intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng môn học Nguyên lý và phương pháp chọn giống cây trồng: Chương 4 - TS. Trần Văn Quang

Chia sẻ: Minh Vũ | Ngày: | Loại File: PDF | Số trang:7

164
lượt xem
19
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng môn học "Nguyên lý và phương pháp chọn giống cây trồng - Chương 4: Thống kê sinh học ứng dụng trong chọn giống cây trồng" cung cấp cho người đọc các kiến thức: Một số khái niệm, tham số thống kê trong chọn giống cây trồng, phương sai kiểu hình, kiểu gen và môi trường, hệ số di truyền, chỉ số chọn lọc,... Mời các bạn cùng tham khảo nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Bài giảng môn học Nguyên lý và phương pháp chọn giống cây trồng: Chương 4 - TS. Trần Văn Quang

  1. 7/18/15 Lớp Học Phần VNUA ( Khoa Nông Học ) - Học Viện Nông Nghiệp Việt Nam https://sites.google.com/site/lophocphank57vnua/ NỘI DUNG CỦA CHƢƠNG 1. Một số khái niệm 2. Tham số thống kê trong chọn giống cây trồng Chƣơng 4 3. Phƣơng sai kiểu hình, kiểu gen và môi trƣờng THỐNG KÊ SINH HỌC ỨNG DỤNG TRONG 4. Hệ số di truyền CHỌN GIỐNG CÂY TRỒNG 5. Chỉ số chọn lọc 6. Khả năng kết hợp 7. Đa dạng di truyền 8. Tƣơng tác kiểu gen và môi trƣờng 4.1. MỘT SỐ KHÁI NIỆM 4.2. THAM SỐ THỐNG KÊ SỬ DỤNG TRONG CGCT  Tính trạng: là một đặc điểm biểu hiện của kiểu hình. Mỗi một kiểu 4.2.1. Giá trị trung bình và phƣơng sai giá trị trung bình gen điều khiển một số tính trạng, mỗi tính trạng do một hoặc một số gen điều khiển, về khía cạnh di truyền tính trạng là xác định bởi kiểu gen mặc dù vậy nó cũng bị ảnh hƣởng bởi các yếu tố môi trƣờng (Slavko Borojevic, 1990)  Kiểu hình: Những biểu hiện bên ngoài của một sinh vật, kiểu hình là các phần tự nhiên, tổng của các nguyên tử, phân tử, đại phân tử, tế bào, cấu trúc, trao đổi chất, sử dụng năng lƣơng, mô, cơ quan, phản xạ; bất kỳ đặc điểm nào quan sát đƣợc về cấu trúc, chức năng của một sinh vật sống đều là kiểu hình.  Kiểu gen: Là tổng các alen của một sinh vật (alen là các gen có thể khác nhau hoặc nhận biết khi thay đổi trên cặp nhiễm sắc thể) điều khiển biểu hiện ra kiểu hình có sự tác động của các yếu tố môi trƣờng. Hình 4.1. Đƣờng phân bố chuẩn về chiều cao cây của hai quần thể đậu tƣơng A và B có cùng giá trị trung bình chiều cao cây là 40cm, những  Môi trƣờng: là tất cả những yếu tố bên ngoài tƣơng tác với kiểu gen phƣơng sai giá trị trung bình khác nhau để biểu hiện ra kiểu hình. Giá trị trung bình là tổng giá quan sát chia số quan sát 4.2.2. Thành phần phƣơng sai và ý nghĩa ứng dụng trong chọn tạo giống Kết quả phân tích đƣợc tổng hợp trong bảng phân tích ANOVA, bảng bao x1  x2  ...  