Bài tập toán cao cấp-Chương 2
lượt xem 26
download
Tham khảo tài liệu 'bài tập toán cao cấp-chương 2', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài tập toán cao cấp-Chương 2
- Bài t p chương 2 Bài 2.1. Tính các đ nh th c c p 3 sau: 3 −2 −4 2 1 1 5 −2 ; 5 −1 ; 0 2 a) b) 1 −3 4 0 6 1 −2 −1 4 7 65 6 −3 −2 ; 1 21; c) d) 3 −2 1 4 1 2 1 2 3 20 1 4 −2 4 2 −3 . 3; e) g) 5 −1 0 53 1 Bài 2.2. Tính các đ nh th c c p 4 sau: 2 1 1x 3 1 1 1 1 2 1y 1 3 1 1 ; ; a) b) 1 1 2z 1 1 3 1 1 1 1t 1 1 1 3 1 111 1 2 3 4 1 234 2 3 4 1 c) ; d) ; 1 3 6 10 3 4 1 2 1 4 10 20 4 1 2 3 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 e) ; f) ; 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 111 1 0 a b 1 234 g) ; h) . 1 a 0 c 1 4 9 16 1 b c 0 1 8 27 64 Bài 2.3. Ch ng t r ng các giá tr đ nh th c sau b ng 0: ab a2 + b2 (a + b)2 a+b c 1 bc b2 + c2 (b + c)2 ; b+c a 1 ; a) b) ca c2 + a2 (c + a)2 c+a b 1 1
- x p ax + bp sin α cos α sin(α + θ) y q ay + bq ; sin β cos β sin(β + θ) ; c) d) z r az + br sin γ cos γ sin(γ + θ) 1 + 2a 2 a x a b c 1 1 + 2b 3 b x b c a 1 . e) ; f) 1 + 2c 4 c x c a b 1 1 + 2d 6 d x c+b b+a a+c 2 Bài 2.4. Cho A ∈ Mn (K ) và A có nhi u hơn n2 − n h s b ng 0. Ch ng minh r ng detA = 0. Bài 2.5. Cho A ∈ Mn (K ) và α ∈ K . Ch ng t r ng det(αA) = αn detA. Bài 2.6. Cho A ∈ Mn (K ), n l . Ch ng t r ng, n u A là ma tr n ph n x ng thì detA = 0. Bài 2.7. Tìm ma tr n ph h p c a các ma tr n sau: 3 −4 234 2 b) 0 −4 a) 5 6 7 ; 2 ; 1 −1 891 5 321 2 5 7 c) 4 5 2 ; d) 6 3 4 ; 5 −2 −3 214 1 1 1 1 3 −4 5 0 1 1 1 e) 2 −3 1 ; . f) 0 0 1 1 3 −5 −1 0 0 0 1 Bài 2.8. Cho A ∈ Mn (Z). Ch ng t r ng detA ∈ Z, đ ng th i n u A kh ngh ch thì A−1 ∈ Mn (Z) ⇔ |detA| = 1. Bài 2.9. Hãy tính các đ nh th c sau và cho bi t khi nào ma tr n tương ng kh ngh ch? 1 a2 a x + 2 2 x + 3 3x + 4 a 1 a2 ; 2x + 3 3x + 4 4x + 5 ; a) b) a2 a 1 3x + 5 5x + 8 10x + 17 2
- −1 a − b + c a − b b + 2c + 2a x x x −1 b − c + a b − c c + 2a + 2b ; x; c) d) x −1 c − a + b c − a a + 2b + 2c x a 1 1 1 0 a b c b 0 1 1 a 0 c b ; ; e) f) c 1 0 1 b c 0 a d 1 1 0 c b a 0 a a a a a x x b a b b b x a b x . g) ; h) a b c c x b a x a b c d b x x a Bài 2.10. Tìm ma tr n ngh ch đ o c a các ma tr n sau b ng cách áp d ng công th c đ nh th c: 234 123 a) 5 6 7 ; b) 2 3 4 ; 891 157 3 −4 2 321 c) 0 −4 2 ; d) 4 5 2 ; 1 −1 5 214 1 1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 ; f) 1 . e) 1 −1 1 −1 1 −1 0 0 1 −1 1 −1 −1 0 0 1 Bài 2.11. Tìm đi u ki n c a tham s đ các ma tr n sau kh ngh ch, sau đó tìm ma tr n ngh ch đ o tương ng c a nó: 1 a bc ab 1 a) 1 b ca ; b) 1 ab 1 ; 1 c ab 1b a 1 −3 2 c) 3 −7 m + 5 . −m 2m 1 Bài 2.12. Gi i các h phương trình sau b ng cách áp d ng quy t c Cramer. x1 + x2 − 2x3 = 6; 2x1 + 3x2 − 7x3 = 16; a) 5x1 + 2x2 + x3 = 16. 3
