intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài tập ôn thi Toán: Nguyên hàm tích phân

Chia sẻ: LPT Anh Khoa Nguyễn | Ngày: | Loại File: PDF | Số trang:24

761
lượt xem
262
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đây là bài tập nguyên hàm tích phân gửi đến các bạn học sinh tham khảo để củng cố kiến thức toán 12.

Chủ đề:
Lưu

Nội dung Text: Bài tập ôn thi Toán: Nguyên hàm tích phân

  1. ch−¬ng 4. nguyªn hμm vμ tÝch ph©n 1. Dïng b¶ng tÝch ph©n c¬ b¶n vµ c¸c tÝnh chÊt cña tÝch ph©n, tÝnh: (1 + x) 2 2) ∫ 1) ∫ (a + b ) dx dx x x2 x(1 + x 2 ) dx 4) ∫ 3) ∫ x . x + 2 .dx 25 3 xcos (1 + lnx) 2 1 + tg 2 x sinxdx 6) ∫ ∫ dx 5) 1 + tgx 1 + 2cosx e x dx x + (arccos3x) 2 8) ∫ 2x ∫ dx 7) e +4 1 − 9x 2 dx dx 10) ∫ ∫ 1 + sinx 9) x 1+ x2 (1 − x) 2 dx 1+ x − x2 12) ∫ ∫ dx 11) xx (1 − x 2 ) 3 Gi¶i. 1) ∫ (a + b ) dx = ∫ [(a ) + 2(ab) + ( b ) ]dx x x2 2x x 2x 2(ab) x a 2x b 2x = + + +C lnb 2 lna 2 ln(ab) (1 + x) 2 ⎛1 2⎞ 2) ∫ dx = ∫ ⎜ + 2⎟ dx = ln x + 2arctgx + C. x(1 + x ) ⎝ x 1+ x ⎠ 2 6 15 3 15 3 3) ∫ x . x + 2 .dx = ∫ . x + 2 .d(x + 2) = . .( x + 2) 5 + C 3 25 3 3 36 55 3 ( x + 2) 6 + C . = 18 d(1 + lnx) dx ∫ xcos 2 (1 + lnx) = ∫ cos 4) = tg(1 + lnx) + C. (1 + lnx) 2
  2. 1 d(1 + 2cosx) sinxdx ∫ = ∫− . = − 1 + 2 cos x + C . 5) 1 + 2cosx 2 1 + 2cosx 1 + tg 2 x d(1 + tgx) ∫ 6) ∫ = 2 1 + tgx + C . dx = 1 + tgx 1 + tgx x + (arccos3x) 2 7) ∫ dx 1 − 9x 2 1 1 1 − = − ∫ (1 − 9 x ) 2 d (1 − 9 x ) − ∫ (arccos 3 x) d (arccos 3 x) 2 2 2 3 18 1 1 =− 1 − 9 x 2 − (arccos 3 x) 2 + C . 9 9 d(e x ) e x dx 1 ex ∫ (e x ) 2 + 2 2 = 2 arctg 2 + C. 8) ∫ 2x = e +4 dx dx dx ∫ 1 + sinx = ∫ ∫ 9) = ⎛π ⎞ ⎛π x⎞ 1 + cos ⎜ − x ⎟ 2cos 2 ⎜ − ⎟ ⎝2 ⎠ ⎝4 2⎠ ⎛π x⎞ − d⎜ − ⎟ ⎛π x⎞ ⎝4 2⎠ =∫ = tg ⎜ − ⎟ + C. ⎛π x⎞ ⎝4 2⎠ cos 2 ⎜ − ⎟ ⎝4 2⎠ ) ( 1⎛ ⎞ dx xdx 1 1 ∫x ∫x ∫ ⎜ x 2 +1 −1 x 2 +1 +1⎟ d x +1 ⎜ − 2 ⎟ 10) = = 2⎝ 1+ x 1+ x 2 2 2 ⎠ x 2 +1 −1 1 +C. = ln 2 x2 +1 +1 Chó ý ta còng cã thÓ tÝnh:
  3. dx ∫x = 1+ x2 ⎛1⎞ dx d⎜ ⎟ 2 ⎝ x ⎠ = − ln 1 + 1 + ⎛ 1 ⎞ + C = ln x x2 ∫ x2 +1 = −∫ +C ⎜⎟ ⎝x⎠ x 1+ 1+ x 2 2 ⎛ 1⎞ 1+ ⎜ ⎟ x ⎝x⎠ 1+ x − x2 1− x2 x 11) ∫ dx = ∫ dx + ∫ dx (1 − x ) (1 − x ) (1 − x 2 ) 3 23 23 1 d(1 − x 2 ) dx −∫ ∫ = 2 (1 − x 2 ) 3 1− x2 1 +C. = arcsinx + 1− x 2 ⎛ −3 ⎞ 2x 2 − 12x − 6 (1 − x) 2 dx 1 1 − 12) ∫ = ∫⎜ ⎜ x 2 − 2x 2 + x 2 ⎟dx = +C ⎟ xx 3x ⎝ ⎠ 2. Dïng ph−¬ng ph¸p ®æi biÕn tÝnh c¸c tÝch ph©n sau: dx 2) ∫ 1) ∫ x (1 − 2x ) dx 3 43 (x + 1) x xdx sin4xdx 3) ∫ 4) ∫ cos 2 2x + 4 x 4 −1 3x + 5 ∫ 6) ∫ tg x.dx 3 dx 5) x x2 − x 8) ∫ 7) ∫ x a − x .dx dx 3 2 (x − 2) 3 x − 1 dx dx ∫ ∫ x + 1. x 2 9) 10) x − x2 x +1 dx 11) ∫ ∫ dx 12) x(1 + xe x ) 1+ ex x2 −1 x2 −1 13) ∫ 4 14) ∫ 2 dx dx x +1 (x + 5x + 1)(x 2 − 3x + 1)
  4. Gi¶i. 1 1) ∫ x (1 − 2x ) dx . §Æt t = 1 - 2x4, th× dt = - 8x3dx ⇒ x3dx = - dt. VËy: 3 43 8 13 1 1 ∫ x (1 − 2x ) dx = - 8 ∫ t dt = − 32 t4 + C = - 32 (1 - 2x4)4 + C. 3 43 dx ∫ (x + 1) x . §Æt x = t, th× dx = 2tdt vµ 2) 2tdt dt ∫ (t 2 + 1)t = 2∫ 2 = 2arctgt + C = 2arctg x + C. t +1 xdx ∫ . §Æt t = x2, th× dt = 2xdx. 3) x −1 4 VËy xdx 1 dt 1 1 ∫ ∫ ln t + t − 1 +C = ln x + x − 1 + C = 2 2 4 = 2 2 2 x 4 −1 t 2 −1 sin4xdx ∫ cos 2 2x + 4 . §Æt t = cos2x th× dt = - 2sin2xdx vµ ta cã: 4) sin4xdx 2sin2xcos2 xdx ∫ cos 2 2x + 4 =∫ cos 2 2x + 2 2 1 d(t 2 + 4) 1 tdt =− ∫ 2 −∫ 2 = − ln(t2 + 4) + C = 2 t +2 t + 22 2 2 1 = − ln(cos22x + 4) + C. 2 t2 −5 3x + 5 ∫ dx . §Æt t = 3x + 5 , th× 2tdt = 3dx vµ x = 5) . 3 x Do ®ã: 3x + 5 t 2 dt dx = 2 ∫ 2 ∫ t −5 x t− 5 ⎛ 5⎞ 1 = 2 ∫ ⎜1 + 2 ⎟dt = 2t + 10. +C . ln t −5⎠ t+ 5 ⎝ 25
  5. 3x + 5 − 5 = 2 3x + 5 + 5 ln + C. 3x + 5 + 5 6) ∫ tg x.dx = ∫ [ tgx(1 + tg2x) - tgx].dx = ∫ tgxd (tgx ) − ∫ tgxdx 3 12 = tg x + ln cos x + C. 2 1 dx = (1 + tg2x)dx vµ do ®ã Chó ý cã thÓ ®Æt t = tgx, th× dt = 2 cos x dt dx = 1+ t 2 7) ∫ x a − x .dx . §Æt t = 3 2 a − x 2 , th× xdx = - tdt vµ x2 = a - t2. VËy: ∫x a − x 2 .dx 3 at 3 t3 1 =∫ (a − t 2 )t ( −tdt ) = ∫ (t 4 − at 2 ) dt = t 5 − + C = (3t 2 − 5a ) + C = 5 3 15 3 x + 2a 2 =− . (a − x 2 ) 3 + C . 15 x −x 2 8) ∫ dx . (x − 2) 3 §Æt t = x - 2, th× dx = dt vµ x2 = t2 + 4t + 4; x2 - x = t2 + 3t + 2. VËy: x2 − x t 2 + 3t + 2 ⎛1 3 2 ⎞ 3 1 ∫ (x − 2) 3 dx = ∫ dt = ∫ ⎜ + 2 + 3 ⎟dt = ln t − + 2 + C 3 t ⎝t t t⎠ t t 1 3 +C = ln x − 2 − + x − 2 (x − 2) 2 3x − 5 = ln x − 2 − +C. (x − 2) 2 x − 1 dx ∫ .. 9) x +1 x2 x −1 u2 +1 4udu x −1 2 §Æt u = , th× u = vµ do ®ã x = , dx = . (1 − u 2 ) 2 x +1 1− u2 x +1
  6. 4u du x − 1 dx (1 − u 2 ) 2 ∫ = ∫ u. = . VËy x +1 x2 2 ⎛ u2 +1⎞ ⎜1− u2 ⎟ ⎜ ⎟ ⎠ ⎝ 4u 2 du 4 4 ∫ (u 2 + 1) 2 = ∫ u 2 + 1 du − ∫ (u 2 + 1) 2 du ⎛1 u ⎞ 1 + arctgu ⎟ + C = 4arctgu - 4. ⎜ . 2 ⎝ 2 u +1 2 ⎠ 2u = 2arctgu − 2 +C u +1 x −1 x 2 −1 − +C = 2arctg x +1 x dx ∫ 10) . x − x2 2 ⎛1 ⎞ 1 ⎛1 ⎞ V×: x - x = − ⎜ − x ⎟ , nªn ®Æt t = ⎜ − x ⎟ th× dt = - dx vµ ta cã: 2 ⎝2 ⎠ 4 ⎝2 ⎠ dx dt ∫ x − x2 = −∫ = arccos2t + C = arccos(1 - 2x) + C. 2 ⎛1⎞ ⎜ ⎟ −t 2 ⎝2⎠ Còng cã thÓ ®Æt t = x , th× dx = 2tdt vµ x − x 2 = t 1 − t 2 . Do ®ã: dx 2tdt ∫ x − x 2 = ∫ t 1 − t 2 = 2arcsint + C = 2arcsin x + C. x +1 ∫ x(1 + xe dx . §Æt t = 1 + xex, th× dt = (x + 1)exdx, do ®ã: 11) x ) x +1 (x + 1)e x ∫ x(1 + xe x ) dx = ∫ xe x (1 + xe x ) dx = t −1 xe x dt =∫ = ln + C = ln +C t(t − 1) 1 + xe x t
  7. dx ∫ . §Æt t = 1 + e x , th× exdx = 2tdt vµ ex = t2 - 1. 12) 1+ e x Do ®ã: t −1 dt 2tdt e x dx dx = 2∫ 2 ∫ t(t 2 − 1) = ln +C= ∫ ∫e = = t −1 t +1 1+ ex 1+ ex x 1 + ex −1 +C = ln 1+ ex +1 x2 −1 13) ∫ 4 dx . x +1 1 Chia c¶ tö sè vµ mÉu sè cho x2 vµ ®Æt t = x + , ta tÝnh ®−îc: x x2 −1 x 2 − 2x + 1 1 ∫ x4 +1 +C dx = ln 2 x + 2x + 1 22 x2 −1 14) I = ∫ 2 dx . (x + 5x + 1)(x 2 − 3x + 1) 1 C¸ch 1. Chia c¶ tö sè vµ mÉu sè cho x2 vµ ®Æt t = x + , ta tÝnh ®−îc: x ⎛ 1⎞ ⎜1 − 2 ⎟dx (x 2 − 1)dx 1⎛ 1 1⎞ dt ⎝ x⎠ = = =⎜ − ⎟dt ⎞ (t + 5)(t − 3) 8 ⎝ t − 3 t + 5 ⎠ (x + 1 + 5x)(x + 1 − 3x) ⎛ ⎞⎛ 2 2 1 1 ⎜ x + + 5 ⎟⎜ x + − 3 ⎟ ⎝ x x ⎠⎝ ⎠ VËy: 1 x 2 − 3x + 1 1 t −3 x2 −1 I=∫ 2 + C. + C = ln 2 dx = ln 8 t+5 8 x + 5x + 1 (x + 5x + 1)(x 2 − 3x + 1) C¸ch 2. V×: x2 + 5x +1 vµ x2- 3x +1, lµ c¸c tam thøc bËc hai nªn b»ng ph−¬ng ph¸p hÖ sè bÊt ®Þnh ®Æt: (x 2 − 1) Ax + B Cx + D =2 +2 , ta tÝnh ®−îc: (x + 1 + 5x)(x + 1 − 3x) x + 5x + 1 x − 3x + 1 2 2 2 5 2 3 A=− ;B=− ;C= ;D=− . 8 8 8 8
  8. (x 2 − 1) 1 2x + 5 1 2x − 3 =− . 2 +.2 VËy: 2 . (x + 1 + 5x)(x 2 + 1 − 3x) 8 x + 5x + 1 8 x − 3x + 1 Tõ ®ã suy ra kÕt qu¶ nh− trªn. 3. Dïng ph−¬ng ph¸p tÝch ph©n tõng phÇn tÝnh c¸c tÝch ph©n sau: 1) ∫ x arctgxdx 2) ∫ (x + 2x + 3)cosxdx 2 2 3) ∫ x lnxdx 4) ∫ (x + 1)e dx − 2x 3 2 5) ∫ e cos3xdx 6) ∫ sin 3 x .dx − 2x arctgx arcsinx ∫x ∫ dx dx 7) 8) (1 + x 2 ) 2 x2 xe arctgx xln(x + 1 + x 2 ) ∫ ∫ dx dx . 9) 10) (1 + x 2 ) 3 1+ x2 Gi¶i. x3 dx 1) ∫ x arctgxdx . §Æt u = arctgx vµ dv = x dx th× du = 2 2 vµ v = , 1+ x 2 3 do ®ã: x3 1 x 3 dx ∫ x arctgxdx = 3 arctgx – 3 ∫ x 2 + 1 2 x3 1 x(x 2 + 1) − x arctgx – ∫ dx = x 2 +1 3 3 x3 1 ⎛ x2 1 ⎞ arctgx – ⎜ − ln(x + 1) ⎟ + C = 2 ⎜2 2 ⎟ = 3 3⎝ ⎠ x3 12 1 arctgx – x + ln(x + 1) + C . 2 = 3 6 6 2) ∫ (x + 2x + 3)cosxdx . 2 §Æt u = x2 + 2x + 3, dv = cosxdx th× du = (2x + 2)dx, v = sinx, do ®ã ∫ (x + 2x + 3)cosxdx = (x2 + 2x + 3)sinx – 2 ∫ (x + 1)sinxdx 2 = (x2 + 2x + 3)sinx + 2 ∫ (x + 1)d(cosx) = (x2 + 2x + 3)sinx + 2[(x + 1)cosx – ∫ cosxdx ]
  9. = (x2 + 2x + 3)sinx + 2[(x + 1)cosx – sinx] + C = (x + 1)2sinx + 2(x + 1)cosx + C. 3) ∫ x lnxdx . §Æt u = lnx, dv = x3dx , tõ ®ã ta cã: 3 14 1 ∫ x lnxdx = x lnx − x4 + C. 3 4 16 4) ∫ (x + 1)e dx . §Æt u = x2 + 1 vµ dv = e– 2xdx th× du = 2xdx vµ − 2x 2 1 v = − e– 2x. 2 VËy: 1 ∫ (x 2 + 1)e − 2x dx = − e– 2x.(x2 + 1) + ∫ xe − 2x dx 2 ⎛ 1 − 2x ⎞ 1 = − e– 2x.(x2 + 1) + ∫ xd ⎜ − e ⎟ ⎝2 ⎠ 2 1 1 1 = − e– 2x.(x2 + 1) − xe– 2x + ∫ e dx − 2x 2 2 2 1 1 1 = − e– 2x.(x2 + 1) − xe– 2x − e– 2x + C 2 2 4 1 1 = − e– 2x.(x2 + x + ) + C. 2 2 5) ∫ e cos3xdx . − 2x 1 §Æt u = e– 2x vµ dv = cos3xdx th× du = - 2 e– 2xdx vµ v = sin3x. 3 1 – 2x 2 VËy: I = ∫ e cos3xdx = ∫e − 2x − 2x sin3xdx e sin3x + 3 3 1 – 2x 2 = e sin3x + J . 3 3 §Ó tÝnh J ta ®Æt u = e vµ dv = sin3xdx th× du = - 2 e– 2xdx vµ – 2x 1 v = − cos3x. 3 VËy 1 2 − 2x 1 2 J = − e– 2xcos3x − ∫ e cos3xdx = − e– 2xcos3x − I. 3 3 3 3
  10. 1 – 2x 2 1 2 e sin3x + J vµ J = − e– 2xcos3x − I Tõ hÖ I = 3 3 3 3 1 - 2x ta suy ra I = e (3sin3x - 2cos3x) + C. 13 Chó ý cã thÓ xÐt bµi to¸n tæng qu¸t: ∫ e cosbxdx . − ax 6) ∫ sin 3 x .dx . §Æt t = 3 x th× dx = 3t2dt vµ ta cã: I = ∫ sin 3 x .dx = 3∫ t sint.dt . 2 §Ó tÝnh tÝch ph©n nµy ta ®Æt u = t2 vµ dv = sintdt th× du = 2tdt vµ v = - cost. Do ®ã: ∫ t sint.dt = - t2cost + 2 ∫ tcost.dt = - t2cost + 2 ∫ td(sint) 2 = - t2cost + 2[tsint − ∫ sintdt ] = - t2cost + 2tsint + 2cost = (2 - t2)cost + 2tsint. Do ®ã: ∫ sin x 2 )cos 3 x + 6 3 x .sin 3 x + C. 3 3 x .dx = 3(2 - ⎛ 1⎞ 1 1 arcsinx 1 arcsinx.d ⎜ − ⎟ = − arcsinx + ∫ . ∫ ∫ x 2 dx = .dx 7) x 1− x2 x⎠ ⎝ x ⎛1⎞ d⎜ ⎟ ⎝ x ⎠ = − 1 arcsinx − ln 1 + 1 − 1 + C = 1 = − arcsinx + + ∫ x2 x x 2 x ⎛1⎞ ⎜ ⎟ −1 ⎝x⎠ 1+ 1− x2 1 = − arcsinx − ln +C. x x arctgx ∫ x 2 (1 + x 2 ) dx . 8) 1 dx dx , th× du = §Æt u = arctgx vµ dv = vµ x (1 + x ) 1+ x2 2 2 ⎛1 1⎞ 1 v = ∫⎜ 2 − dx = − − arctgx . 2⎟ 1+ x ⎠ x ⎝x VËy:
  11. ⎛1 ⎞ dx arctgx ⎛1 ⎞ dx = arctgx ⎜ − − arctgx ⎟ + ∫ ⎜ + arctgx ⎟ ∫ x 2 (1 + x 2 ) ⎠1+ x 2 ⎝x ⎝x ⎠ ⎛1 x⎞ ⎛1 ⎞ = arctgx ⎜ − − arctgx ⎟ + ∫ ⎜ − 2 ⎟dx + ∫ arctgx.d(arctgx) = ⎝ x x +1⎠ ⎝x ⎠ 1 1 1 = − arctgx - (arctgx)2 +ln x – ln(x2 + 1) + (arctgx)2 + C = x 2 2 x 1 1 − arctgx − (arctgx)2 + C. = ln 1+ x2 x 2 xe arctgx ∫ dx . 9) (1 + x 2 ) 3 §Ó tÝnh tÝch ph©n nµy ta ®Æt u = arctgx tøc lµ x = tgu. Khi ®ã: 3 3 du 1 (1 + x ) = (1 + tg u) = 2 2 2 2 3 , dx = . cos 2 u cos u Suy ra: xe arctgx tgu.e u .cos 3 u sinu − cosu u ∫ dx = ∫ .du = ∫ e u .sinu.du = .e + C . 2 cos u 2 (1 + x 2 ) 3 x 1 Nh−ng ta cã: sinu = ; cosu = , nªn suy ra: 1+ x2 1+ x2 xe arctgx x −1 ∫ dx = earctgx + C. (1 + x ) 23 2 1+ x 2 xln(x + 1 + x 2 ) ∫ dx . 10) 1+ x 2 xdx 1 + x 2 ) vµ dv = §Æt u = ln(x + . 1+ x2 dx 1+ x2 . Suy ra du = vµ v = 1+ x 2 Tõ ®ã: xln(x + 1 + x 2 ) ∫ dx = 1 + x 2 . ln(x + 1 + x 2 ) - x + C. 1+ x 2
  12. 4. TÝnh c¸c tÝch ph©n sau: x2 +1 x2 + x 2) ∫ 4 1) ∫ 6 dx dx x + x2 +1 x +1 x5 − x x 2 −1 4) ∫ 8 3) ∫ 4 dx dx x +1 x + x3 + x2 + x +1 x4 +1 1 ∫ x 6 x 2 + 1 dx 5) ∫ 6 dx ( ) 6) x +1 x 3n −1 1 8) ∫ 2n 7) ∫ 4 dx , (n lµ sè tù nhiªn). dx (x + 1) 2 x + x2 +1 cos 4 x dx ∫ 9) ∫ dx 10) sin 3 x sin 3 x.cos 5 x Gi¶i. 1) Ta cã: x2 + x dx 3 dx 2 1 1 1 1 dt ∫ x6 +1 dx = ∫ +∫ = arctgx 3 + ∫ 3 () () . 2 t +1 3 x3 2 +1 2 x2 3 +1 3 dt Ta tÝnh riªng tÝch ph©n: ∫ 3 . t +1 Ph©n tÝch: 1 t−2 1 ⎛ 1 2t − 1 ⎞ 1 3 11 11 1 =. − .2 =. − .⎜ . 2 − .2 ⎟. t +1 3 t + 1 3 t − t +1 3 t + 1 3 ⎝ 2 t − t + 1 2 t − t +1⎠ 3 V× vËy dt ∫ t3 +1 = ⎛ 1⎞ d⎜ t − ⎟ 1 1 1 1 1 ⎝ 2⎠ ln t + 1 − ln t 2 − t + 1 + ∫ = ln t + 1 − ln t 2 − t + 1 2 ⎛ 1 ⎞2 ⎛ 3 ⎞2 3 6 3 6 t− ⎟ +⎜ ⎟ ⎜ ⎝ 2⎠ ⎜ 2 ⎟ ⎝ ⎠ 2t − 1 1 + C. arctg + 3 3
  13. VËy: ( )2 2x 2 − 1 x2 +1 x2 + x 1 1 1 ∫ x6 +1 + +C. dx = arctgx 3 + ln 4 arctg 12 x − x 2 + 1 2 3 3 3 x2 +1 2) ∫ 4 dx . x + x2 +1 ⎛ 1⎞ 1 Chia c¶ tö vµ mÉu cho x2, sau ®ã ®Æt t = x − ⇒ dt = ⎜1 + 2 ⎟dx , ®ång thêi ta x ⎝ x⎠ 1 còng cã x2 + 1 + 2 2 = t + 3. x VËy: ⎛ 1⎞ ⎜1 + 2 ⎟dx x +1 x2 −1 2 dt 1 t 1 ⎝ x⎠ = ∫ x 4 + x 2 + 1 dx = ∫ 2 ∫ t 2 + 3 = 3 arctg 3 + C = 3 arctg x 3 + C 1 x +1+ 2 x x 2 −1 3) ∫ 4 dx . x + x3 + x2 + x +1 ⎛ 1⎞ 1 Chia c¶ tö vµ mÉu cho x2, sau ®ã ®Æt t = x + ⇒ dt = ⎜1 − 2 ⎟dx , ®ång thêi x ⎝ x⎠ ta còng cã 2 11⎛ 1⎞ ⎛ 1⎞ x2 + x +1+ + 2 = ⎜ x + ⎟ − 2 + ⎜ x + ⎟ +1 = t 2 + t −1. xx x⎠ x⎠ ⎝ ⎝ VËy: ⎛ 1⎞ 1 5 d⎜ t + ⎟ t+ − x −1 2 dt 1 ⎝ 2⎠ 2 2 +C ∫ x 4 + x 3 + x 2 + x + 1 dx = ∫ t 2 + t − 1 = ∫ = ln 2 1 5 5 ⎛ 5⎞ 2 ⎛ 1⎞ ⎜ t+ + 2. ⎟ ⎜t + ⎟ −⎜ ⎝ 2⎠ ⎝ 2 ⎟ 2 2 2 ⎠ hay x 2 −1 2x 2 + x − 5x + 2 1 ∫ x4 + x3 + x2 + x +1 +C. dx = ln 5 2x 2 + x + 5x + 2 x5 − x 4) ∫ 8 dx . x +1
  14. x5 − x x4 −1 1 t 2 −1 §Æt t = x , th× dt = 2xdx. Do ®ã ∫ 8 dx = ∫ 8 xdx = ∫ 4 2 dt . x +1 x +1 2 t +1 B»ng c¸ch chia c¶ tö vµ mÉu cho t2 vµ lµm t−¬ng tù nh− trªn ta ®−îc: x5 − x x 4 − 2x 2 + 1 1 ∫ x8 + 1 dx = +C . ln 4 x + 2x 2 + 1 42 x4 +1 5) ∫ 6 dx . ViÕt x4 + 1 = (x4 - x2 + 1) + x2, ta t¸ch thµnh hai tÝch ph©n: x +1 x4 +1 x4 − x2 +1 x 2 dx 1 ∫ x 6 + 1 dx = ∫ ( x 2 + 1)( x 4 − x 2 + 1) dx + ∫ ( x 3 ) 2 + 1 = arctgx + 3 arctgx + C . 3 1 ∫ x (x ) dx . 6) +1 6 2 1 dt §Æt x = ⇒ dx = − . t2 t VËy: t 6 dt t 6 dt 1 ∫ x 6 x 2 + 1 dx = − ∫ = −∫ ( ) . t2 +1 ⎛ 1⎞ t 2 ⎜1 + 2 ⎟ ⎝ t⎠ Ta ph©n tÝch hµm sè d−íi dÊu tÝch ph©n nh− sau: t6 +1−1 4 2 t6 1 =2 = t − t +1− 2 . t +1 t +1 t +1 2 Tõ ®ã ta cã: t5 t3 1 1 1 1 1 ∫ x 6 x 2 + 1 dx = − 5 + 3 − t + arctgt + C = − 5x 5 + 3x 3 − x + arctg x + C . ( ) 1 ∫x dx . Ta cã: 7) + x2 +1 4 1 ⎛ x +1 x −1 ⎞ 2x + 1 2x − 1 1 1 1 =⎜2 −2 ⎟= + − + x + x + 1 2 ⎝ x + x + 1 x − x + 1 ⎠ 4(x + x + 1) 4(x + x + 1) 4(x − x + 1) 4(x − x + 1) 4 2 2 2 2 2 1 x2 + x +1 1 1 x3 VËy: ∫ 4 dx = ln 2 + +C. arctg x + x2 +1 4 x − x +1 2 3 1− x2 a+b (Chó ý lµ ta cã c«ng thøc arctga + arctgb = arctg ). 1 − ab
  15. x 3n −1 8) ∫ 2n dx ( n lµ sè tù nhiªn). (x + 1) 2 1 2n 1 n −1 3 n −1 §Æt xn = t, th× nx dx = dt ⇒ x dx = x dt = t 2 dt . n n VËy: x 3n −1 1 tdt ∫ ( x 2n + 1) 2 dx = n ∫ t. (t 2 + 1) 2 . §Ó tÝnh tÝch ph©n nµy ta dïng ph−¬ng ph¸p tÝch ph©n tõng phÇn b»ng c¸ch ®Æt nh− sau: ⎧ ⎧ du = dt u=t ⎪ tdt ⎪ 1 = dv ⇒ ⎨v = − 2 ⎨ . ⎪ (t + 1) ⎪ 2(t + 1) 2 2 ⎩ ⎩ Tõ ®ã: 1⎛ 1 dt ⎞ x 3n −1 1⎛ t ⎞ 1 tdt t ∫ ( x 2n + 1) 2 dx = n ∫ t. (t 2 + 1) 2 = n ⎜ − 2(t 2 + 1) + 2 ∫ t 2 + 1 ⎟ = − 2n ⎜ t 2 + 1 − arctgt ⎟ + C ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 1 ⎛ xn n⎞ = − ⎜ 2n ⎜ x + 1 − arctgx ⎟ + C . ⎟ 2n ⎝ ⎠ cos 4 x 9) ∫ dx = ∫ cos 3 x. sin −3 x.d (sin x ) . 3 sin x §Æt u = cos3x, dv = sin- 3xdx th× 1 −2 du = - 3cos2x.sinx.dx vµ v = − sin x . 2 Do ®ã: cos 4 x cos 3 x 3 cos 2 x ∫ sin 3 x dx = − 2 sin 2 x − 2 ∫ sin 2 x . sin x.dx cos 3 x 3 1 − sin 2 x 2 sin 2 x 2 ∫ sin x =− − dx cos 3 x 3 dx 3 −∫ + ∫ sin xdx = =− 2 2 sin x 2 sin x 2 cos 3 x 3 3 x − − ln tg − cos x + C 2 2 sin x 2 2 2