xn 1 x gồm các tham số chủ yếu nhƣ: tổng bình phƣơng, bình phƣơng trung bình, x  i bình phƣơng trung bình kỳ vọng, F - tính của các nguồn biến khác nhau N N nhƣ nguồn biến động giữa các giống hoặc dòng, nguồn biến động giữa các lần lặp lại, nguồn biến động giữa giống và môi trƣờng. Phƣơng sai là độ lệch bình phƣơng trung bình của các quan sát so Một bảng ANOVA đơn giản nhất của thí nghiệm so sánh giống nhƣ trình với giá trị trung bình bày ở bảng 4.1. x  x  x  x  ...  x  x 2 2 2 Bảng 4.1. Bảng phân tích phƣơng sai ANOVA thí nghiệm so sánh giống s 1 2 N n  1 N   xi  x 2  Nguồn biến Bậc tự do Tổng bình Bình phƣơng trung bình F-tính (df) phƣơng (SS) Giữa các giống t-1 SSV MSV Hiệp phƣơng sai của hai quan sát x và y MSV Trong các giống (error) t(r-1) SSE MSE MSE  x   1 Cov( x, y )   x yj  y Tổng (Total ) tr-1 SSTO i N Ghi chú: SSV = tổng bình phƣơng của giống, SSE= tổng bình phƣơng sai số, MSV= bình phƣơng trung bình của giống, MSE = bình phƣơng trung bình sai số 1
  2. 7/18/15 Lớp Học Phần VNUA ( Khoa Nông Học ) - Học Viện Nông Nghiệp Việt Nam https://sites.google.com/site/lophocphank57vnua/ Ví dụ sử dụng kết quả phân tích phƣơng sai trong đánh giá khả năng kết hợp của 14 giống lúa (4 giống thuộc loài phụ japonica, 4 giống thuộc loài 4.2.3. Hệ số biến động (Coefficient of variation - cv) phụ javanica và 6 giống thuộc loài phụ indica) lai dialen theo phƣơng pháp 4 của Griffing (1956) tạo ra 91 tổ hợp lai, đánh giá khả năng kết hợp Hệ số biến động ký hiệu cv, cho nhận xét về mức độ tin cậy của kết (KNKH) chung (GCA) và KNKH riêng (SCA) về năng suất sinh vật học trình quả thí nghiệm đƣợc tính bằng công thức sau: bày trong bảng 4.2. Bảng 4.2. Phân tích phƣơng sai của KNKH chung (GCA) và KNKH riêng (SCA) về năng suất sinh vật học theo Griffing (1956) cv = MSE x100 Nguồn biến động Bậc tự do (Degree of Tổng bình phƣơng Bình phƣơng trung bình F - tính (F value) Trong đó: GM (Source) freedom) (Sum of Squares) (Mean Squares) GCA 11 13.562,60 1.232,97 18,05** MSE = bình phƣơng trung bình sai số SCA 54 3.532,06 65,41 0,96ns Sai số (Error) (65) 68,30 GM = giá trị trung bình quan sát của toàn bộ thí nghiệm (K.A.Gomez, 1984). Tổng (Total) 65 17.094,66 Ghi chú : ** mức có ý nghĩa 1%, ns = không có ý nghĩa Kết quả cho phép biện luận các giống lúa nghiên cứu có KHKH chung cao ở mức có ý nghĩa 1%, nhƣng KNKH riêng ở mức không có ý nghĩa về năng suất sinh vật học. 4.2.4. Kiểm định sai khác nhỏ nhất có ý nghĩa Thí nghiệm theo phƣơng pháp khối ngẫu nhiên S d đƣợc tính nhƣ sau: (Least significant different test - LSD) Tham số thống kê LSD thƣờng đƣợc sử dụng để kiểm định sự sai khác giữa các giống thí nghiệm so với đối chứng, tính LSD thực hiện nhƣ sau: 2 s2 Bƣớc 1: Tính sai khác của trung bình giống i và j Sd = dij = Xi - Xj r Bƣớc 2: Tính giá trị LSD tại mức có ý nghĩa . LSD  = ( t ) (S d ) Trong đó: r là số lần lặp lại, S2 là sai số bình phƣơng trung bình trong phân tích phƣơng sai suy ra Trong đó: S d : sai ố của giá trị trung bình, t giá trị t bảng tại mức có ý nghĩa  với n = mức tự do sai số 2s2 Bƣớc 3: So sánh giá trị trung bình tính ở bƣớc 1 với giá trị LSD tính LSD = t đƣợc ở bƣớc 2, khi dij > LSD0,05 ( = 0,05) cho phép khẳng định r năng suất của giống i cao hơn giống j ở mức có ý nghĩa 5%, khi dij > LSD0,01 ( = 0,01 ) cho phép khẳng định năng suất của giống i cao hơn giống j ở mức có ý nghĩa cao 1%. Bảng 4.3. Năng suất của 6 giống lúa trong thí nghiệm 4.3. PHƢƠNG SAI KIỂU HÌNH, KIỂU GEN VÀ MÔI TRƢỜNG so sánh giống ở vụ Xuân 1994 tại Gia Lâm, Hà Nội  Phƣơng sai kiểu hình: là sự khác nhau về kiểu hình giữa các cá thể trong quần thể, phƣơng sai kiểu hình là do hai nguồn phƣơng sai Giống Năng suất (tấn/ha) kiểu gen và phƣơng sai môi trƣờng. Xác định các nguồn phƣơng sai cơ bản là cần thiết để đánh giá tiềm năng của quần thể tiến hóa và thích nghi với môi trƣờng không đồng nhất hoặc thay đổi. DH32 6,72**  Phƣơng sai kiểu gen: bao gồm một số thành phần là phƣơng sai IR56378 5,87* hiệu ứng cộng (VA), phƣơng sai hiệu ứng trội (VD), phƣơng sai lấn IR 53970 5,66ns át gen (VI) tạo ra tổng phƣơng sai di truyền (VG) kiểm soát tính trạng kiểu hình đặc thù. IR50404 5,61ns  Phƣơng sai môi trƣờng bao gồm: phƣơng sai môi trƣờng đặc thù IR51673 5,45ns (VEs), phƣơng sai môi trƣờng chung (VEg), tƣơng tác kiểu gen x CR203 (đối chứng) 5,54ns môi trƣờng (VGxE) tạo ra tổng phƣơng sai môi trƣờng (VE) kiểm soát tính trạng kiểu hình đặc thù. cv( % ) 3,438  Mối quan hệ phƣơng sai kiểu hình, kiểu gen và môi trƣờng đƣợc LSD0,05 0,258 Falconer & Mackay (1996); Lynch & Walsh (1998), tóm tắt bằng LSD0.01 0,354 phƣơng trình sau: VP = VG + VE 2
  3. 7/18/15 Lớp Học Phần VNUA ( Khoa Nông Học ) - Học Viện Nông Nghiệp Việt Nam https://sites.google.com/site/lophocphank57vnua/ 4.4. HỆ SỐ DI TRUYỀN Phƣơng sai kiểu gen bao gồm ba thành phần là phƣơng sai hiệu 4.4.1. Khái niệm ứng cộng (VA), phƣơng sai hiệu ứng trội (VD) và phƣơng sai lấn át gen (VI), do vậy VG đƣợc tính bằng phƣơng trình: Khái niệm hệ số di truyền bắt nguồn từ sự cố gắng xác định sự sai VG = VA + VD + VI khác thực tế giữa các cá thể do bản chất di truyền của các cá thể hay do tác động của môi trƣờng. Phƣơng sai môi trƣờng thực tế bao gồm hai thành phần phƣơng sai của môi trƣờng (bao gồm cả môi trƣờng chung và đặc thù) VE Knight khái niệm “Hệ số di truyền là các thành phần phƣơng sai và tƣơng tác kiểu gen và môi trƣờng VGE, nhƣ vậy phƣơng sai khác nhau của