- 7x1 + 2x2 + 3x3 = 15; 5x1 − 3x2 + 2x3 = 15; b) 10x1 − 11x2 + 5x3 = 36. x1 + x2 + 2x3 = 1; 2x1 − x2 + 2x3 = 4; c) 4x1 + x2 + 4x3 = 2. 3x1 + 2x2 + x3 = 5; 2x1 + 3x2 + x3 = 1; d) 2x1 + x2 + 3x3 = 11. x1 + x2 + x3 + x4 = 2; x1 + 2 x2 + 3 x3 + 4 x4 = 2; e) 2x1 + 3 x2 + 5 x3 + 9 x4 = 2; x1 + x2 + 2 x3 + 7 x4 = 2. 2x1 + x2 + 5 x3 + x4 = 5; − − 4x4 = −1; x1 + x2 3x3 f) − 3x1 + 6 x2 2x3 + x4 = 8; − 3x4 2x1 + 2 x2 + 2 x3 = 2. x1 + x2 + x3 + x4 = 5; x1 + 2 x2 + 3 x3 + 4 x4 = 3; g) 4x1 + x2 + 2 x3 + 3 x4 = 7; 3x1 + 2 x2 + 3 x3 + 4 x4 = 2. − x2 2x1 + 3 x3 + 2 x4 = 4; 3x1 + 3 x2 + 3 x3 + 2 x4 = 6; h) − x2 − x3 − 2x4 3x1 = 6; − x2 − x4 3x1 + 3 x3 = 6. Bài 2.13. Gi i và bi n lu n các h phương trình sau theo các tham s m ∈ K: mx1 + x2 + x3 = 1; x1 + mx2 + x3 = m; a) x2 + mx3 = m2 . x1 + ax1 + x2 + x3 = 4; x1 + bx2 + x3 = 3; b) x1 + 2 x2 + x3 = 4 . 4
- x1 + (m − 1)x2 − 3x3 = 1; 2x1 − 4x2 + (4m − 2)x3 = −1; c) 3x1 + (m + 1)x2 − 9x3 = 0. (2m + 1)x1 − mx2 + (m + 1)x3 = m − 1; (m − 2)x1 + (m − 1)x2 + (m − 2)x3 = m; d) (2m − 1)x1 + (m − 1)x2 + (2m − 1)x3 = m, (m + 2)x1 + 2x2 + x3 = m; (m − 5)x1 + (m − 2)x2 − 3x3 = 2m; e) (m + 5)x1 + 2x2 + (m + 3)x3 = 3m, mx1 + 2x2 + 2x3 = 2; 2x1 + mx2 + 2x3 = m; f) 2x1 + 2x2 + mx3 = m, (3m + 5)x1 + (m + 2)x2 + (m + 1)x3 = m; (4m + 5)x1 + (m + 2)x2 + (2m + 1)x3 = m; g) (3m + 5)x1 + (2m + 1)x2 + 2x3 = m, (m + 1)x1 + x2 + 2x3 = m; (m − 2)x1 + (m − 3)x2 + x3 = −m; h) 3x2 + (m − 1)x3 = 2m, (m + 2)x1 + (2m + 1)x1 + (m − 2)x2 + (m + 2)x3 = m − 1; (2m − 1)x1 + (2m − 5)x2 + mx3 = m − 1; k) (3m + 4)x1 + (m − 2)x2 + (2m + 5)x3 = m − 1. Bài 2.14. Cho h phương trình ph thu c vào các tham s a, b ∈ K: x1 + 2x2 + ax3 = 3; 3x1 − x2 − ax3 = 2; 2x1 + x2 + 3x3 = b. a) Xác đ nh a đ h có nghi m duy nh t. b) Xác đ nh a, b đ h có vô s nghi m và tìm nghi m tương ng. 5
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình toán cao cấp C2 Cao đẳng - ĐH Công nghiệp Tp. HCM
17 p | 1075 | 303
-
Bài giảng Toán rời rạc - Chương 2: Quan hệ hai ngôi
21 p | 2673 | 171
-
Bài tập ôn tập Toán Rời Rạc - Giảng viên: Nguyễn Ngọc Trung
3 p | 360 | 114
-
Bài giảng Toán cao cấp 2 - Chương 1: Chuỗi
10 p | 257 | 20
-
Bài giảng Toán rời rạc: Chương 2 - Nguyễn Anh Thi
20 p | 112 | 8
-
Đề thi cuối học kỳ 2 năm học 2014-2015 môn Toán 2 - Đại học Sư phạm Kỹ thuật TP. Hồ Chí Minh
1 p | 234 | 6
-
Bài giảng Toán 2: Chương 1 - Nguyễn Anh Thi
33 p | 98 | 5
-
Đề thi cuối học kỳ II năm học 2014-2015 môn Toán cao cấp A1 - Đại học Sư phạm Kỹ thuật TP. HCM
2 p | 78 | 4
-
Bài giảng Toán cao cấp 2: Chương 7 - TS. Trịnh Thị Hường
35 p | 23 | 4
-
Đề thi cuối học kỳ II năm học 2015-2016 môn học Toán cao cấp A1 - ĐH Sư phạm Kỹ thuật TP.HCM
2 p | 115 | 3
-
Đề thi cuối học kỳ 2 năm học 2014-2015 môn Toán cao cấp A4 - ĐH Sư phạm Kỹ thuật TP.HCM
1 p | 78 | 3
-
Bài giảng Tối ưu hóa nâng cao: Chương 2 - Hoàng Nam Dũng
76 p | 50 | 3
-
Bài giảng Toán cao cấp 1: Chương 6.2 - TS. Trịnh Thị Hường
8 p | 25 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn