intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Phương pháp chia đôi giải phương trình f(x)=0

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:7

51
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Phương pháp chia đôi giải phương trình f(x)=0 cung cấp cho học viên những kiến thức về khoảng cách li nghiệm, phương pháp chia đôi, thuật toán phương pháp chia đôi, phương pháp chia đôi - sự hội tụ, phương pháp chia đôi - khối lượng tính toán,... Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Bài giảng Phương pháp chia đôi giải phương trình f(x)=0

  1. PHƯƠNG PHÁP CHIA ĐÔI GIẢI PT f(x)=0 Hà Thị Ngọc Yến Hà nội, 01/2019
  2. Khoảng cách li nghiệm • Định nghĩa: Khoảng (a,b) được gọi là khoảng cách li nghiệm của phương trình f(x)=0 nếu trong khoảng (a,b) có đúng một nghiệm của phương trình. • Định lý: Nếu f(x) liên tục và đơn điệu trên (a,b) và f(a),f(b) trái dấu thì (a,b) là khoảng cách li nghiệm của phương trình f(x)=0.
  3. Khoảng cách li nghiệm • PP khảo sát hàm số: • PP vẽ đồ thị hàm số:
  4. Phương pháp chia đôi • Ý tưởng: chia đôi khoảng (a,b) nhận được khoảng cách li nghiệm mới có độ dài bằng nửa độ dài (a,b) • Điều kiện thực hiện phương pháp: ▪ (a,b) là khoảng cách li nghiệm ▪ f(x) liên tục trên (a,b) ▪ f(a)f(b)
  5. Phương pháp chia đôi Thuật toán a0 + b0 Bước 1: đặt và tính a0 := a, b0 := b, x0 = c := Bước 2: Tính z = f ( c ). 2 Bước 3: Nếu z = 0 thì nghiệm cần tìm là x = c. Bước 4: Nếu zf (a)  0 thì đặt a1 := a0 , b1 := c nếu trái lại thì đặt a1 := c, b1 := b0 . Bước 5: Kiểm tra b1 − a1   . Nếu tm, dừng thuật toán, nghiệm tìm được là c Bước 6: nếu không thỏa mãn, quay lại bước 1 áp dụng cho khoảng ( a1, b1 ) .
  6. Phương pháp chia đôi Sự hội tụ Ta có đánh giá sau: b−a xn − x *  bn − an = n ⎯⎯⎯ n→ → 0 2
  7. Phương pháp chia đôi Khối lượng tính toán Mỗi vòng lặp cần tính giá trị hàm số tại trung điểm của đoạn rồi so sánh dấu của kết quả tìm được với dấu của f(a) ban đầu.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2