intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng môn học Đại số tuyến tính: Chương 2 - Lê Văn Luyện

Chia sẻ: May Trời Gio Bien | Ngày: | Loại File: PDF | Số trang:152

138
lượt xem
12
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng môn học "Đại số tuyến tính - Chương 2: Định thức" cung cấp cho người đọc các kiến thức: Định nghĩa và các tính chất, định thức và ma trận khả nghịch, quy tắc Cramer. Mời các bạn cùng tham khảo nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Bài giảng môn học Đại số tuyến tính: Chương 2 - Lê Văn Luyện

  1. Nội dung chương 2 Bài giảng môn học Đại số tuyến tính Chương 2 ĐỊNH THỨC Lê Văn Luyện lvluyen@yahoo.com http://lvluyen.wordpress.com/dstt Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh Lê Văn Luyện (ĐHKHTN HCM) Chương 2. Định thức lvluyen@yahoo.com 1 / 84
  2. Nội dung chương 2 Nội dung Chương 2. ĐỊNH THỨC 1. Định nghĩa và các tính chất 2. Định thức và ma trận khả nghịch 3. Quy tắc Cramer Lê Văn Luyện (ĐHKHTN HCM) Chương 2. Định thức lvluyen@yahoo.com 2 / 84
  3. 1. Định nghĩa và các tính chất 1. Định nghĩa và các tính chất 1.1 Định nghĩa 1.2 Quy tắc Sarrus 1.3 Khai triển định thức theo dòng và cột 1.4 Định thức và các phép biến đổi sơ cấp Lê Văn Luyện (ĐHKHTN HCM) Chương 2. Định thức lvluyen@yahoo.com 3 / 84
  4. 1. Định nghĩa và các tính chất Định nghĩa. Cho A = (aij )n×n ∈ Mn (R). Định thức của A, được ký hiệu là detA hay |A|, là một số thực được xác định bằng quy nạp theo n như sau: Lê Văn Luyện (ĐHKHTN HCM) Chương 2. Định thức lvluyen@yahoo.com 4 / 84
  5. 1. Định nghĩa và các tính chất Định nghĩa. Cho A = (aij )n×n ∈ Mn (R). Định thức của A, được ký hiệu là detA hay |A|, là một số thực được xác định bằng quy nạp theo n như sau: • Nếu n = 1, nghĩa là A = (a), thì |A| = a. Lê Văn Luyện (ĐHKHTN HCM) Chương 2. Định thức lvluyen@yahoo.com 4 / 84
  6. 1. Định nghĩa và các tính chất Định nghĩa. Cho A = (aij )n×n ∈ Mn (R). Định thức của A, được ký hiệu là detA hay |A|, là một số thực được xác định bằng quy nạp theo n như sau: • Nếu n = 1, nghĩa là A = (a), thì |A| = a.   a b • Nếu n = 2, nghĩa là A = , thì |A| = ad − bc. c d Lê Văn Luyện (ĐHKHTN HCM) Chương 2. Định thức lvluyen@yahoo.com 4 / 84
  7. 1. Định nghĩa và các tính chất Định nghĩa. Cho A = (aij )n×n ∈ Mn (R). Định thức của A, được ký hiệu là detA hay |A|, là một số thực được xác định bằng quy nạp theo n như sau: • Nếu n = 1, nghĩa là A = (a), thì |A| = a.   a b • Nếu n = 2, nghĩa là A = , thì |A| = ad − bc. c d   a11 a12 . . . a1n  a21 a22 . . . a2n  • Nếu n > 2, nghĩa là A =   . . . . . . . . . . . . . . . . . . .  , thì  an1 an2 . . . ann Lê Văn Luyện (ĐHKHTN HCM) Chương 2. Định thức lvluyen@yahoo.com 4 / 84
  8. 1. Định nghĩa và các tính chất Định nghĩa. Cho A = (aij )n×n ∈ Mn (R). Định thức của A, được ký hiệu là detA hay |A|, là một số thực được xác định bằng quy nạp theo n như sau: • Nếu n = 1, nghĩa là A = (a), thì |A| = a.   a b • Nếu n = 2, nghĩa là A = , thì |A| = ad − bc. c d   a11 a12 . . . a1n  a21 a22 . . . a2n  • Nếu n > 2, nghĩa là A =   . . . . . . . . . . . . . . . . . . .  , thì  an1 an2 . . . ann dòng 1 |A| ==== a11
  9. A(1|1)
  10. − a12
  11. A(1|2)
  12. + · · · + a1n (−1)1+n
  13. A(1|n)
  14. .
  15. trong đó A(i|j) là ma trận có được từ A bằng cách xóa đi dòng i và cột j của A. Lê Văn Luyện (ĐHKHTN HCM) Chương 2. Định thức lvluyen@yahoo.com 4 / 84
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2