  16. dx ∫ 10) sin 3 x.cos 5 x dx dx (sin 2 x + cos 2 x)dx dx + = = = Ta cã: sin 3 xcos 5 x sin 3 xcos5 x 3 5 3 5 sin xcos x sin xcos x sin 4 x cos 4 x 1 3 dx dx − = (tgx) 2 d(tgx) + (tgx) 2 d(tgx) . = + cos 2 x cotgx cos 2 x tg 3 x Tõ ®ã suy ra: dx 3 1 2 2 − ∫ sin 3 x.cos 5 x = 3 (tgx) − 2(tgx) 2 + C = 3 tgx tgx − 2 cotgx + C . 2 5. TÝnh c¸c tÝch ph©n sau: π π 1 + sinx 4 2 1) ∫ ln 2) ∫ ln (1 + tgx)dx dx 1 + cosx 0 0 1 1 dx 4) ∫ (arccotgx − arctgx)dx 3) ∫ x (e + 1)(x 2 + 1) −1 0 Gi¶i. π π π 1 + sinx 2 2 2 1) ∫ ln dx = ∫ ln(1 + sinx)dx − ∫ ln(1 + cosx)dx = I − J . 1 + cosx 0 0 0 π − t , thÕ th× dx = - dt, 1 + sinx = 1 + cost vµ ta cã: §Ó tÝnh I ta ®Æt x = 2 π π π 0 2 2 2 I = ∫ ln(1 + sinx)dx = ∫ ln(1 + cost)(−dt) = ∫ ln(1 + cost)dt = ∫ ln(1 + cosx)dx = J . π 0 0 0 2 Suy ra: π 1 + sinx 2 ∫ ln 1 + cosx dx = 0 0
  17. π 4 π π π 2) I = ∫ ln (1 + tgx)dx . §Æt x = − t , th× khi x = 0 th× t = cßn khi x = th× 4 4 4 0 1 − tgt 2 ⎛π ⎞ t = 0, ®ång thêi 1 + tgx = 1 + tg ⎜ − t ⎟ = 1 + = vµ dx = - dt. 1 + tgt 1 + tgt ⎝4 ⎠ VËy: π π ⎛2⎞ 0 4 4 π I = ∫ ln (1 + tgx)dx = − ∫ ln⎜ ⎜ 1 + tgt ⎟dt = ∫ [ln 2 − ln(1 + tgt)]dt = ln2 − I . ⎟ 4 ⎠ ⎝ π 0 0 4 Tõ ®ã suy ra: π 4 π I = ∫ ln (1 + tgx)dx = ln2 . 8 0 1 dx ∫ (e 3) . + 1)(x 2 + 1) x −1 §Æt x = - t, th× khi x = - 1 ta cã t = 1, cßn khi x = 1 th× t = - 1, ®ång thêi et +1 x dx = - dt vµ e + 1 = . et Khi ®ã: −1 1 1 (e t + 1 − 1)dt e t dt dx ∫ (e x + 1)(x 2 + 1) = − ∫ (e t + 1)(t 2 + 1) = −∫1 (e t + 1)(t 2 + 1) −1 1 1 1 dt dt =∫ 2 −∫ t = t + 1 −1 (e + 1)(t 2 + 1) −1 ⎛ π⎞ π π 1 − I ⇒ 2I = ⎜− ⎟ = . = arctgt - −1 ⎝ 4⎠ 4 2 1 dx π ∫1 (e x + 1)(x 2 + 1) = 4 . VËy I = − 1 4) ∫ (arccotgx − arctgx)dx . 0 1 1 x π 1 21 Ta cã: I = ∫ arccotgx.dx = x.arcctgx 0 + ∫ 1 dx = + ln(1 + x ) 0 1+ x 2 4 2 0 0
  18. π 1 = + ln2. 4 2 1 π 1 T−¬ng tù J = ∫ arctgx.dx = – ln2 . 4 2 0 1 VËy: ∫ (arccotgx − arctgx)dx = ln 2 0 6. TÝnh giíi h¹n sau: 1 ⎡ 12 n2 ⎤ 22 + + ... + lim ⎢ ⎥ n → ∞ n2 n +1 n+2 n + n⎦ ⎣ Gi¶i. ⎡⎛ 1 ⎞2 ⎛ 2 ⎞2 ⎛n⎞ ⎤ 2 ⎢⎜ ⎟ ⎜⎟ ⎜ ⎟⎥ 1 ⎡ 12 n 2 ⎤ 1 ⎢⎝ n ⎠ 22 ⎝ n ⎠ + ... + ⎝ n ⎠ ⎥ §Æt un = n 2 ⎢ n + 1 + n + 2 + ... + n + n ⎥ = n .⎢ n + 1 + n + 2 n+n⎥ = ⎣ ⎦ ⎢n n⎥ n ⎣ ⎦ ⎡⎛ 1 ⎞2 ⎛ 2 ⎞2 ⎛n⎞ ⎤ 2 ⎢⎜ ⎟ ⎜⎟ ⎜ ⎟⎥ ⎢ ⎝ n ⎠ + ⎝ n ⎠ + ... + ⎝ n ⎠ ⎥. 1 = ⎢ n⎥n 1 2 1+ 1+ 1+ ⎥ ⎢ n⎦ n n ⎣ x2 C¸c sè h¹ng trong tæng trªn lµ gi¸ trÞ cña hµm sè f(x) = t¹i c¸c ®iÓm 1+ x 1 2 n , ..., x n = = 1 . x1 = , x2 = n n n Râ rµng c¸c ®iÓm nµy chia ®o¹n [0, 1] thµnh n ®o¹n b»ng nhau víi 1 ®é dµi mçi ®o¹n lµ Δ x = . n 2 x Hµm sè f(x) = lµ kh¶ tÝch trªn ®o¹n [0, 1] nªn suy ra: 1+ x 1 1 x2 1 ⎡ 12 n2 ⎤ ⎛ 1⎞ 22 ⎥ = nlim u n = ∫ 1 + x dx = ∫ ⎜ x − 1 + x + 1 ⎟dx + + ... + lim 2 ⎢ ⎣n +1 n + 2 n + n⎦ 0⎝ ⎠ n→∞n →∞ 0 1 ⎛ x2 ⎞ 1 = ⎜ − x + ln( x + 1) ⎟ = ln 2 − ⎜2 ⎟ . 2 ⎝ ⎠ 0
  19. 7. Chøng minh r»ng: π 2 2 3 3 cotgx 1 2) ∫ (lnx) dx ≤ ∫ lnxdx ≤∫ dx ≤ 2 1) 12 π x 3 1 1 4 Gi¶i. ⎡π π ⎤ cotgx trªn ®o¹n ⎢ , ⎥ ta cã 1) XÐt hµm sè f(x) = x ⎣4 3⎦ 1 − .x − cot gx ⎛π π ⎞ x + sin x cos x sin 2 x ==− < 0 , víi mäi x ∈ ⎜ , ⎟ . f'(x) = 2 2 2 ⎝4 3⎠ x sin x x ⎡π π ⎤ VËy f(x) nghÞch biÕn trªn ⎢ , ⎥ , do ®ã: ⎣4 3⎦ 3 cotgx 4 ⎛π ⎞ ⎛π π ⎞ ⎛π⎞ ≤ ≤. f ⎜ ⎟ ≤ f(x) ≤ f ⎜ ⎟ , víi mäi x ∈ ⎜ , ⎟ , tøc lµ: π π x ⎝3⎠ ⎝4⎠ ⎝4 3⎠ Tõ ®ã suy ra: π π 4 ⎛π π ⎞ 3 ⎛π π ⎞ 3 3 cotgx 3 cotgx 1 ∫x ≤∫ dx ≤ ⎜ − ⎟ hay ⎜ − ⎟≤ dx ≤ . π ⎝3 4⎠ π ⎝3 4⎠ 12 π x 3 π 4 4 2 2 2) ∫ (lnx) dx ≤ ∫ lnxdx . 2 1 1 Víi mäi x ∈ (1, 2) th×: ln1 < lnx < ln2 < lne ⇔ 0 < lnx < 1 ⇒ (lnx)2 < lnx. Tõ ®ã: 2 2 ∫ (lnx) dx ≤ ∫ lnxdx . 2 1 1 8. Chøng minh r»ng nÕu hµm sè f''(x) liªn tôc trªn ®o¹n [a, b] th×: b ∫ xf ′′ (x)dx =[bf ′ (b) − f(b)] − [af ′ (a) − f(a)] a Gi¶i. C¸ch 1. XÐt hµm sè F(x) = xf'(x) - f(x), ta cã: F'(x) = f'(x) + xf''(x) - f'(x) = xf''(x). Nh− vËy F(x) lµ mét nguyªn hµm cña xf''(x). Do ®ã:
  20. b ∫ xf ′′ (x)dx = (xf ′( x) − f ( x)) = [bf ′ (b) − f(b)] − [af ′ (a) − f(a)] . b a a C¸ch 2. Dïng tÝch ph©n tõng phÇn. b b b ∫ xf ′′ (x)dx = ∫ xd[f ′ (x)] = xf ′ (x) − ∫ f ′( x)dx = bf ′ (b) − f(b) − f ( x) b = b a a a a a = [bf ′ (b) − f(b)] − [af ′ (a) − f(a)] 9. Chøng minh r»ng nÕu hµm sè f(x) liªn tôc trªn ®o¹n [a, b] th×: b 1 ∫ f(x)dx =(b − a)∫ f [a + (b − a)x]dx a 0 Gi¶i. §Æt x = a + (b - a)t, th× dx = (b - a)dt, khi x = a th× t = 0 vµ khi x = b th× t = 1. VËy: b 1 1 ∫ f(x)dx = ∫ f [a + (b − a)t](b - a)dt = (b − a)∫ f [a + (b − a)t]dt = a 0 0 1 = (b − a)∫ f [a + (b − a)x]dx 0 10. Chøng minh r»ng: π π π 2 π ∫ xf(sinx)dx = 2∫ f(sinx)dx = π ∫ f(sinx)dx 0 0 0 Gi¶i. §Æt x = π - t th× π 0 π π ∫ xf(sinx)dx =∫ (π − t)f(sint)(−dt) = π ∫ f(sint)dt − ∫ tf(sint)dt 0 π 0 0 π π π Suy ra ∫ xf(sinx)dx = 2∫ f(sinx)dx . 0 0 §Ó tÝnh tÝch ph©n thø hai nµy ta t¸ch thµnh hai tÝch ph©n nh− sau: π π π 2 ∫ f(sinx)dx = ∫ f(sinx)dx + ∫ f(sinx)dx . π 0 0 2 π π §Æt x = π - t th× khi x = th× t = , cßn khi x = π th× t = 0. 2 2
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2