tập hợp các đặc tính di truyền kiểm soát tính trạng”, kiểu hình đƣợc tính đầy đủ bằng phƣơng trình: một số tác giả khác đƣa ra khái niệm nhƣ sau: Vp = VA + VD + VI +VE + VGE Hệ số di truyền là đại lƣợng thống kê đặc trƣng cho mức độ di Nguồn phƣơng sai kiểu gen là những yếu tố di truyền của bản truyền của tính trạng số lƣợng. Đƣợc định nghĩa bằng tỉ lệ giữa thân tính trạng số lƣợng. Nếu gen biểu hiện hiệu ứng cộng thì giá phƣơng sai di truyền (VG) tham số đặc trƣng cho sự khác biệt về trị kiểu gen thay đổi tăng hoặc giảm khi một trong những kiểu gen bị thay thế: kiểu gen giữa các cá thể trong quần thể và phƣơng sai kiểu hình (Vp) của tính trạng chọn. Hệ số di truyền theo nghĩa rộng (board sense) hoặc xác định mức Nếu tính trạng biểu hiện do hiệu ứng cộng của hai alelle, thì mỗi độ di truyền (Falconer, 1981) là tỉ lệ giữa phƣơng sai kiểu gen (VG) alelle có đóng góp nhất định vào biểu hiện tính trạng. và phƣơng sai kiểu hình (VP). Trong trƣờng hợp nhƣ vậy hệ số di truyền có ý nghĩa cao trong Hệ số di truyền theo nghĩa rộng vì VG bao gồm nhiều phƣơng sai chọn lọc tạo giống, mối quan hệ giữa phƣơng sai di truyền hiệu ứng cộng (VA) với phƣơng sai kiểu hình (VP) gọi là hệ số di truyền nhƣ hiệu ứng cộng, trội và lấn át gen, nhƣng không phải tất cả theo nghĩa hẹp (narow sense). đều có ý nghĩa trong chọn lọc. Ví dụ trong trƣờng hợp trội hoàn toàn, kiểu hình của hai kiểu gen BB và Bb là hoàn toàn giống nhau. VA  A2 VG h2   2 H= hoặc h  2 2 P G H= hoặc VP VP  2 P Hệ số di truyền luôn luôn có giá trị từ 0 đến 1, 4.5. CHỈ SỐ CHỌN LỌC H = 0 khi không có phƣơng sai kiểu gen (VG = 0) và Chỉ số chọn lọc là phƣơng pháp sử dụng để chọn đồng thời một H = 1 khi phƣơng sai kiểu gen bằng phƣơng sai môi trƣờng. Một quần số tính trạng mong muốn, theo thứ tự mức độ quan trọng của thể đồng nhất nhƣ quần thể con lai F1, dòng tự phối, giống thuần cây tính trạng và hiệp phƣơng sai của các tính trạng cần đánh giá, tự thụ... khi đó VG = 0, do vậy: Ƣu điểm của chỉ số chọn lọc là cải tiến đồng thời một số tính trạng.  2 0 h2   2 0 g  2 pp Nếu các tính trạng là không ƣu tiên, cùng mức và không tƣơng quan chỉ số có thể tính bằng tổng các tính trạng và hệ số di truyền của chúng. Ngƣợc lại, nếu biến dị tính trạng hoàn toàn do di truyền thì h2 = 1 Độ lớn của h2 là thƣớc đo mức độ biến dị di truyền của tính trạng định chọn, nếu h2 < 0,4 chứng tỏ tính trạng có biến dị di truyền thấp hiệu I i  h12 x1i  h22 x2i quả chọn lọc thấp, h2 có giá trị 0,4 - 0,6 mức độ biến dị di truyền trung bình, h2 có giá trị càng gần đến 1 thì hiệu quả chọn lọc càng cao. 3
  4. 7/18/15 Lớp Học Phần VNUA ( Khoa Nông Học ) - Học Viện Nông Nghiệp Việt Nam https://sites.google.com/site/lophocphank57vnua/ 4.6. KHẢ NĂNG KẾT HỢP Nếu các tính trạng cùng mức, không tƣơng quan và ƣu tiên khác nhau chỉ số tính theo hệ số di truyền và mức ƣu tiên (weight) của chúng 4.6.1. Khái niệm Sprague và Tatum phân biệt hai loại khả năng kết hợp: khả năng I i  w1h12 x1i  w2h22 x2i kết hợp chung (GCA) và khả năng kết hợp riêng (SCA). GCA là khả năng của một bố mẹ tạo ra thế hệ con có năng suất nhất định khi lai với một số bố mẹ khác (năng suất trung bình của Nếu tính trạng không cùng mức (không cùng đơn vị tính) phải các tổ hợp). chuyển hàm (f), ƣu tiên và có tƣơng quan SCA là năng suất của một tổ hợp bố mẹ cụ thể và đƣợc biểu thị Ii  f1w1h12 x1i  f 2 w2h22 x2i bằng độ lệch năng suất đƣợc dự đoán thông qua GCA. Slavko Borojevic khái niệm: KNKH tốt là khả năng của bố mẹ tạo Mục đích của chọn lọc là chọn lọc giá trị kiểu gen, nhƣng điều đó là ra con cái ƣu tú khi tổ hợp với bố mẹ khác, KNKH có thể xảy ra ở không thể vì vậy giá trị kiểu hình đã đƣợc sử dụng. Nhƣ vậy, chọn lọc một số tính trạng hoặc toàn bộ các tính trạng. nhƣ thế nào để vector ƣu tiên (w) có tƣơng quan tối đa giữa kiểu hình KNKH sử dụng trong lai tạo giống, phát triển giống mới hoặc tạo và kiểu gen. giống ƣu thế lai. Khả năng kết hợp riêng (SCA) Sử dụng phương pháp lai dialen của Griffing.  Khái niệm KNKH chung (GCA) là giá trị trung bình của bố mẹ Các sơ đồ của Griffing (dòng) đánh giá trên cơ sở khi lai nó với các bố mẹ khác (các dòng Sơ đồ 1: Gồm cả lai thuận, lai nghịch và tự phối. khác). i k 1 2 3 4 5  Khái niệm KNKH riêng (SCA) là biểu hiện của một bố mẹ (X) khi lai với một bố mẹ khác (Y), giá trị trung bình của SCA có thể riêng 1 1x1 1x2 1x3 1x4 1x5 rẽ với trung bình GCA của hai bố mẹ. 2 2x1 2x2 2x3 2x4 2x5  Vì vậy, giá trị trung bình của dòng X và Y đƣợc tính nhƣ sau: 3 3x1 3x2 3x3 3x4 3x5 Mxy =GCAx + GCAy + SCAxy 4 4x1 4x2 4x4 4x4 4x5 5 5x1 5x2 5x3 5x4 5x5 Số tổ hợp lai: N = n2 Xik +Xki Xi. + X.i + Xk. + X.k Sơ đồ 2: Lai một chiều kết hợp với tự phối. X.. KNKHRik= - + 2 2n n2 i k 1 2 3 4 5 KNKHRik: Khả năng kết hợp riêng của dòng i lai với dòng k 1 1x1 n: Số dòng tham gia vào sơ đồ lai 2 2x1 2x2 Xik và Xki: Tổng số đo của tổ hợp lai i x k và k x i 3 3x1 3x2 3x3 Xi. và Xk.: Tổng số đo của các tổ hợp lai của dòng i và k với các dòng khác theo chiều thuận i x…k x… 4 4x1 4x2 4x4 4x4 X.i và X.k: Tổng số đo của các tổ hợp lai của dòng i và k với các dòng theo chiều 5 5x1 5x2 5x3 5x4 5x5 nghịch …x i …x k X..: Tổng số đo của tất cả các tổ hợp lai trong sơ đồ n(n+1) Số tổ hợp lai: N = 2 4
  5. 7/18/15 Lớp Học Phần VNUA ( Khoa Nông Học ) - Học Viện Nông Nghiệp Việt Nam https://sites.google.com/site/lophocphank57vnua/ 1 2 Sơ đồ 3: Lai thuận nghịch không tự phối. KNKHRik= Xi.k - [(Xi+Xii) + (Xk + Xkk)] + X.. n+ 2 (n+1)(n+ 2) i k 1 2 3 4 5 KNKHRik: Khả năng kết hợp riêng của dòng i với dòng k n: Số dòng tham gia vào sơ đồ lai dialen 1 1x2 1x3 1x4 1x5 Xi: Tổng số đo của các tổ hợp lai của dòng i với các dòng khác trong sơ đồ 2 2x1 2x3 2x4 2x5 Xii: Tổng số đo năng suất của dòng i 3 3x1 3x2 3x4 3x5 Xk: Tổng số đo của các tổ hợp lai của dòng k với các dòng khác trong sơ đồ 4 4x1 4x2 4x4 4x5 Xkk: Tổng số đo năng suất của dòng k 5 5x1 5x2 5x3 5x4 Xik: Tổng số đo năng suất của tổ hợp lai i x k X..: Tổng số đo của tất cả các tổ hợp lai trong sơ đồ. Số tổ hợp lai: N = n(n-1) Sơ đồ 4: Chỉ có lai 1 chiều, không có tự phối. 1 2 KNKHRik= Xik - (Xi + Xk) + X.. n-2 (n - 1)(n - 2) i k 1 2 3 4 5 KNKHRik: Khả năng kết hợp riêng của dòng i với dòng k 1 n: Số dòng tham gia vào sơ đồ lai dialen 2 2x1 Xi: Tổng số đo của các tổ hợp lai của dòng i với các dòng khác trong sơ đồ 3 3x1 3x2 Xk: Tổng số đo của các tổ hợp lai của dòng k với các dòng khác trong 4 4x1 4x2 4x4 sơ đồ 5 5x1 5x2 5x3 5x4 Xik: Tổng số đo năng suất của tổ hợp lai i x k X..: Tổng số đo của tất cả các tổ hợp lai trong sơ đồ. n(n-1) Số tổ hợp lai: N = 2 4.7. ĐA DẠNG DI TRUYỀN Một số phƣơng pháp phân tích đa dạng di truyền nguồn gen, vật 4.7.1. Định nghĩa về khoảng cách di truyền liệu tạo giống, dòng và quần thể đã đƣợc nghiên cứu và sử dụng rộng rãi. Khoảng cách di truyền là sự khác nhau giữa hai thực thể có thể Những phƣơng pháp này phụ thuộc vào số liệu phả hệ, số liệu hình mô tả bằng biến động các alen (Nei, 1973). thái, nông học, sinh hóa và gần đây là di truyền phân tử (trên cơ sở ADN). Định nghĩa này đƣợc Nei (1987) hoàn chỉnh “Vùng gen khác Để đảm bảo ƣớc lƣợng chính xác đa dạng di truyền các nhà khoa nhau giữa các quần thể hoặc các loài đƣợc xác định bởi một số số học đang cố gắng tập trung những vấn đề sau: lƣợng các alen gọi là xa cách di truyền”. i) Mẫu mục tiêu; ii)Sử dụng bộ số liệu đa dạng và nắm rõ những điểm mạnh và hạn chế của Định nghĩa hoàn chỉnh hơn “Bất kỳ sự khác nhau di truyền đƣợc chúng; xác định ở mức chuỗi hoặc mức chuỗi alen giữa các cá thể, quần iii)Lựa chọn phƣơng pháp đánh giá khoảng cách di truyền, phƣơng pháp thể hoặc loài đều đƣợc gọi là khoảng cách di truyền” (Beaumont phân tích đám (clustering procedures), các phƣơng pháp đa chiều trong phân tích dự liệu; và cs., 1998). iv)Xác định mục tiêu của mối quan hệ di truyền. Phối hợp các phƣơng pháp và sử dụng đúng công cụ phân tích nhƣ phân tích phƣơng sai đa chiều (bootstrapping). 5
  6. 7/18/15 Lớp Học Phần VNUA ( Khoa Nông Học ) - Học Viện Nông Nghiệp Việt Nam https://sites.google.com/site/lophocphank57vnua/ 4.7.2. Phƣơng pháp xác định khoảng cách và đồng hình di truyền 4.7.3. Phƣơng pháp xác định thông tin đa hình theo Xác định khoảng cách di truyền bằng đƣờng tuyến tính hay khoảng thuật toán an - go - rit (algorithm) cách Ơ-clit (Euclidean đƣợc sử dụng phổ biến nhất để ƣớc lƣợng khoảng cách di truyền giữa các thực thể (kiểu gen hoặc quần thể) n bằng số liệu hình thái. PIC  1   pi2 Khoảng cách Ơ-clit giữa hai cá thể i và j, có giá trị quan sát trên các i 1 đặc điểm hình thái (p) biểu thị bằng các giá trị x1, x2, ..., xp và y1, y2,..., yp cho i và j, có thể tính bằng công thức sau: Trong đó, PIC là thông tin đa hình; pi là tần suất của alen thứ i d (i,j) = [(x1 - y1)2 + ( x2 – y2)2 +……(xp - yp)2]1/2 PIC cung cấp một sự đánh giá khả năng phân biệt của một locus đem vào tính toán không chỉ số alen đó biểu hiện mà còn về tần suất Trên cơ sở số liệu thu đƣợc bằng đo đếm các tính trạng số lƣợng các dòng tự phối, Smith và cs. (1991) áp dụng công thức khác để tính khoảng cách của alen đó. di truyền nhƣ sau: PIC có giá trị từ 0 (không đa hình) đến 1 (sự phân biệt rất cao, với d (i,j)= ∑[(T1(i) – T2(i))2/var T(i) ]1/2 nhiều alen có tần suất ngang bằng nhau). Ví dụ marker dò tìm 5 Trong đó T1 và T2 là giá trị của tính trạng thứ i của dòng thuần 1 và 2, và alen, nhƣng chỉ có 1 alen có tần suất cao (tần suất = 0,9) (J. S. C. varT(i) là phƣơng sai của tính trạng thứ i trên toàn bộ các dòng thuần. Smith và cs. ,1997). 4.8. TƢƠNG TÁC KIỂU GEN VÀ MÔI TRƢỜNG Bảng 4.24. Bảng phân tích phƣơng sai (mô hình ngẫu nhiên) cho thí Đánh giá sự ổn định của kiểu hình qua các môi trƣờng bằng phƣơng nghiệm lặp lại ở nhiều điểm và nhiều năm. sai kiểu hình (2P), giá trị này gồm các giá trị thành phần là phƣơng Nguồn biến Bình phƣơng Bình phƣơng trung bình kỳ Độ tự do sai kiểu gen (2G ), phƣơng sai môi trƣờng (2E ) và tƣơng tác kiểu động trung bình vọng gen và môi trƣờng (2GE), đƣợc biểu hiện bằng phƣơng trình sau: Năm y-1 - Điểm l-1 - 2P = 2G + 2E + 2GE Lặp lại/Đ/N ly(r - 1) - Nếu thí nghiệm năng suất đƣợc đánh giá ở nhiều điều kiện môi Năm x Điểm (y - 1 ) (l -1) - trƣờng (lặp lại theo không gian và thời gian) thì phân tích phƣơng KG g-1 MS5 2e + r2gyl + rl2gy + bằng mô hình thống kê: ry2gl + rly2g 2e + r2gyl + rl2gy Yij =  + gi + mj + (gm)ij + eij KG x N (y - 1) (g - 1) MS4 KG x Đ (l - 1) (g - 1) MS3 2e + r2gyl + ry2gl Trong đó: KG x N x Đ (g - 1) (y - 1) MS2 2e + r2gyl Yij= Giá trị kiểu hình (năng suất chẳng hạn) của kiểu gen thứ i trong môi (l - 1) trƣờng thứ j; Sai số yl (g - 1) (r - MS1 2e  = trung bình của tất cả kiểu gen trong tất cả môi trƣờng; 1) gi= hiệu ứng của kiểu gen thứ i; mj = hiệu ứng của môi trƣờng thứ j; (gm)ij = tƣơng tác của kiểu gen thứ i và môi trƣờng thứ j; Ghi chú: r = lần lặp lại; g = kiểu gen; y = số năm (mùa vụ); l = số điểm eij = sai số gắn với kiểu gen i và môi trƣờng j. Để xác định tính ổn định thông qua các tham số thống kê nhiều Mô hình thống kê: nhà nghiên cứu đã dùng phƣơng pháp phân tích hồi quy (Finlay & Wilkinson, 1963; Eberhart & Russel,1966). Yij =  + bi Ij + ij Trong đó: Hiệu số giữa giá trị trung bình về năng suất (hay bất kỳ một tính  = trung bình của tất cả kiểu gen trong tất cả môi trƣờng trạng nào khác) của các kiểu gen ở mỗi môi trƣờng so với giá trị trung bình chung đƣợc gọi là chỉ số môi trƣờng. Yij= giá trị của kiểu gen thứ i trong môi trƣờng thứ j bi = hệ số hồi quy của giống thứ i với chỉ số môi trƣờng Năng suất của mỗi kiểu gen đƣợc hồi quy với chỉ số môi trƣờng Ij= chỉ số môi trƣờng tƣơng ứng để đánh giá phản ứng của các kiểu gen với môi trƣờng thay đổi và ƣớc lƣợng độ lệch so với đƣờng hồi quy (Eberhart & Hệ số hồi quy đƣợc xác định theo công thức sau: Russel, 1966). bi   Yij I j /  I 2j Một kiểu gen mong muốn là kiểu gen có năng suất trung bình j j cao, hệ số hồi quy bằng 1 và độ lệch so với đƣờng hồi quy bằng 0. 6
  7. 7/18/15 Lớp Học Phần VNUA ( Khoa Nông Học ) - Học Viện Nông Nghiệp Việt Nam https://sites.google.com/site/lophocphank57vnua/ Độ lệch so với đƣờng hồi quy i: Mô hình đánh giá ổn định và thích nghi theo Eberhart & Russell (1966) trên cơ sở mô hình hồi quy:   ij2  e2 Yijk =β0ij + βlij Ik +ijk + S d2  j  eijk g 2 r Trong đó: Yijk trung bình của con lai giữa dòng i và j; β0ij là trung bình chung con lai giữa dòng i và j; βlij hệ số đƣờng hồi quy xác định phù hợp của con lai giữa dòng i và j, liên quan với phƣơng sai môi trƣờng; lk là chỉ số môi trƣờng; Trong đó δijk đo độ lệch đƣờng hồi quy; và eijk sai số trung bình.       2 ij   Yij2  Yi .2 / l    Yij I 2j  /  I 2j  j  j   j   Bảng 4.25. Phân tích ổn định năng suất của 4 giống ngô rau (Ví dụ) Giống Tổng độ lệch Sai số chung Tham số ổn Prob (Var.) bình phƣơng (Pooled error) định (Deviations) S2di Ftn LVN8A 0,125 0,054 0,030 1,18 0,089 LVN8B 0,240 0,054 0,450 1,34 1,000* LVN23 0,375 0,054 1,097 1,18 1,000* SG22 1,569 0,054 1,386 2,02 1,000*  Một giống đƣợc coi là ổn định qua các môi trƣờng nếu đảm bảo độ lệch của đƣờng hồi quy S2di là nhỏ dần đến 0 và P không đáng kể < 1,0 (không có dấu *).  Nhƣ vậy, số liệu phân tích ổn định của giống ở bảng 4.25 chỉ có giống LVN8A là ổn định vì có S2di là nhỏ và P không đáng kể.  Giống LVN23 và giống SG22 kém ổn định vì S2di và P lớn.  Giống LVN8B có S2di là nhỏ nhƣng P lớn có thể kết luận giống này chỉ thích hợp trồng ở môi trƣờng thuận lợi mới cho năng suất cao. 7
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
6=>0