động và sáng tạo của hoạt động học tập thực hiện độc lập hoặc trong giao lưu; b. Tri thức được cài đặt trong những tình huống có dụng ý sư phạm 2.2.4. Vận dụng phép biện chứng duy vật phát triển năng lực toán học cho học sinh cần chú trọng đến năng lực tự học của học sinh 2.3. Những biện pháp vận dụng phép biện chứng duy vật nhằm phát triển năng lực toán học cho học sinh khá và giỏi toán trong dạy học nội dung vectơ và tọa độ ở trường trung học phổ thông 2.3.1. Biện pháp 1: Vận dụng phép biện chứng duy vật phát triển năng lực tư duy toán học cho học sinh khá và giỏi toán trong quá trình học tập 2.3.3.1. Cơ sở khoa học của biện pháp: Trong phần cơ sở khoa học của luận án đã đề cập, phân tích những đặc điểm và hình thức của phép BCDV, đó là cơ sở của suy luận thực tiễn và cũng là khái quát chung nhất cho quá trình tư duy. 2.3.3.2. Mục đích sử dụng biện pháp: Mục đích của biện pháp nhằm: Phát triển một số loại hình tư duy thường gặp, cần phát triển cho học sinh trong quá trình giảng dạy hình học ở trường trung học phổ thông. Trên cơ sở phép BCDV, các loại hình tư duy sẽ được làm rõ nét hơn nhằm phát triển năng lực toán học nói riêng, năng lực tổng hợp nói chung của học sinh. 2.3.3.3. Nội dung và tổ chức thực hiện biện pháp: Luận án sẽ vận dụng phép BCDV phát triển 4 loại hình tư duy thông qua việc dạy học một số chủ đề sau: Chủ đề 1: Phát triển năng lực tư duy lôgic * Tổ chức hoạt động cho học sinh theo các đặc trưng của tư duy lôgic: a) Năng lực rút ra kết luận từ các tiền đề đã cho; năng lực phân hoạch ra các trường hợp riêng để khảo sát đầy đủ một sự kiện: Bài toán 2.1: Cho đường thẳng và đường tròn (I;R). Xác định vị trí tương đối của chúng. Dẫn đến khái niệm tiếp tuyến của đường tròn. HĐ1: Dựa trên phạm trù “vận động”: Cho đường thẳng thay đổi, so sánh khoảng cách từ I đến với R, rút ra kết luận về tiếp tuyến của đường tròn. HĐ2: Hãy phát biểu kết luận này dưới các dạng khác trên cơ sở trực quan hình vẽ ? HĐ3: Áp dụng cho ví dụ sau: Ví dụ 2.21: Viết phương trình tiếp tuyến với đường tròn (C): x2+y2= 4: a) Tại điểm M (1; 3) ; b) Biết đi qua điểm N(1;2). b) Phát triển năng lực dự đoán các kết quả cụ thể của lí thuyết, khái quát hóa các kết luận nhận được. Đặc trưng của tư duy lôgic là có tính dự đoán, tính khái quát, tính lôgic và tính hoàn chỉnh: uuur Bài toán 2.2: Cho ABC, điểm J chia BC theo tỉ số 3, điểm N chia uuur uuur 1 K AC theo tỉ số 1, điểm K chia AB theo t ỉ số . Ch ứng minh J, N, K 3 A thẳng hàng (hình 2.15). N B J C
- 14 uuur uuur HĐ1: Hãy nhận định kết quả khi AB và AC cùng phương. HĐ2: Khái quát kết lu ận trên thành biểu thức: Ba điểm phân biệt A, B, C thẳng hàng uuur uuur khi và chỉ khi AB =k AC . HĐ3: Áp dụng vào bài toán. Hình 2.15 uuur uuur HĐ4: T uuur ổ ng quát k ế t qu ả : Cho ABC, các đi ể m M, N, P l ầ n l ượ t chia vect ơ BC , CA , AB theo các tỉ số , , ≠1. Tìm hệ thức giữa , , để M, N, P thẳng hàng. c) Vận dụng Nguyên lí về mối liên hệ phổ biến xem xét và kiến giải sự vật, hiện tượng trong mối liên hệ ràng buộc, tác động lẫn nhau, rèn luyện năng lực kết hợp giữa dự đoán và suy diễn: Bài toán 2.3: Cho đo ạrn th uuuu uuurẳng AB có đ ộ dài 2a và một số k 2. Hỏi rằng nếu điểm M thay đổi thỏa mãn MA.MB = k 2 thì M thuộc tập hợp nào? HĐ1: Dự đoán. HĐ2: Kiến giải hiện tượng: Bằng phương pháp tọa độ; Bằng phương pháp vectơ. Chủ đề 2: Phát triển tư duy sáng tạo: Gồm các thành phần sau: Tính mềm dẻo; Tính nhuần nhuyễn; Tính độc đáo; Tính hoàn thiện; Tính nhạy cảm vấn đề. * Tổ chức HĐ cho học sinh rèn luyện năng lực theo các thành phần của TD sáng tạo: HĐ1: Sử dụng lí luận của cặp phạm trù “bản chất và hiện tượng”, hướng dẫn học sinh nhìn nhận bản chất của vấn đề là đường thẳng tiếp xúc với (E) qua các hiện tượng của quan hệ đại số, hình học, lượng giác. x 2 y2 Bài toán 2.4: Cho elip (E): 2 + 2 = 1 và đường thẳng ( ): Ax+By+C=0. Chứng a b minh điều kiện cần và đủ để ( ) tiếp xúc (E) là: a2A2+b2B2=C2. HĐ2: Dựa trên cơ sở của Nguyên lí về mối liên hệ phổ biến lí giải các phương pháp giải trên. Bài toán 2.6: Cho tứ giác ABCD. Chứng minh tồn tại duy nhất điểm G sao cho: uuur uuur uuur uuur r T= GA + GB + GC + GD = 0 . Giải: Tổ chức hoạt động cho học sinh nhìn nhận theo các hướng khác nhau: Gọi M, P, N, Q, R, S lần lượt là trung điểm các đoạn thẳng AB, BC, CD, DA, AC, BD. HĐ1: Ôn lại công thức trọng tâm hệ hai điểm. uuur uuur uuur uuur HĐ2: Áp dụng công thức cho hệ 2 điểm: A, B và C, D: T= (GA + GB) + (GC + GD) uuur uuur r uuur uuur = 2GM + 2GN = 0 GM = −GN G tồn tại duy nh uuur ấuuur uuur uuurểm MN. t và là trung đi HĐ3: Áp dụng công thức (1) 2 điểm: A, D và B, C: T= (GA + GD) + (GB + GC) = uuur uur r uur uuur = 2GQ + 2GP = 0 GP = −GQ G tồn tại duy nhất và là trung điểm PQ. uuur uuur uuur uuur HĐ4: Áp dụng công thức (1) cho: A, C và B, D: T= (GA + GC) + (GB + GD) uuur uuur r uuur uur = 2GR + 2GR = 0 GR = −GS G tồn tại duy nhất và là trung điểm RS. HĐ5: Nhận xét các cách làm trên? Điểm G tồn tại duy nhất, đó là trọng tâm tứ giác ABCD. Từ đó ta có kết luận: “Trong một tứ giác, ba đoạn thẳng: Hai đường trung bình và đường nối trung điểm hai đường chéo đồng qui tại trung điểm mỗi đường”, điểm đó gọi là trọng tâm của tứ giác và điều ngược lại cũng đúng. HĐ6: Ta tiếp tục phủ định sự đồng phẳng của 4 điểm A, B, C, D. Ta được kết luận: “Trong một tứ diện, ba đường trung bình đồng qui tại trung điểm mỗi đường”. Chủ đề 3: Rèn luyện tư duy biện chứng
- 15 Dạng 1: Tư duy biện chứng được thể hiện trong sự mở rộng không gian từ một chiều, hai chiều đến ba chiều: Tổ chức hoạt động r uuur ọc sinh cho h uuu : Gi uuur uuu r uuuải rbài t uuur ập về hệ thức Ơle: Cho 4 điểm A, B, C, D: Chứng minh: AB.CD + AC.DB + AD.BC =0. Khi 4 điểm trên trục số, trên mặt phẳng, trong không gian. Dạng 2: Tư duy biện chứng thể hiện trong sự mâu thuẫn giữa nội dung và hình thức: * Tổ chức hoạt động: Phân tích: "Sự khác nhau và giống nhau giữa trung tuyến và đường trung bình một tam giác". Minh họa các ý tưởng chính nhằm phát triển năng lực giải quyết vấn đề cho học sinh trong sự mâu thuẫn giữa nội dung và hình thức và phạm trù vận động của bài toán. HĐ1: Đường trung bình trong một tam giác có độ dài bằng một nửa cạnh đáy. 1 HĐ2: Công thức đường trung tuyến: 2m c2 + c 2 = a 2 + b 2 . 2 HĐ3: Xét tứ giác ABCD, với M, N, P, Q lần lượt là trung điểm của AB, CD, AC và BD. Tính MN, PQ. HĐ4: Giáo viên gợi ý học sinh nhận xét: Khi cho D tiến dần đến C rồi D C, nhận xét hình vẽ ứng với công thức nhận được: Sự vận động dẫn đến sự thay đổi “lượng chất”; Sự mâu thuẫn giữa “nội dunghình thức”. HĐ5: Lí giải sự mâu thuẫn giữa nội dung và hình thức. Dạng 3: Tư duy biện chứng trong sự kế thừa kết quả hình học phẳng trong không gian Bài toán 2.10: Phân tích và tổ chức cho học sinh hoạt động trả lời các câu hỏi: HĐ1: Khái niệm, tính chất hình bình hành? HĐ2: Khái niệm, tính chất hình hộp? HĐ3: Nếu coi hình hộp trong không gian là “mở rộng” của hình bình hành trong mặt phẳng, thì các tính chất của hình bình hành được “mở rộng” như thế nào? HĐ4: Hãy so sánh và nhận xét các khái niệm và tính chất đó đối với hình hộp trong không gian (Sơ đồ 2.1). Hình bình hành Hình hộp D' C' B C m Hai đường chéo cắt nhau tại trung Bốn đường chéo cắt nhau tại trung A' q B' p a n điểm mỗi đường n điểm mỗi đường c m C A D m2+n2=2(a2+b2) b D m2+n2+p2+q2= 4(a2+b2+c2) b uuur uuur uuur uuur A uuur uuur uuur a B AC = AB + AD AC ' = AB + AD + AA ' Sơ đồ 2.1 Chủ đề 4: Rèn luyện tư duy thuật giải : Thuật giải là một trong những thao thác cơ bản, cụ thể của tư duy thuật giải, có các đặc trưng sau: Tính đơn trị; Đầu vào, đầu ra; Tính hiệu quả; Tính tổng quát. Trên cơ sở lí luận của phép BCDV, từ trực quan sinh động (bài toán, hình vẽ...), xây dựng nên những qui trình giải toán ( tư duy trừu tượng đến thực tế): Truyền thụ cho học sinh những tri thức phương pháp về tư duy thuật giải, thông qua các thao tác sau: a) Tìm hiểu đặc điểm riêng của bài toán; b) Phân tích bài toán để thấy rõ giả thiết và kết luận; c) Phân tích bài toán đưa về bài toán gốc; d) Xây dựng thuật giải cho một số dạng toán điển hình, minh họa cho các dạng toán sau: r r Dạng toán 1: Chứng minh đẳng thức vectơ: f (u ) = g (v) .
- 16 Dạng toán 2: Tìm tập hợp điểm M thỏa mãn một tính chất ( ). Dạng toán 3: Chứng minh ba điểm A, B, C thẳng hàng. Chủ đề 5: Phát triển tư duy hàm: Tư duy hàm có mối liên hệ sâu sắc với lí luận của phép BCDV, bởi vì tư duy hàm có các đặc trưng: Biểu diễn các đối tượng toán học trong sự vận động, biến đổi; Thể hiện cách tiếp cận thao tác hành động đối với các sự kiện toán học và xử lí các mối liên hệ nhân quả; Khuynh hướng giải thích cặn kẽ nội dung các sự kiện toán học và chú ý tới khía cạnh ứng dụng của toán học. Để phát triển được năng lực tư duy hàm trên cơ sở phép BCDV, ta có thể tổ chức hoạt động cho học sinh theo các đặc trưng trên: a) Biểu diễn các đối tượng toán học trong sự vận động, biến đổi: Ví dụ 2.34: Cho hai điểm A, B và đường thẳng d//AB. Một điểm C thay đổi trên d. Tìm quỹ tích trực tâm H của ABC. Giải: Tọa độ hóa bài toán: A(a;0), B(a;0), d có phương trình y=c. H(x;y) là trực tâm ABC. Kết quả ta được hàm: x2+cya2=0. Quan hệ này thể hiện H thuộc parabol qua A, B, có đỉnh là điểm H0 (là trực tâm ABC0 cân tại C0). b) Thể hiện cách tiếp cận thao tác hành động đối với các sự kiện toán học và xử lí các mối liên hệ nhân quả: Ví dụ 2.35: Cho tứ diện ABCD, gọi P và Q lần lượt là trung điểm của AB và CD, điểm R BC: BR=2RC. Gọi S=AD (PQR). Xác định S và chứng minh AS=2SD. Giải: Hướng dẫn học sinh phân tích theo sơ sồ ngược: a) AS=2SD, do Q trung điểm CD nên nếu kẻ CN//AD thì CN=SD. b) AS=2CN và AS//CN nên CN là đường trung bình của AES C là trung điểm AE. c) Kẻ CM//AB thì CM là đường trung bình APE AP=2CM=PB d) BRP đồng dạng CRM tỉ số 2. Đúng. Sơ đồ phân tích đi lên của bài toán: d) c) b) a). Quan hệ hàm được thể hiện trong BR AS bài toán là: thay đổi cũng thay đổi, dẫn đến những bài toán mới. RC SD c) Khuynh hướng giải thích cặn kẽ nội dung các sự kiện toán học và chú ý tới khía cạnh ứng dụng của toán học, là một sự kiểm nghiệm thực tiễn để thấy sự đúng đắn lý luận của phép BCDV: Tổ chức hoạt động cho học sinh giải bài toán sau: Bài toán 2.14: Viết phương trình tiếp tuyến chung của hai đường tròn: (C): x2+y26x+5=0 và (C'): x2+y212x6y+44=0. Phân chia cặn kẽ các trường hợp của bài toán: Tiếp tuyến chung dạng ( ): y=ax+b và dạng x = x0 tìm được 4 tiếp tuyến là: 9 − 17 −33 + 9 17 9 + 17 −33 − 9 17 y= x+ ; y= x+ ; y=2; x= 5. 8 8 8 8 2.3.3.4. Chú ý khi thực hiện biện pháp: Cần chú ý đến những phẩm chất của tư duy là: Tính định hướng; Bề rộng; Độ sâu; Tính linh hoạt; Tính mềm dẻo; Tính độc lập; Tính khái quát. 2.3.2. Biện pháp 2: Vận dụng phép biện chứng duy vật phát triển năng lực giải quyết vấn đề cho học sinh khá và giỏi toán trong dạy học nội dung vectơ và tọa độ.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt Luận án Tiến sĩ Kinh tế: An ninh tài chính cho thị trường tài chính Việt Nam trong điều kiện hội nhập kinh tế quốc tế
25 p | 306 | 51
-
Tóm tắt Luận án Tiến sĩ Giáo dục học: Phát triển tư duy vật lý cho học sinh thông qua phương pháp mô hình với sự hỗ trợ của máy tính trong dạy học chương động lực học chất điểm vật lý lớp 10 trung học phổ thông
219 p | 289 | 35
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Chiến lược Marketing đối với hàng mây tre đan xuất khẩu Việt Nam
27 p | 183 | 18
-
Tóm tắt Luận án Tiến sĩ Luật học: Hợp đồng dịch vụ logistics theo pháp luật Việt Nam hiện nay
27 p | 268 | 17
-
Tóm tắt Luận án Tiến sĩ Y học: Nghiên cứu điều kiện lao động, sức khoẻ và bệnh tật của thuyền viên tàu viễn dương tại 2 công ty vận tải biển Việt Nam năm 2011 - 2012
14 p | 269 | 16
-
Tóm tắt Luận án Tiến sĩ Triết học: Giáo dục Tư tưởng Hồ Chí Minh về đạo đức cho sinh viên trường Đại học Cảnh sát nhân dân hiện nay
26 p | 154 | 12
-
Tóm tắt luận án Tiến sĩ Kỹ thuật: Nghiên cứu tính toán ứng suất trong nền đất các công trình giao thông
28 p | 223 | 11
-
Tóm tắt Luận án Tiến sĩ Kinh tế Quốc tế: Rào cản phi thuế quan của Hoa Kỳ đối với xuất khẩu hàng thủy sản Việt Nam
28 p | 177 | 9
-
Tóm tắt Luận án Tiến sĩ Xã hội học: Vai trò của các tổ chức chính trị xã hội cấp cơ sở trong việc đảm bảo an sinh xã hội cho cư dân nông thôn: Nghiên cứu trường hợp tại 2 xã
28 p | 149 | 8
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển kinh tế biển Kiên Giang trong tiến trình hội nhập kinh tế quốc tế
27 p | 54 | 8
-
Tóm tắt Luận án Tiến sĩ Luật học: Các tội xâm phạm tình dục trẻ em trên địa bàn miền Tây Nam bộ: Tình hình, nguyên nhân và phòng ngừa
27 p | 199 | 8
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phản ứng của nhà đầu tư với thông báo đăng ký giao dịch cổ phiếu của người nội bộ, người liên quan và cổ đông lớn nước ngoài nghiên cứu trên thị trường chứng khoán Việt Nam
32 p | 183 | 6
-
Tóm tắt Luận án Tiến sĩ Luật học: Quản lý nhà nước đối với giảng viên các trường Đại học công lập ở Việt Nam hiện nay
26 p | 136 | 5
-
Tóm tắt luận án Tiến sĩ Kinh tế: Các yếu tố ảnh hưởng đến xuất khẩu đồ gỗ Việt Nam thông qua mô hình hấp dẫn thương mại
28 p | 16 | 4
-
Tóm tắt Luận án Tiến sĩ Ngôn ngữ học: Phương tiện biểu hiện nghĩa tình thái ở hành động hỏi tiếng Anh và tiếng Việt
27 p | 119 | 4
-
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu cơ sở khoa học và khả năng di chuyển của tôm càng xanh (M. rosenbergii) áp dụng cho đường di cư qua đập Phước Hòa
27 p | 8 | 4
-
Tóm tắt luận án Tiến sĩ Kinh tế: Các nhân tố ảnh hưởng đến cấu trúc kỳ hạn nợ phương pháp tiếp cận hồi quy phân vị và phân rã Oaxaca – Blinder
28 p | 27 | 3
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển sản xuất chè nguyên liệu bền vững trên địa bàn tỉnh Phú Thọ các nhân tố tác động đến việc công bố thông tin kế toán môi trường tại các doanh nghiệp nuôi trồng thủy sản Việt Nam
25 p | 173 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn