Bài 5. Các phép biến đổi cơ bản và nâng cao tích phân hàm lượng giác
lượt xem 101
download
Xét tích phân d ng I = R ( sin x,cos x ) dx 1. i bi n s t ng quát: ∫ t t = tg x 2 dt 2t 1− t2 ⇒ x = 2 arctg t ;dx = ; sin x = ; cos x = 2 1+ t2 1 + t2 1 + t2 2 2 dt Khi ó: I = R ( sin x,cos x ) dx = R 2t 2 , 1 − t 2 1 + t 1 + t 1 + t2 ∫ ∫ Ta xét 3 trư ng h p c bi t...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài 5. Các phép biến đổi cơ bản và nâng cao tích phân hàm lượng giác
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác BÀI 5. CÁC PHÉP I BI N S CƠ B N VÀ NÂNG CAO TÍCH PHÂN HÀM LƯ NG GIÁC I. CÁC D N G TÍCH PHÂN VÀ PHÉP BI N I CƠ B N • tv n : ∫ Xét tích phân d ng I = R ( sin x,cos x ) dx 1. i bi n s t ng quát: 1− t2 2 dt 2t x ⇒ x = 2 arctg t ;dx = t t = tg ; sin x = ; cos x = 1+ t2 1 + t2 1 + t2 2 2 dt 2 Khi ó: I = R ( sin x,cos x ) dx = R 2t 2 , 1 − t 2 ∫ ∫ 1 + t 1 + t 1 + t2 Ta xét 3 tr ư ng h p c bi t thư ng g p sau â y mà có th i bi n s b n g hàm s dư i d u tích phân nh n ư c ơn gi n hơn. cách khác theo sin: R ( −sinx, cosx ) = −R ( sinx, cosx ) 2 . N u R ( sinx, cosx ) l à hàm l i bi n t = c osx. thì c n bi n i hàm s và vi phân th c hi n phép 3 . N u R ( sinx, cosx ) l à hàm l theo cosin: R ( sinx, − cosx ) = −R ( sinx, cosx ) i bi n t = sinx. thì c n bi n i hàm s và vi phân th c hi n phép 4 . N u R ( sinx, cosx ) t ho i u ki n: R ( −sinx, − cosx ) = R ( sinx, cosx ) mãn i bi n t = tgx. thì c n bi n i hàm s và vi phân th c hi n phép II. CÁC BÀI T P M U MINH H A 1 . D ng 1: i bi n s t ng quát 3sin2x − 2cos2x − 1 ∫ 3cos2x + 4sin2x + 5 dx I= 2 1− t dt 2t t t = tg x ⇒ x = arctg t ; dx = ; sin 2x = ; cos 2x = 2 2 2 1+ t 1+ t 1+ t 3.2t − 2 (1 − t ) − (1 + t ) dt 1 ( t + 6t − 3) dt 2 2 2 2 1 t + 6t − 3 dt ∫ 3 (1 − t 2 ) + 4.2t + 5 (1+ t2 ) ⋅ 1+ t2 ∫ ∫ ⇒ I= = ⋅ = 2 ( t + 2)2 (1 + t 2 ) 2 2 2 t + 4t + 4 1 + t 1 69
- Chương II: Nguyên hàm và tích phân − Tr n Phương t 2 + 6t − 3 Ct + D A B = + + , ∀t Gi s ( t + 2 ) (1 + t 2 ) 2 2 1 + t2 t + 2 (t + 2) ⇔ t 2 + 6t − 3 = A ( t + 2 ) (1 + t 2 ) + B (1 + t 2 ) + ( Ct + D ) ( t + 2 ) , ∀t (*) 2 ⇔ t 2 + 6t − 3 = ( A + C) t 3 + ( 2A + B + 4C + D) t 2 + ( A + 4C + 4D) t + ( 2A + B + 4D) Thay t = − 2 vào (*) thì − 11 = 5B ⇒ B = − 11/5 A + C = 0 A + C = 0 A = −34 25 2A + B + 4C + D = 1 2A + 4C + D = 16 5 B = −11 5 (*) ⇔ ⇔ ⇔ A + 4C + 4D = 6 A + 4C + 4D = 6 C = 34 25 2A + B + 4D = −3 2A + 4D = −4 5 D = 12 25 2 t + 6t − 3 1 24t + 12 1 34 dt 11 dt ∫ ∫ ∫ ∫ I= dt = − − + dt 2 ( t + 2 ) (1 + t ) 2 2 25 1 + t 2 25 t + 2 5 ( t + 2 ) 2 12 d ( t ) 12 2 34 dt 11 dt dt ∫ ∫ ∫ ∫ =− − + + 2 2 25 1 + t 2 25 t + 2 5 ( t + 2 ) 25 1 + t 34 11 12 ( 12 ln 1 + t ) + 2 =− ln t + 2 + + arctg t + c 5 ( t + 2 ) 25 25 25 34 11 12 12 ln (1 + tg x ) + 2 =− ln tg x + 2 + + x+c 5 ( tg x + 2 ) 25 25 25 2 . D ng 2: R ( −sinx, cosx ) = −R ( sinx, cosx ) sin2xdx 2 sin x cos xdx ∫ cos ∫ = • J1 = 3 2 cos 3 x + cos 2 x − 2 x − sin x − 1 2 sin x cos x ⇒ R ( − sin x, cos x ) = −R ( sin x, cos x ) R ( sin x, cos x ) = 3 2 cos x + cos x − 2 A Bt + C −2t dt −2t dt ∫t ∫ ( t − 1) ( t ∫ t t = cos x ⇒ J1 = = = −2 +2 dt + 2t + 2) 3 2 t − 1 t + 2t + 2 2 +t −2 Bt + C t A ⇔ t = A ( t + 2t + 2) + ( Bt + C) ( t − 1) 2 = +2 Ta có: ( t − 1) ( t + 2t + 2) t − 1 t + 2t + 2 2 A + B = 0 A = 1 5 2 ⇔ t = ( A + B ) t + ( 2A − B + C ) t + ( 2A − C ) ⇔ 2A − B + C = 1 ⇔ B = −1 5 2A − C = 0 C = 2 5 1 70
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác 21 t−2 1 2t + 2 − 6 2 dt ∫ ∫ ∫ J1 = − t −1 − 2 dt = − 5 t − 1 + 5 2 dt 5 t + 2t + 2 t + 2t + 2 1 d ( t 2 + 2t + 2 ) 6 2 dt dt ∫ ∫ ∫ =− + − 2 5 ( t + 1) 2 + 1 5 t −1 5 t + 2t + 2 2 1 6 2 = − ln t − 1 + ln t + 2t + 2 − arctg ( t + 1) + c 5 5 5 2 1 6 2 = − ln (1 − cos x ) + ln cos x + 2 cos x + 2 − arctg (1 + cos x ) + c 5 5 5 −d ( cos x ) dx sin x dx dt ∫ ∫ ∫ (1 − cos ∫t = = = • J2 = x ) cos x ( t 2 − 1) 6 sin 2 x cos 6 x 2 6 6 sinxcos x t − ( t − 1) 1 t + t +1 6 6 4 2 t −1 1 1 1 ∫ ∫ dt = 2 dt = ln = − + + 3 + 5 +c t ( t − 1) 6 t −1 t + 1 t 3t 6 2 t 5t 1 − cos x 1 1 1 = ln + + + +c 1 + cos x cos x 3 cos3 x 5 cos5 x 4 sin x cos 2 x sinx + sin3x 2 sin 2 x cos x ∫ ∫ ∫ dx = dx = • J3 = dx 2 cos 2 x − 1 cos2x cos 2 x 2 2 4 cos xd ( cos x ) 4t dt 2 dt ∫ ∫ 1 − 2t = ∫ 1 − 2t ∫ 1 −t ∫ = = − 2 dt = − 2 dt 2 2 2 2 1 − 2 cos x 2 1 + 2t 1 + 2 cos x 1 1 = − 2t + c = − 2 cos x + c ln ln 1 − 2t 1 − 2 cos x 2 2 π2 π2 π2 4 (1 − cos 2 x ) 4sin 3 x 4 sin 2 x ∫ ∫ ∫ d ( cos x ) sin x dx = − • J4 = dx = 1 + cos x 1 + cos x 1 + cosx 0 0 0 4 (1 − t ) 0 1 2 1 dt = 4 (1 − t ) dt = ( 4t − 2t )0 =4−2=2 ∫ ∫ 2 =− 1+ t 1 0 π2 π2 π2 π2 sin 2 x sin 2 x dx sin x dx sin x dx ∫ ∫ ∫ ∫ dx = = = • J5 = 3 sin x − 4 sin x π 6 3 − 4 sin x π 6 4 cos 2 x − 1 3 2 sin3x π6 π6 π6 32 32 32 d ( cos x ) d ( 2t ) 1 2t − 1 dt 1 1 = ln ( 2 − 3 ) ∫ ∫ ∫ = = = = ln 2 2 2 ( 2t ) − 1 4 2t + 1 4t − 1 2 4 4cos x − 1 0 π2 0 0 1 71
- Chương II: Nguyên hàm và tích phân − Tr n Phương 3 . D ng 3: R ( sinx, − cosx ) = −R ( sinx, cosx ) (1 − sin 2 x )4 (1 − t 2 )4 cos 9 x cos8 x ∫ ∫ ∫ ∫ • K1 = d ( sin x ) = dx = cos x dx = dt sin 20 x sin 20 x sin 20 x t 20 1 − 4t 2 + 6t 4 − 4t 6 + t 8 −1 4 6 4 1 ∫ = dt = + − 15 + 13 − 11 + c 20 19 17 t 19t 17t 15t 13t 11t −1 4 6 4 1 = + − + − +c 19 17 15 13 11 19 ( sin x ) 17 ( sin x ) 15 ( sin x ) 13 ( sin x ) 11 ( sin x ) ( cos2 x + cos4 x ) ( cos2 x + cos4 x ) cos 3 x + cos5 x ∫ ∫ ∫ • K2 = d ( sin x ) dx = cos x dx = sin2 x + sin4 x sin2 x + sin4 x sin2 x + sin4 x 2 1 − t 2 + (1 − t 2 ) t 4 − 3t 2 + 2 2 6 ∫ ∫ ∫ = dt = dt = 1 + 2 − dt (1 + t ) 2 4 1 + t2 2 2 t +t t t 2 2 − 6 arctg ( sin x ) + c =t− − 6 arctg t + c = sin x − t sin x 4 . D ng 4: R ( −sinx, − cosx ) = R ( sinx, cosx ) π6 π6 π6 d ( tg x) 3− 3 dx dx ∫ ∫ cos ∫ π6 • L1 = = = = ln tg x −1 0 = ln cosx ( sinx − cosx ) x ( tg x −1) 2 tg x −1 3 0 0 0 π3 π3 π3 π3 d ( tg x ) dx dx dx ∫ ∫ ∫ ∫ = = = • L2 = 3 4 3 5 3 8 2 3 4 cos x . 4 tg x ( tg x ) 4 sin xcos x tg x cos x π π π π4 4 4 4 π3 1 π3 −3 = 4 ( 3 ) − 1 = 4 ( 8 3 − 1) 14 ∫ ( tg x ) 4 d ( tg x ) = 4 ( tg x ) 4 = π4 π4 π4 π4 sin 2 xdx cos 4 x sin 2 x dx ∫ cosx ( 2sin ∫ = • L3 = x + 3cos 3 x ) cos x ( 2 sin3 x + 3 cos 3 x ) cos x 4 3 0 0 d ( 3 + 2 tg 3 x ) π4 π4 π4 tg 2 x tg 2 x 1 ⋅ dx = ∫ ∫ ∫ d ( tg x ) = = 3 + 2 tg x cos 2 x 3 3 3 + 2 tg 3 x 6 3 + 2 tg x 0 0 0 π4 1 1 15 ln ( 3 + 2 tg 3 x ) = ( ln 5 − ln 3) = ln = 6 6 63 0 1 72
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác II. BI N I VÀ I BI N NÂNG CAO TÍCH PHÂN HÀM S LƯ NG GIÁC dx ∫ ( sinx ) LÀ BI U TH C THU N N H T C A SIN 1. D NG 1: M U S n 2 ) d (tg 2 ) ( 1 + tg 2 x x dx 1 dx dx 2 ∫ ∫ ∫ ∫ = = = • A1 = sin3 x 3 3 6 3 ) ( )( ) (tg 2 ) ( 4 x cos x 8 tg x cos x x 2 sin 2 2 2 2 2x 4x 1 1 + 2 tg 2 + tg 2 1 −1 2 () () x1 d tg x = + 2 ln tg + tg x + c ∫ = 3 2 2 2 () () 4 4 22 tg x 2 tg x 2 2 d ( cos x ) d ( cos x ) dx sin x d x Cách 2: A1 = ∫ =∫ = −∫ = −∫ 3 4 2 [(1 + cos x ) (1 − cos x )] 2 (1 − cos 2 x ) sin x sin x 2 2 −1 (1 + cos x ) + (1 − cos x ) 1 1 1 ∫ ∫ (1 + cos x ) (1 − cos x ) d ( cos x ) = 4 1 − cos x + 1 + cos x d ( cos x ) = 4 −1 ( − cos x 1 1 + cos x 1 1 2 ∫ d cos x ) = = + + − ln +c 2 2 2 2sin 2 x 2 1 − cos x 4 (1 − cos x ) (1 + cos x ) 1 − cos x dx dx dx ∫ sin ∫ ∫ = • A2 = = 5 5 5 10 ) ( )( ) ( x 2 sin x cos x 32 tg x cos x 2 2 2 2 4 1 + tg x ) d ( tg x ) 1( x + 6 tg 4 x + 4 tg 6 x + tg8 x 2 2 1 1 + 4 tg () 2 2 2 2 2 2 d tg x =∫ =∫ 5 5 2 ( tg x ) () 16 16 tg x 2 2 1 −1 2 4 + 6 ln tg + 2 ( tg x ) + ( tg x ) + c 2 x 1 = − 4 2 2 2 ( ) ( tg x ) 16 2 4 4 tg x 2 2 d ( cos x ) d ( cos x ) dx sin x dx ∫ sin ∫ ∫ ∫ Cách 2: A2 = = =− =− 5 6 3 3 (1 − cos2 x ) (1 + cos x ) (1 − cos x ) x sin x 3 3 −1 (1 + cos x ) + (1 − cos x ) 1 1 1 ∫ ∫ (1 + cos x ) (1 − cos x ) d ( cos x ) = 8 1 − cos x + 1 + cos x d ( cos x ) = 8 −1 − cos x 3 d ( cos x ) 1 1 3 ∫ (1 − cos = − + = −A 8 2 (1 − cos x ) 4 sin 4 x 4 1 2 2 2 2 (1 + cos x ) x) 2 2 1 73
- Chương II: Nguyên hàm và tích phân − Tr n Phương 3 − cos x 1 1 + cos x − cos x − cos x 3cos x 3 1 + cos x = − − ln = + + ln +c 4 4 2 sin x 2 1 − cos x 4 sin x 8sin 2 x 8 1 − cos x 2 4 4 sin x dx dx ∫ ( sinx ) ∫ = • A3 = 2 n +1 2n+1 ) ( 2 sin x cos x 2 2 2n (1 + tg x ) d ( tg x ) 2 dx 1 2 2 =∫ ∫ = 2 n +1 4n+2 2 n +1 2n ( tg x ) ( cos x ) 2 ( tg x ) 2 n +1 2 2 2 2 n 2n C + C tg x + ... + C ( tg x ) + ... + C ( tg x ) 0 1 2 n 2 2n 2 d ( tg x ) 2n 2n 2n 2n 1 2 2 2 2∫ = 2 n +1 2n 2 ( tg x ) 2 1 −C n −1 n +1 0 2n 2 2n ( tg x ) + ... + C2n ( tg x ) + c C xC n 2n 2n 2n 2n = − ... − + C ln tg + 2n 2n 2n 2 2 2 2n ( tg x ) 2 ( tg x ) 2 2 2 2 2 dx n ∫ sin ∫ = − (1 + cotg 2 x ) d ( cotg x ) = • A10 = 2n+ 2 x k n = − C0 + C1 cotg 2 x + ... + Cn ( cotg2 x ) + ... + Cn ( cotg 2 x ) d ( cotg x ) ∫ k n n n 0 1 k n Cn Cn Cn 2k +1 ( cotg x )2n +1 + c 3 = − Cn ( cotg x ) + ( cotg x ) + ... + cotg x + ... + 2k + 1 2n + 1 3 dx ∫ ( cos x ) 2. D N G 2: M U S LÀ BI U TH C THU N N H T C A C OSIN n ) ( d x+ π 2 = du = dx = du du B1 = ∫ cos 3 x ∫ sin 3 x + π ∫ sin 3 u ∫ =∫ ) ( 3 3 6 ) ( )( ) ( 2 sin u cos u 8 tg u cos u 2 2 2 2 2 2 ) d ( tg u ) = 1 −1 (1 + tg 2 u ( ) + c ; (u = x + π ) 2 2 2 + 2 ln tg u + 1 tg u =1∫ 4 3 2 4 22 2 2 tg u ) 2 ( tg u ) (2 2 d ( sin x ) d ( sin x ) dx cos x d x Cách 2: B 1 = ∫ =∫ =∫ =∫ cos 3 x cos 4 x (1 − sin 2 x ) 2 [(1 + sin x ) (1 − sin x )] 2 2 2 1 (1 + sin x ) + (1 − sin x ) 1 1 1 ∫ (1 + sin x ) (1 − sin x ) d ( sin x ) = 4 ∫ 1 − sin x + 1 + sin x d ( sin x ) = 4 1 74
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác 1 ( 1 1 + sin x 1 1 2 sin x ∫ (1 − sin x ) 2 + (1 + sin x ) 2 + 1 − sin 2 ) = d sin x = 2 cos 2 x + 2 ln 1 − sin x + c 4 x ) ( d x+π dx du du 2 i B 2 = ∫ 2n+1 = ∫ =∫ =∫ ) ( 2 n +1 2 n +1 sin 2 n +1 x + π ) ( ( sin u ) cos x 2 sin u cos u 2 2 2 2n (1 + tg u ) d ( tg u ) 2 du 1 2 2 =∫ ∫ = 2 n +1 4n + 2 2 n +1 2 2n ( ) (cos u ) ( tg u ) 2 2 n +1 tg u 2 2 2 1 −C2n 2n n− n+1 0 C 2n 1 2n 2 () () u C 2n C 2n tg u tg u n +c = − ... − + C2n ln tg + + ... + 2 2n 2n 2 2 2 () () 2 2 2n 2n tg u 2 tg u 2 2 dx n = ∫ (1 + tg 2 x ) d ( tg x ) = iB3 = ∫ 2n+ 2 cos x = ∫ C n + C n tg 2 x + ... + C n ( tg 2 x ) + ... + C n ( tg 2 x ) d ( tg x ) k n 0 1 k n 0 C1 k n Cn Cn 2 k +1 ( tg x ) 2 n+1 + c = C n ( tg x ) + n tg 3 x + ... + ( tg x ) + ... + 2k + 1 2n + 1 3 dx ∫ a ( sinx ) C= 3. D N G 3: 2 2 + bsinxcosx + c ( cosx ) dx dx =∫ =∫ •C cos 2 3x ( 5 tg 3x + 2 ) − 21(1 + tg 2 3x ) 2 2 ( 5sin3x + 2cos3x ) - 21 d ( tg 3x ) d ( tg 3x ) 2 tg 3x + 5 1 1 1 ∫ 4 tg 2 3x + 20 tg 3x − 17 = 12 ∫ = = +c arc tg 2 ) ( 3 42 6 42 42 tg 3x + 5 + 2 4 dx ∫ a sin x + b cos x + c D= 4. D N G 4: dx dx ∫ 2sinx + 5cosx + 3 = ∫ 4 sin x cos x + 5 • D1 = ( cos x − sin x ) + 3 ( cos x + sin x ) 2 2 2 2 2 2 2 2 2 2 d ( tg x − 1) tg x −1 − 5 −1 dx 2 2 ∫ cos = −∫ = = +c ln 2) ( 2 2 5 tg x − 1 + 5 ( tg 2 ) x 4 tg x + 8 − 2 tg 2 x 2 2 x −1 − ( 5 ) 2 2 2 1 75
- Chương II: Nguyên hàm và tích phân − Tr n Phương 5. D N G 5: TÍCH PHÂN LIÊN K T cosxdx sin x dx ∫ sinx + cosx . Xét tích phân liên k ∫ sin x + cos x * t v i E1 là: E1 = • E1 = cos x + sin x ∫ ∫ * E1 + E1 = sin x + cos x dx = dx = x + ( c1 ) Ta có: E − E* = cos x − sin x dx = d ( sin x + cos x ) = ln sin x + cos x + ( c ) ∫ ∫ 1 1 2 sin x + cos x sin x + cos x E = 1 ( x + ln sin x + cos x ) + c 1 2 Gi i h phươ ng trình suy ra: E1 = 1 ( x − ln sin x + cos x ) + c * 2 sin3xdx cos 3 x dx ∫ 2cos3x − 5sin3x . Xét tích phân liên k ∫ 2 cos 3x − 5 sin 3x t là: E* = • E2 = 2 Ta có: * 2cos3x − 5sin3x ∫ 2cos3x − 5sin3x dx = ∫dx = x + ( c ) 2E2 − 5E2 = 1 1 d( 2cos3x − 5sin3x) * 5cos3x + 2sin3x ln 2cos3x − 5sin3x ∫ 2cos3x − 5sin3x dx = − 3 ∫ + ( c2 ) 5E2 + 2E2 = =− 2cos3x − 5sin3x 3 Gi i h phươ ng trình suy ra: 2 x −1 2 ln 2 cos 3x − 5sin 3x E = 1 ⋅ ln 2 cos 3x − 5 sin 3x + c = 29 + 5x + c 2 29 5 − 3 3 −5 x 1 5 ln 2 cos 3x − 5sin 3x E* = 1 ⋅ ln 2 cos 3x − 5sin 3x +c= 2x − +c 2 29 29 − 3 2 3 ( cos x)4 ( sin x)4 dx . Xét tích phân liên k t là: E* = ∫ ∫ ( sin x)4 + ( cos x)4 • E3 = dx 3 ( sinx)4 + ( cos x)4 ( sin x ) 4 + ( cos x )4 ∫ ( sin x )4 + ( cos x )4 dx = ∫ dx = x + ( c1 ) (1). M t khác: Ta có: E* + E 3 = 3 ( cos 2 x + sin 2 x ) ( cos 2 x − sin 2 x ) ( cosx )4 − ( sin x )4 ∫ ( sin x )4 + ( cos x )4 dx = ∫ E* − E 3 = dx 3 ( cos 2 x + sin 2 x )2 − 2 cos 2 x sin 2 x 1 76
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác d ( sin 2x ) 2 + sin 2x cos 2x 1 ∫ ∫ ( 2) + c ( 2) = dx = = ln 2 12 2 − sin 2x 22 2 − sin 2x 1 − sin 2x 2 T ( 1) và (2) suy ra: 1 2 + sin 2x 1 2 + sin 2x 1 1 * x − + c ; E3 = x + +c E3 = ln ln 2 − sin 2x 2 2 2 − sin 2x 22 22 π2 π2 ( cosx )99 ( sin x )99 ∫ ( sinx ) ∫ ( sin x ) dx . Xét tích phân: E* = • E4 = dx 4 99 99 99 99 + ( cosx ) + ( cos x ) 0 0 π π π − u ⇒ dx = −du. V i x = thì u = 0 và x = 0 thì u = t x= . Ta có: 2 2 2 99 () sin π − u ( −du) π2 π2 99 0 ( cosu )99 du ( sinx ) dx 2 ∫ ∫ ∫ * E4 = = = = E4 ( sinx)99 + ( cosx )99 π 2 π 99 99 )99 + ( sinu )99 ( () () + cos π − u 0 cosu sin − u 0 2 2 π2 π2 π2 ( sin x )99 + ( cos x )99 π π ∫ dx = ∫ dx = x * * = ⇒ E4 = E4 = Ta có: E 4 + E 4 = 99 99 ( sin x ) + ( cos x ) 2 4 0 0 0 π2 π2 ∫ ∫ ( sin 3x ) ( cos3x ) 2 ( cos6x ) 2 dx . Xét tích phân: E5 = 2 ( cos 6 x )2 dx ∗ • E5 = 0 0 π2 π2 ( cos 3x )2 + ( sin 3x )2 ( cos 6x )2 dx = ∫ ∫ ( cos 6x ) 2 E∗ Ta có: E 5 + = dx 5 0 0 π2 π2 (1 + cos12x ) dx = 1 x + sin12x π 1 ∫ = = . M t khác: 2 0 2 12 4 0 π2 π2 ( cos 3x )2 − ( sin 3x )2 ( cos 6x )2 dx = ∫ ∫ cos 6x ( cos 6x ) 2 E 5 − E∗ = dx 5 0 0 π2 )3 π2 ( π 1 1 − ( sin 6x )2 d ( sin 6x ) = 1 sin 6x − sin 6x ∫ = 0 ⇒ E 6 = E* = = 6 6 0 6 3 8 0 π2 π2 sinx dx cos x dx ∫ ( sinx + cosx ) ∫ ( sin x + cos x ) * = • E6 = . Xét tích phân: E6 3 3 0 0 1 77
- Chương II: Nguyên hàm và tích phân − Tr n Phương π2 π2 ( cos x + sin x ) dx dx ∫ ∫ ( sin x + cos x ) E∗ + E6 = = Ta có: 6 3 2 ( sin x + cos x ) 0 0 π2 π2 π2 ) ( −1 dx 1 dx 11 cotg x + π ∫ ∫ sin = = = = + =1 ) ( 2 4 x+ π 2 2 22 ) ( 2 sin x + π 2 0 0 0 4 4 π2 π2 ( cos x − sin x ) dx d ( sin x + cos x ) ∫ ∫ M t khác: E∗ − E 6 = = 6 3 ( sin x + cos x )3 ( sin x + cos x ) 0 0 π2 −1 1 = 0 ⇒ E 6 = E* = = 6 2 2 ( sin x + cos x ) 2 0 a sin x + b cos x ∫ m sin x + n cos x dx F= 6. D N G 6: a . Phương pháp: Gi s : a sin x + b cos x = α ( m sin x + n cos x ) + β ( m cos x − n sin x ) , ∀x ⇔ a sin x + b cos x = ( mα − n β ) sin x + ( nα + mβ ) cos x , ∀x am + bn α = m 2 + n 2 mα − n β = a ⇔ ⇔ . Khi ó ta có: nα + m β = b bm − an β = m2 + n2 am + bn m sin x + n cos x bm − an m cos x − n sin x ∫ ∫ F= dx + 2 dx 2 2 m + n 2 m sin x + n cos x m + n m sin x + n cos x bm − an d ( m sin x + n cos x ) am + bn ∫ ∫ = dx + 2 2 2 m + n2 m sin x + n cos x m +n am + bn bm − an = x+ 2 ln m sin x + n cos x + c 2 2 m + n2 m +n b. Các bài t p m u minh h a: 1 4sin 2x − 7 cos 2x 1 4sin u − 7 cos u 4sin2x − 7cos2x ∫ 5sin2x + 3cos2x dx = 2 ∫ 5sin 2x + 3cos 2x d ( 2x ) = 2 ∫ 5sin u + 3cos u du • F1 = 4 sin u − 7 cos u = α ( 5 sin u + 3 cos u ) + β ( 5 cos u − 3 sin u ) , ∀u Gi s ⇔ 4 sin u − 7 cos u = ( 5α − 3β ) sin u + ( 3α + 5β ) cos u , ∀u 1 78
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác 5α − 3β = 4 α = −1 34 ⇔ ⇔ . Khi ó ta có: 3α + 5β = −7 β = −47 34 1 4 sin u − 7 cos u −1 5sin u + 3 cos u 47 5 cos u − 3sin u ∫ ∫ ∫ F1 = du = du − du 2 5 sin u + 3cos u 68 5sin u + 3 cos u 68 5 sin u + 3cos u 47 d ( 5 sin u + 3cos u ) −1 −1 ∫ ∫ = ( u + 47 ln 5 sin u + 3cos u ) + c = du − 5 sin u + 3 cos u 68 68 68 −1 = ( 2x + 47 ln 5 sin 2x + 3 cos 2x ) + c 68 c. Các bài t p dành cho b n ct gi i: 4sin 3x + 5cos 3x 2sin 5x − 7 cos 5x 4sin 9x + 5cos 9x ∫ 7 cos 3x − 8sin 3x dx ; F = ∫ 3sin 5x − 4 cos 5x dx ; F = ∫ 7 cos 9x − 3sin 9x dx F1 = 2 3 a sin x + b cos x + c ∫ m sin x + n cos x + p dx G= 7. D N G 7: a . Phương pháp: a sin x + b cos x + c = α ( m sin x + n cos x + p ) + β ( m cos x − n sin x ) + γ , ∀x Gi s ⇔ a sin x + b cos x + c = ( mα − n β ) sin x + ( nα + mβ ) cos x + pα + γ , ∀x mα − n β = a α = ( am + bn ) ( m 2 + n 2 ) ⇔ nα + mβ = b ⇔ β = ( bm − an ) ( m2 + n 2 ) . Khi ó ta có: γ = c − am + bn p pα + γ = c m2 + n2 am + bn msin x + ncos x + p bm − an mcos x − nsin x ∫ ∫ G= dx + 2 2 dx + 2 2 m + n msin x + n cos x + p m + n msin x + n cos x + p am + bn dx ∫ + c − 2 2 p m + n msin x + n cos x + p bm − an d ( m sin x + n cos x + p ) am + bn am + bn dx ∫ dx + m ∫ ∫ = + c − 2 p 2 2 2 2 2 m +n m sin x + n cos x + p m sin x + n cos x + p m +n +n am + bn am + bn bm − an dx ∫ = x+ ln m sin x + n cos x + p + c − 2 p 2 2 2 2 2 m +n m sin x + n cos x + p m +n m +n b. Các bài t p m u minh h a: sinx + 2cosx − 3 ∫ sinx − 2cosx + 3 dx . • G1 = 1 79
- Chương II: Nguyên hàm và tích phân − Tr n Phương sin x + 2 cos x − 3 = α ( sin x − 2 cos x + 3) + β ( cos x + 2 sin x ) + γ , ∀x Gi s ⇔ sin x + 2 cos x − 3 = (α + 2 β ) sin x + ( −2α + β ) cos x + ( 3α + γ ) , ∀x α + 2β = 1 α = −3 5 ⇔ −2α + β = 2 ⇔ β = 4 5 . Khi ó ta có: 3α + γ = −3 γ = −6 5 −3 sin x − 2 cos x + 3 sin x − 2 cos x 4 6 dx ∫ ∫ ∫ G1 = dx + dx − 5 sin x − 2 cos x + 3 5 sin x − 2 cos x + 3 5 sin x − 2 cos x + 3 4 d ( sin x − 2 cos x + 3) −3 6 dx ∫ ∫ ∫ = dx + dx − sin x − 2 cos x + 3 5 sin x − 2 cos x + 3 5 5 −3 4 6 = x + ln sin x − 2 cos x + 3 − J 5 5 5 dx dx ∫ sin x − 2 cos x + 3 = ∫ 2sin x cos x − 2 cos J= = )( ) ( x − sin 2 x + 3 cos2 x + sin 2 x 2 2 2 2 2 2 2 () d tg x dx 2 2 ∫ ) ∫( ) ( ) = = ( 2 2x 2 tg x + 1 + 5 tg 2x 5 tg x + 2 tg x + 1 cos 2 2 2 2 5 2 5 () x x 1 + 5 tg x d tg 1 + 5 tg 2 25 2 2 + c = arctg 2 +c ∫ = = ⋅ arctg 2 2 ) () ( 5 52 2 2 tg x + 1 + 2 25 5 5 tg x + 1 −3 4 6 2 ⇒ G1 = x + ln sin x − 2 cos x + 3 − arctg +c 5 5 5 2 π2 sinx − cosx + 1 ∫ • G2 = dx . sinx + 2cosx + 3 0 sin x − cos x + 1 = α ( sin x + 2 cos x + 3) + β ( cos x − 2 sin x ) + γ , ∀x Gi s ⇔ sin x − cos x + 1 = (α − 2 β ) sin x + ( 2α + β ) cos x + ( 3α + γ ) , ∀x α − 2 β = 1 α = −1 5 ⇔ 2α + β = −1 ⇔ β = −3 5 . Khi ó ta có: 3α + γ = 1 γ = 8 5 1 80
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác π2 π2 π2 sin x + 2 cos x + 3 cos x − 2 sin x 1 3 8 dx ∫ ∫ ∫ sin x + 2 cos x + 3 G2 = − dx − dx + sin x + 2 cos x + 3 sin x + 2 cos x + 3 5 5 5 0 0 0 π2 π2 π2 d ( sin x + 2 cos x + 3) 8 1 3 dx ∫ dx − 5 ∫ 5 ∫ sin x + 2 cos x + 3 =− + sin x + 2 cos x + 3 5 0 0 0 π2 −1 −π 3 5 8 3 8 = x − ln sin x + 2 cos x + 3 + J = + ln + J 0 5 5 5 10 5 4 5 π2 π2 dx dx ∫ ∫ 2sin x cos x + 2 cos J= = )( ) ( sin x + 2 cos x + 3 x − sin 2 x + 3 cos2 x + sin 2 x 2 0 0 2 2 2 2 2 2 () x d tg π2 π2 dx 2 ∫ ∫ = =2 ) ( 2x + 2 tg x + 5 2x 2 tg x + 2 − 2 tg x + 3 + 3 tg x 2 2 0 tg 0 cos 2 2 2 2 2 2 π2 ) ( x x d 1 + tg 1 + tg π2 π 3π 3 5 8 1 1 2 2 ∫ = − arctg ⇒ G 2 = + ln − arctg =2 = arctg 2 ) ( 20 4 2 10 5 4 5 2 0 1 + tg x 2 +2 2 a sin x + b cos x ∫ ( m sin x + n cos x ) H= dx 8. D N G 8: 2 a . Phương pháp: a sin x + b cos x = α ( m sin x + n cos x ) + β ( m cos x − n sin x ) , ∀x Gi s ⇔ a sin x + b cos x = ( mα − n β ) sin x + ( nα + m β ) cos x , ∀x am + bn α = m 2 + n 2 mα − n β = a ⇔ ⇔ . Khi ó ta có: nα + m β = b bm − an β = m2 + n2 am + bn m sin x + n cos x bm − an m cos x − n sin x ∫ ∫ H= dx + 2 dx 2 2 2 m + n ( m sin x + n cos x )2 2 m + n ( m sin x + n cos x ) d ( m sin x + n cos x ) am + bn bm − an dx ∫ ∫ ( m sin x + n cos x ) = +2 m + n m sin x + n cos x m + n 2 2 2 2 am + bn bm − an dx 1 ∫ = −2 ⋅ +c 2 2 2 m + n m sin x + n cos x m + n m sin x + n cos x 1 81
- Chương II: Nguyên hàm và tích phân − Tr n Phương 2 . Các bài t p m u minh h a: 7 sin x − 5 cos x ∫ ( 3 sin x + 4 cos x ) • H1 = dx . 2 7 sin x − 5 cos x = α ( 3 sin x + 4 cos x ) + β ( 3 cos x − 4 sin x ) ; ∀x Gi s ⇔ 7 sin x − 5 cos x = ( 3α − 4 β ) sin x + ( 4α + 3β ) cos x; ∀x α = 1 3α − 4β = 7 5 . Khi ó ta có: ⇔ ⇔ 4α + 3β = −5 β = −43 5 7 sin x − 5cos x 1 3sin x + 4 cos x 43 3cos x − 4sin x ∫ (3sin x + 4 cos x ) ∫ ∫ H1 = dx = dx − dx 2 2 5 ( 3sin x + 4 cos x )2 5 ( 3sin x + 4 cos x ) 43 d ( 3sin x + 4 cos x ) 1 1 dx 43 ∫ ∫ = − = J+ 5 ( 3sin x + 4 cos x ) 2 5 3sin x + 4 cos x 5 ( 3sin x + 4 cos x ) 5 () d tg x dx dx 2 ∫ ∫ ∫ J= = =2 ) ( x + 4 − 4 tg 2 x 3 sin x + 4 cos x 2x x + 4 − 4 tg 2 x 6 tg cos 6 tg 2 2 2 2 2 x x −2 2 tg 2 − 4 −2 2 tg 2 − 4 43 + c ⇒ H1 = = + +c ln ln 2 tg x + 1 5 ( 3sin x + 4 cos x ) 2 tg x + 1 5 25 2 2 3 . Các bài t p dành cho b n ct gi i: 2 sin 5x − 3cos 5x 5 sin 7x + 4 cos 7x ∫ ( 4 cos 5x + 9 cos 5x ) ∫ ( 2 sin 7x − 3cos 7x ) H1 = dx ; H 2 = dx 2 2 2 2 a ( sin x ) + b sin x cos x + c ( cos x ) ∫ I= dx 9. D N G 9: m sin x + n cos x a . Phương pháp: 2 2 Gi s : a ( sin x ) + b sin x cos x + c ( cos x ) = = ( p sin x + q cos x ) ( m sin x + n cos x ) + r ( sin 2 x + cos 2 x ) , ∀x 2 2 ⇔ a ( sin x ) + b sin x cos x + c ( cos x ) = 2 2 = ( mp + r ) ( sin x ) + ( np + mq ) sin x cos x + ( nq + r ) ( cos x ) ; ∀x 1 82
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác ( a − c ) m + bn p = m2 + n2 mp + r = a mp + r = a ( a − c ) n − bm ⇔ np + mq = b ⇔ np + mq = b ⇔ q = . Khi ó ta có: m2 + n2 nq + r = c mp − nq = a − c 2 2 r = an + cm − bmn m2 + n2 2 2 ( a − c) m + bn ( a − c) n − bm an + cm − bmn dx ∫ ∫ I= sin x + cos x dx + 2 2 2 2 2 2 m +n msin x + n cos x m +n m +n 2 2 ( a − c) n − bm ( a − c) m + bn an + cm − bmn dx ∫ msin x + n cos x = sin x − cos x + 2 2 2 2 2 2 m +n m +n m +n b. Các bài t p m u minh h a: π3 ( cos x ) 2 dx ∫ • I1 = . sin x + 3cos x 0 ( cos x )2 = ( a sin x + b cos x ) ( sin x + 3 cos x ) + c ( sin 2 x + cos 2 x ) ; ∀x Gi s ⇔ ( cos x ) = ( a + c ) ( sin x ) + ( a 3 + b ) sin x cos x + ( b 3 + c ) ( cos x ) ; ∀x 2 2 2 a + c = 0 a = −1 4 π3 π3 1 3 1 1 dx ∫ ∫ ⇔ a 3 + b = 0 ⇔ b = 3 4 ⇒ I = cos x − sin x dx + 20 2 2 4 0 sin x + 3 cos x c = 1 4 b 3 + c = 1 π3 π3 π π 1 1 dx ∫ ∫ = cos cos x − sin sin x dx + π π 2 6 6 8 cos sin x + sin cos x 0 0 3 3 π3 π3 π3 1 x π π π 1 1 1 dx ∫ ∫ = cos x + dx + = sin x + + ln tg + 6 6 8 2 6 π sin x + 2 8 2 0 0 0 3 1 1 1 1 11 1 = + ln 3 − − ln 3 = + ln 3 = (1 + ln 3 ) 2 8 4 8 44 4 1 83
- Chương II: Nguyên hàm và tích phân − Tr n Phương m sin x + n cos x ∫ a ( sin x ) J= dx 10. D N G 10: 2 2 + 2b sin x cos x + c ( cos x ) a . Phương pháp: a−λ b • G i λ1 , λ 2 là nghi m c a phương trình =0 c−λ b 2 a + c ± ( a − c ) + 4b 2 ⇔ λ 2 − ( a + c ) λ + ac − b 2 = 0 ⇔ λ1,2 = 2 2 2 i a ( sin x ) + 2b sin x cos x + c ( cos x ) = λ1 A12 + λ 2 A2 = 2 Bi n 2 2 λ1 λ2 b b = cos x − a − λ sin x + cos x − a − λ sin x b2 b2 1+ 1 2 1+ 2 2 ( a − λ1 ) ( a − λ2 ) 1 1 b b t u1 = cos x − sin x ;u2 = cos x − sin x ; k1 = ; k2 = a − λ1 a − λ2 a − λ1 a − λ2 1 1 ( cos x − bk1 sin x ) ; A2 = ( cos x − bk2 sin x ) A1 = 2 k12 1 + b 2 k2 2 1+ b ý r ng A12 + A2 = 1 ⇒ λ1 A12 + λ 2 A2 = ( λ1 − λ 2 ) A12 + λ 2 = ( λ 2 − λ1 ) A2 + λ1 2 2 2 b b cos x , ∀x m sin x + n cos x = p sin x + cos x + q sin x + • Gi s a − λ1 a − λ2 p + q = m bm − n ( a − λ2 ) bm − n ( a − λ1 ) ( a − λ1 ) ;q = ( a − λ2 ) ⇔ p n ⇔ p= b λ −λ q ( 2 1) b ( λ1 − λ2 ) + = a − λ1 a − λ2 b − pdu1 −qdu2 m sin x + n cos x ∫ a ( sin x) ∫ (λ − λ ) A ∫ (λ J= dx = + − λ1 ) A2 + λ1 2 2 2 2 + 2b sin x cos x + c ( cos x) + λ2 1 2 1 2 dA1 dA2 ∫ ( λ −λ ) A ∫ (λ = − p 1 + b2 k12 − q 1 + b2 k2 2 − λ1 ) A2 + λ1 2 2 + λ2 1 2 1 2 1 84
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác b. Các bài t p m u minh h a: ( sinx + cosx ) dx ∫ 2sin • J1 = 2 x − 4sinxcosx + 5cos 2 x 2 − λ −2 = 0 ⇔ λ1 = 1; λ 2 = 6 λ1 , λ 2 là nghi m c a phươ ng trình −2 5 − λ 2 24 1 1 2 2 sin 2 x − 4 sin x cos x + 5 cos 2 x = ( cos x + 2 sin x ) + cos x − sin x 5 5 2 2 1 ( cos x + 2 sin x ) ; A 2 = 2 cos x − 1 sin x ; A1 + A 2 = 1 2 A1 = 5 2 5 ) ⇔ p = −51 ; q = 6 ( sin x + cos x = p ( sin x − 2 cos x ) + q sin x + 1 cos x Gi s 2 5 ) −1 ( ( sin x − 2 cos x ) + 6 sin x + 1 cos x ⇒ sin x + cos x = 2 5 5 ( sin x + cos x ) dx 3 ( 2sin x + cos x ) dx 1 ( sin x − 2cos x ) dx ∫ 2sin ∫ ∫ J1 = = − 2 2 5 ( 2cos x − sin x )2 +1 5 6 − ( cos x + 2sin x )2 x - 4sin x cos x + 5cos x d ( sin x − 2 cos x ) d ( cos x + 2 sin x ) 3 1 ∫ ∫ = + 5 ( sin x − 2 cos x ) + 1 5 6 − ( cos x + 2 sin x ) 2 2 6 + cos x + 2 sin x 3 1 = arctg ( sin x − 2 cos x ) + +c ln 5 6 − cos x − 2 sin x 10 6 11. D N G 11: CÁC PHÉP I BI N S T NG H P sin [( x + a ) − ( x + b )] dx 1 ∫ sin ( x + a ) sin ( x + b ) = sin ( a − b ) ∫ sin ( x + a ) sin ( x + b ) dx ( a ≠ b) • K1 = sin ( x + a ) cos ( x + b ) − cos ( x + a ) sin ( x + b ) 1 ∫ = dx sin ( a − b ) sin ( x + a ) sin ( x + b ) sin ( x + b ) 1 1 ∫ cotg ( x + b ) − cotg ( x + a )dx = = +c ln sin ( a − b ) sin ( a − b ) sin ( x + a ) sin [( x + a ) − ( x + b )] dx 1 ∫ cos ( x + a ) cos ( x + b ) = sin ( a − b ) ∫ cos ( x + a ) cos ( x + b ) dx • K2 = 1 85
- Chương II: Nguyên hàm và tích phân − Tr n Phương sin ( x + a ) cos ( x + b ) − cos ( x + a ) sin ( x + b ) 1 ∫ = dx sin ( a − b ) cos ( x + a ) cos ( x + b ) cos ( x + b ) 1 1 ∫ tg ( x + a ) − tg ( x + b ) dx = = +c ln sin ( a − b ) sin ( a − b ) cos ( x + a ) cos [ ( x + a ) − ( x + b ) ] dx 1 ∫ sin ( x + a ) cos ( x + b ) = cos ( a − b ) ∫ sin ( x + a ) cos ( x + b ) dx • K3 = cos ( x + a ) cos ( x + b ) + sin ( x + a ) sin ( x + b ) 1 ∫ = dx cos ( a − b ) sin ( x + a ) cos ( x + b ) sin ( x + a ) 1 1 ∫ cotg ( x + a ) + tg ( x + b ) dx = = +c ln cos ( a − b ) cos ( a − b ) cos ( x + b ) ( 3 + tg x ) cos x 3 cos x + sin x 3 + tgx ∫ ∫( ∫ dx = dx = • K4 = dx 3 − tg x ) cos x 3 cos x − sin x 3 - tgx 1 ( 3 cos x − sin x ) + 3 ( 3 sin x + cos x ) 3 sin x + cos x 1 3 =∫ 2 2 d x = ∫d x + ∫ 3 cos x − sin x d x 2 2 3 cos x − sin x 3 d ( 3 cos x − sin x ) x 3 x 2 2∫ = − =− ln 3 cos x − sin x + c 22 3 cos x − sin x π3 π3 π3 π3 sin x sin x 1 2 sin x ∫ ∫ ∫ ∫ tgxdx = dx = dx = • K5 = dx cos x 2 2 sin x cos x π 4 sin x cos x π4 π4 π4 1 ( cos x + sin x) d x ( cos x − sin x) d x π3 π3 π3 ( cos x + sin x) − ( cos x − sin x) 1 ∫ ∫ −∫ = dx= 2 π 4 2sin x cos x 2sin x cos x 2 π4 2sin x cos x π4 1 d ( sin x + cos x ) π3 π3 d ( sin x − cos x ) ∫ ∫ = − 2 π 4 1 − ( sin x − cos x )2 π 4 ( sin x + cos x )2 − 1 π3 1 2 arcsin ( sin x − cos x ) − ln ( sin x + cos x ) + ( sin x + cos x ) − 1 = 2 π4 1 1 3 +1) 4 3 ( 3 + 1) 4 3 ( 3 −1 3 −1 + ln (1 + 2 ) = arcsin arcsin = − ln − ln 4+2 2 2 2 2 2 22 1 86
- Bài 5. Các phép i b i n s cơ b n và nâng cao tích phân hàm lư ng giác π4 π4 π4 dx dx dx ∫ ∫ ( sin ∫ 1− 3sin = = • K6 = 6 6 3 2 x cos2 x x + cos2 x ) − 3sin 2 x cos2 x sin x + cos x 2 π8 π8 π8 (1 + tg 2 x ) d ( tg x ) = π4 π4 (1 + u 2 ) du 1 dx ∫ ∫ ∫ = = tg 4 x − tg 2 x + 1 u4 − u2 + 1 2 cos 4 x (1 + tg 2 x ) − 3 tg 2 x π8 π8 2 −1 1 + 1 du ( ) = arctg u −1 d u− 1 2 1 1 1 2 u 2 2 −1 u = arctg ( 3 + 2 ) ∫ ∫ = = = arctg 2 1 ( u − 1 ) +1 u 2 −1 2 2 −1 u + 2 − 1 2 −1 2 −1 u u π 12 π 12 cos2xcos6x cos 2 x cos 6 x cos 4 x sin 8 x ∫ ∫ dx = • K7 = dx sin 4 x sin 8 x + cos 4 x cos 8 x tg4x + cotg8x π 16 π 16 π 12 π 12 cos 2x cos 6x cos 4x sin 8x 1 ∫ ∫ ( cos 8x + cos 4x ) sin 8x dx = dx = ( 8x − 4x ) cos 2 π 16 π 16 π 12 π 12 −1 1 8 2 −7 1 1 1 ∫ ( sin16x + sin12x + sin 4x) dx = 4 16 cos16x + 12 cos12x + 4 cos4x π 16 = 384 = 4 π 16 π2 π2 π2 1 + 2 cos x 1 + 2 cos x sin2x + sinx ∫ ∫ ∫ d ( cos x ) dx = − sin x dx = − • K8 = 1 + 3 cos x 1 + 3cos x 1 + 3cosx 0 0 0 (1 + 3cos x ) + 1 π2 π2 π2 d (1 + 3cos x ) −2 2 d ( cos x ) = −2 1 ∫ ∫ ∫ 1 + 3cos x d (1 + 3cos x ) − = 3 9 9 1 + 3cos x 1 + 3cos x 0 0 0 π2 −1 4 )3 2 + 2 1 + 3cos x = 34 ( ( = 3 1 + 3cos x thi TS H kh i A 2005) 9 0 27 π2 π2 π2 (1− cos2 x) −1 sin x cos2 x 1 ∫ ∫ ∫ d ( cos x) = 2 1− cos x − d ( cos x) dx = 2 • K9 = 2 1+ cos x 1+ cos x 1+ cos x 0 0 0 π2 cos2 x − ln (1 + cos x ) = 2ln 2 − 1 ( = 2 cos x − thi TS H kh i D 2005) 0 2 1 87
- Chương II: Nguyên hàm và tích phân − Tr n Phương π6 π6 π6 dx dx dx ∫ cosxcos ∫ ∫ ( cos x − sin x ) cos x =2 =2 • K 10 = (x + π) ) ( 2 cos x + π cos x 0 0 0 4 4 π6 π6 d ( tg x ) 3+ 3 dx π6 ∫ (1 − tg x ) cos ∫ 1 − tg x =2 =2 = − 2 ln 1 − tg x = 2 ln 2 2 x 0 0 0 π4 π4 π4 dx dx 1 dx ∫ ∫ ∫ sin = = • K 11 = ) ( ) ( 2 1 − cos x + π x+π 2 + sinx − cosx 22 2 0 0 0 4 28 ) ( d x+π π4 π4 ) ( −1 −1 1 28 cotg x + π 1 − ( 2 + 1) = 1 ∫ = = = ) ( 28 π 2x 2 2 2 + sin 0 0 28 π4 π4 π4 ( cos x + sin x ) − ( cos x − sin x ) sinxdx sin x dx 1 ∫ ∫ ( sin x + cos x ) ∫ = = • K 12 = dx 2 ( sin x + cos x )2 1 + sin2x 2 0 0 0 π4 π4 π4 π4 d( sinx + cosx ) d( sinx + cosx) 1 dx 1 1 dx 1 ∫ ∫ ( sinx + cosx) 2 ∫ sin x + π ∫ ( sinx + cosx) = − = − ( 4) 2 2 sinx + cosx 2 2 2 2 0 0 0 0 ( x + π) − 1 d(sinx + cosx) = 2 ln tg x + π + 1 π 4 d cos π4 π4 1 4 ∫ cos x + π −1 2 ∫ ( sinx + cosx) 2 2 8 2(sinx + cosx) = ( 4) 2 22 2 0 0 0 2− 2 1 1 − 2 ln ( 2 − 1) − = 2 ln (1 + 2 ) − = 2 4 22 π2 π2 π2 dx dx 1 sin x dx ∫ ∫ ∫ = = • K 13 = sin2x − 2sinx π 3 2 sin x ( cos x − 1) 2 π 3 sin x ( cos x − 1) 2 π3 1 du π2 0 0 0 [(1 + u ) + (1 − u )] d ( cos x ) 1 1 du ∫ ∫ ∫ ∫ du = = = + 2 π 3 (1 − cos x (1 − cos x ) 4 2) 4 1 − u2 (1 + u )(1 − u )2 (1 − u )2 32 32 32 0 1 1 1+ u 1 2+ 3 1 3+ 2 3 1 + ln ( 2 − 3 ) = ln ( 2 − 3 ) − = + ln =− (1 − u ) 8 1 − u 4 4 2 4 4 4 32 π2 π6 ( sin x )3 dx sin 2x dx ∫ (a ∫ 3sin 4x − sin 6x − 3sin 2x , ( ab ≠ 0 ) ; K 2 = K1 = sin 2 x + b 2 cos 2 x ) 2 0 0 1 88
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo án Đạo đức 1 bài 5: Lễ phép với anh chị nhường nhịn em nhỏ
5 p | 315 | 33
-
Bài 15: Ôn luyện về dấu câu - Giáo án Ngữ văn 8
10 p | 401 | 29
-
TOÁN CHIA MỘT SỐ TỰ NHIÊN CHO MỘT SỐ THẬP PHÂN
7 p | 498 | 24
-
BÀI 5: LUYỆN TẬP RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI (T2)
3 p | 529 | 15
-
Giáo án toán lớp 5 - TIẾT 68 : CHIA MỘT SỐ TỰ NHIÊN CHO MỘT SỐ THẬP PHÂN
5 p | 412 | 11
-
Bài giảng Dòng điện xoay chiều-Bài 5
14 p | 67 | 9
-
Bài 5: PHƯƠNG TRÌNH CHUYỂN ĐỘNG THẲNG BIẾN ĐỔI ĐỀU
4 p | 164 | 6
-
Bài 5: PHÉP CHIẾU SONG SONG
10 p | 155 | 6
-
Bài 11: Câu ghép - Bài giảng Ngữ văn 8
17 p | 260 | 5
-
Giáo án môn Toán lớp 6 sách Chân trời sáng tạo - Chương 5: Bài 4
8 p | 15 | 3
-
Giáo án môn Toán lớp 6 sách Kết nối tri thức: Bài 5
10 p | 21 | 3
-
Giáo án Toán lớp 11 - Chương I, Bài 5: Phương trình lượng giác cơ bản (Sách Chân trời sáng tạo)
13 p | 17 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn