Bài tập về không gian vecto
lượt xem 163
download
Tham khảo tài liệu 'bài tập về không gian vecto', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài tập về không gian vecto
- Đ I S CƠ B N (ÔN THI TH C SĨ TOÁN H C) Bài 13. Bài t p v không gian véctơ PGS TS M Vinh Quang Ngày 10 tháng 3 năm 2006 1. Xét xem R2 có là không gian véctơ hay không v i phép c ng và phép nhân vô hư ng sau: (a1 , a2 ) + (b1 , b2 ) = (a1 + b1 , a2 + b2 ) a∗ (a1 , a2 ) = (aa1 , 0) Gi i. B n đ c có th ki m tra tr c ti p r ng 7 đi u ki n đ u c a không gian véctơ đ u th a mãn, riêng đi u ki n th 8 không th a mãn vì v i α = (1, 1), khi đó: 1∗ α = 1∗ (1, 1) = (1, 0) = α. V y R2 v i các phép toán trên không là không gian véctơ vì không th a mãn đi u ki n 8. 2. Ch ng minh r ng m t không gian véctơ ho c ch có m t véctơ, ho c có vô s véctơ. Gi i. Gi s V là không gian véctơ và V có nhi u hơn 1 véctơ, ta ch ng minh V ch a vô s véctơ. Th t v y, vì V có nhi u hơn m t véctơ nên t n t i véctơ α ∈ V , α = 0. Khi đó, V ch a các véctơ aα v i a ∈ R. M t khác: ∀a, b ∈ R, aα = bα ⇔ (a − b)α = 0 ⇔ a − b = 0 ( vì α = 0) ⇔ a=b B i v y có vô s các véctơ d ng aα, a ∈ R, do đó V ch a vô s véctơ. 3. Xét s ĐLTT, PTTT. Tìm h ng và h con ĐLTT t i đ i c a các h véctơ sau: a α1 = (1, 0, −1, 0), α2 = (1, 2, 1, 1), α3 = (3, 2, 3, 2), α4 = (1, 1, 2, 1) b α1 = (1, 0, 0, −1), α2 = (2, 1, 1, 0), α3 = (1, 1, 1, 1), α4 = (1, 2, 3, 4), α5 = (0, 1, 2, 3). Gi i. a. L p ma tr n A tương ng và tìm h ng c a ma tr n A: 1
- 1 0 −1 0 1 0 −1 0 1 0 −1 0 1 2 1 1 −→ 0 2 2 1 −→ 0 1 3 1 A= 3 2 3 2 0 2 6 2 0 2 2 1 1 1 2 1 0 1 3 1 0 2 6 2 1 0 −1 0 0 1 3 1 −→ 0 0 −4 −1 0 0 0 0 V y rankA = 3, ít hơn s véctơ, nên h trên là h PTTT. Vì 3 dòng khác không c a ma tr n ng v i các véctơ α1 , α4 , α2 , nên h con ĐLTT t i đ i c a α1 , α2 , α3 , α4 là α1 , α4 , α2 và rank{α1 , α2 , α3 , α4 } = 3. b. Gi i tương t câu a., b n đ c t gi i. 4. Cho h véctơ α1 , α2 , . . . , αm ĐLTT trong không gian véctơ V . Ch ng minh a. H véctơ β1 = α1 , β2 = α1 + α2 , . . ., βm = α1 + α2 + . . . + αm cũng ĐLTT. b. H véctơ: γ1 = a11 α1 + . . . +a1m αm γ2 = a21 α1 + . . . +a2m αm . . . . .. . . . . . . γm = am1 α1 + . . . +amm αm ĐLTT khi và ch khi detA = 0, trong đó a11 a12 . . . a1m a21 a22 . . . a2m A= . . .. . . . . . . . . am1 am2 . . . amm Gi i. a. Gi s b1 β1 + b2 β2 + . . . + bm βm = 0 v i bi ∈ R ⇔ b1 α1 + b2 (α1 + α2 ) + . . . + bm (α1 + . . . + αm ) = 0 ⇔ (b1 + . . . + bm )α1 + (b2 + . . . + bm )α2 + . . . + bm αm =0 Vì α1 , . . . , αm ĐLTT nên ta có: b1 + b2 + . . . +bm−1 +bm = 0 b2 + . . . +bm−1 +bm = 0 .. . . . . . . . . . . bm−1 +bm = 0 bm = 0 Suy ngư c t dư i lên, ta có: bm = bm−1 = . . . = b1 = 0. V y β1 , . . . , βm ĐLTT. b Gi s c1 γ1 + c2 γ2 + . . . + cm γm = 0 v i cj ∈ R ⇔ (a11 c1 + a21c2 + . . . + am1 cm )α1 + (a12 c1 + a22 c2 + . . . + am2 cm )α2 + . . . + (a1m c1 + a2m c2 + . . . + amm cm )αm = 0 2
- a11 c1 + a21 c2 + . . . + am1 cm = 0 a12 c1 + a22 c2 + . . . + am2 cm = 0 ⇔ . . .. . . (∗) H véctơ γ1 , γ2 , . . . , γm . . . . . . . . . a c + a c + ... + a c 1m 1 2m 2 mm m = 0 ĐLTT khi và ch khi h phương trình tuy n tính (∗) có nghi m duy nh t (0, 0, . . . , 0) khi và ch khi ma tr n các h s c a h (∗) không suy bi n khi và ch khi detA = 0. 5. H véctơ α1 , α2 , . . . , αm bi u th tuy n tính đư c qua h véctơ β1 , β2 , . . . , βn . Ch ng minh rank{α1 , . . . , αm } rank{β1 , . . . , βn }. Gi i. Gi s αi1 , . . . , αik và βj1 , . . . , βjl l n lư t là h con ĐLTT t i đ i c a các h véctơ α1 , . . . , αm và β1 , . . . , βn . Vì h α1 , . . . , αm bi u th tuy n tính đư c qua h β1 , . . . , βn nên h αi1 , . . . , αik bi u th tuy n tính đư c qua h βj1 , . . . , βjl , m t khác h αi1 , . . . , αik đ c l p tuy n tính nên theo B đ cơ b n ta có k l t c là rank{α1 , . . . , αm } rank{β1 , . . . , βn }. 6. Cho 2 h véctơ cùng h ng, h đ u bi u th tuy n tính đư c qua h sau. Ch ng minh 2 h véctơ tương đương. Gi i. Gi s α1 , . . . , αm (α), β1 , . . . , βn (β) th a mãn đ ra. Vì hai h véctơ cùng h ng nên ta có th gi s rank(α) = rank(β) = k, đ ng th i αi1 , . . . , αik và βj1 , . . . , βjk l n lư t là h con ĐLTT t i đ i c a các h véctơ (α) và (β). Vì h (α) bi u th tuy n tính đư c qua h (β) nên h αi1 , . . . , αik bi u th tuy n tính đư c qua h βj1 , . . . , βjk , l i do h αi1 , . . . , αik ĐLTT nên theo B đ cơ b n, ta có th thay k véctơ αi1 , . . . , αik , cho k véctơ βj1 , . . . , βjk đ đư c h véctơ m i αi1 , . . . , αik tương đương v i h véctơ βj1 , . . . , βjk , t c là αi1 , . . . , αik tương đương v i βj1 , . . . , βjk . M t khác, αi1 , . . . , αik tương đương v i h (α), βj1 , . . . , βjk tương đương v i h (β), do đó ta có h (α) tương đương v i h (β). 7. Trong R4 cho h véctơ u1 = (1, 1, 1, 1), u2 = (2, 3, −1, 0), u3 = (−1, −1, 1, 1) Tìm đi u ki n c n và đ đ h véctơ u = (x1 , x2 , x3 , x4 ) bi u th tuy n tính đư c qua h u1 , u2 , u3 . Gi i. Véctơ u bi u th tuy n tính đư c qua h u1 , u2 , u3 khi và ch khi phương trình u = y1 u1 + y2 u2 + y3 u3 có nghi m khi và ch khi h sau có nghi m: 1 2 −1 x1 1 2 −1 x1 1 3 −1 x2 0 1 0 −x1 + x2 1 −1 −→ 0 −3 1 x3 2 −x1 + x3 1 0 1 x4 0 −3 2 −x1 + x4 1 2 −1 x1 1 2 −1 x1 0 1 0 −x1 + x2 −→ 0 1 0 −x1 + x2 −→ 0 0 2 −4x1 + 3x2 + x3 0 0 2 −4x1 + 3x2 + x3 0 0 2 −3x1 + 2x2 + x4 0 0 0 x1 − x2 − x3 + x4 Do đó h có nghi m khi và ch khi x1 − x2 − x3 + x4 = 0. B i v y véctơ u = (x1 , x2 , x3 , x4 ) bi u th tuy n tính đư c qua u1 , u2 , u3 khi và ch khi x1 − x2 − x3 + x4 = 0. 3
- 8. Trong R3 [x] cho các h véctơ: u1 = x3 + 2x2 + x + 1 u2 = 2x3 + x2 − x + 1 u3 = 3x3 + 3x2 − x + 2 Tìm đi u ki n đ véctơ u = ax3 + bx2 + cx + d bi u th tuy n tính đư c qua h u1 , u2 , u3 . Gi i. Cách gi i bài này tương t như bài t p 7. Chi ti t cách gi i xin dành cho b n đ c. 9. Trong R3 cho các h véctơ: u1 = (1, 2, 1), u2 = (2, −2, 1), u3 = (3, 2, 2) (U ) v1 = (1, 1, 1), u2 = (1, 1, 0), v3 = (1, 0, 0) (V ) a. Ch ng minh (U ), (V ) là cơ s c a R3 b. Tìm các ma tr n đ i cơ s t (U ) sang (V ) và t (V ) sang (U ). Gi i. a. L p ma tr n mà các dòng c a U là các véctơ u1 , u2 , u3 U 1 2 1 U = 2 −2 1 , ta có detU = 2 = 0. 3 2 2 Do đó h véctơ u1 , u2 , u3 đ c l p tuy n tính vì dimR3 = 3 nên u1 , u2 , u3 là cơ s c a R3 . Tương t v1 , v2 , v3 là cơ s c a R3 . b. Gi i tương t như ví d 1, bài 11, sau đây là chi ti t cách gi i: tìm ma tr n TU V ta gi i h sau: Đ 3 1 2 3 1 1 1 1 2 3 1 1 1 2 −2 2 1 1 0 −→ 0 −6 −4 −1 −1 −2 1 1 2 1 0 0 0 −1 −1 0 −1 −1 1 2 3 1 1 1 1 2 3 1 1 1 0 −1 −1 0 −1 −1 −→ 0 −1 −1 0 −1 −1 0 −6 −4 −1 −1 −2 0 0 2 −1 5 4 1 1 3 H 1: a3 = − , a2 = −a3 = , a1 = 1 − 2a2 − 3a3 = 2 2 2 5 3 7 H 2: b3 = , b2 = 1 − a3 = − , b1 = 1 − 2b2 − 3b3 = − 2 2 2 H 3: c3 = 2, c2 = 1 − c3 = −1, c1 = 1 − 2c2 − c3 = −3 3 7 a1 b 1 c 1 2 2 −3 V y TU V = a2 b2 c2 = 1 3 −1 2 2 1 5 a3 b 3 c 3 2 2 2 Vi c tìm ma tr n TV U xin dành cho b n đ c. 1 1 3 1 10. Trong R2 cho các cơ s (α), (β), (γ). Bi t Tαβ = , Tγβ = và cơ s 2 1 2 1 (γ) : γ1 = (1, 1), γ2 = (1, 0). Tìm cơ s (α). 4
- Gi i. Đ u tiên ta tìm cơ s (β): 3 1 Do Tγβ = nên β1 = 3γ1 + 2γ2 = (5, 3), β2 = γ1 + γ2 = (2, 1). M t khác ta có 2 1 1 1 −1 1 Tαβ = nên Tβα = T−1 = αβ do đó: 2 1 2 −1 α1 = −β1 + 2β2 = (−1, −1) α2 = β1 − β2 = (3, 2) V y cơ s (α) = α1 = (−1, −1), α2 = (3, 2). 11. Cho R+ là t p các s th c dương. Trong R+ ta đ nh nghĩa 2 phép toán (a) ∀x, y ∈ R+ : x ⊕ y = xy (b) ∀a ∈ R, x ∈ R+ : a ∗ x = xa Bi t r ng, (R+ , ⊕, ∗) là KGVT. Tìm cơ s , s chi u c a KGVT R+ . Gi i. V i m i véctơ x ∈ R+ ta có: x ⊕ 1 = x.1 = x do đó véctơ không trong KGVT R+ là 1. V i m i véc tơ α ∈ R+ , α khác véctơ không (t c là α = 1) ta ch ng minh {α} là h sinh c a R+ . Th t v y ∀x ∈ R+ ta có: x = αlogα x = (logα x) ∗ α = a ∗ α trong đó a = logα x ∈ R. V y x luôn bi u th tuy n tính đư c qua h g m 1 véctơ {α}. M t khác vì α khác véctơ không nên h {α} là h véctơ đ c l p tuy n tính. V y dim R+ = 1 và cơ s c a R+ là h g m 1 véctơ {α} v i α là s th c dương, khác 1. a −b 12. Cho V = , a, b ∈ R b a bi t r ng V cùng v i phép c ng 2 ma tr n và phép nhân 1 s v i ma tr n là KGVT. Tìm cơ s , s chi u c a V . Gi i. Xét 2 véctơ trong V : 1 0 0 −1 A1 = , A2 = 0 1 1 0 a −b Khi đó, v i m i véctơ X = ∈ V ta luôn có X = a.A1 + b.A2 . V y {A1 , A2 } là b a 1 h sinh c a V . M t khác, v i m i a, b ∈ R ta có 0 0 a −b 0 0 a.A1 + b.A2 = 0 ⇔ a.A1 + b.A2 = ⇔ = ⇔ a = 0, b = 0 0 0 b a 0 0 do h véctơ {A1 , A2 } đ c l p tuy n tính. V y {A1 , A2 } là cơ s c a V và dim V = 2 1 1 Đánh máy: LÂM H U PHƯ C, Ngày: 15/02/2006 5
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài tập về không gian vecto Euclide
8 p | 1771 | 230
-
Toán cao cấp 2- Bài 5: Không gian véc tơ
13 p | 1865 | 172
-
Bài tập về không gian vecto tiếp theo
4 p | 380 | 138
-
Chương 8: Không gian vectơ
20 p | 387 | 95
-
Bài giảng Bài tập Trường điện từ: Chương 3 - Lê Minh Cường
17 p | 379 | 45
-
Bài tập phương trình đường thẳng trong không gian
4 p | 416 | 43
-
Bài giảng Đại số cơ bản: Bài 13 - PGS. TS Mỵ Vinh Quang
5 p | 311 | 25
-
Tài liệu Chương 3: Không gian vectơ
9 p | 200 | 10
-
Bài tập trong môn Đại số tuyến tính
4 p | 189 | 10
-
Bài giảng Toán C2: Chương 3 - ThS. Huỳnh Văn Kha
19 p | 87 | 6
-
Bài giảng Đại số cơ bản: Bài 19 - PGS. TS Mỵ Vinh Quang
8 p | 143 | 6
-
Bài giảng Đại số cơ bản: Bài 14 - PGS. TS Mỵ Vinh Quang
5 p | 87 | 6
-
Bài giảng Toán cao cấp A1 - Nguyễn Như Quân
7 p | 17 | 6
-
Đề thi học kì 1 môn Đại số tuyến tính và Cấu trúc đại số năm 2023-2024 có đáp án - Trường Đại học sư phạm Kỹ thuật, TP HCM (Đại trà)
4 p | 6 | 3
-
Đề thi kết thúc học phần Đại số tuyến tính năm 2018 - Đề số 5 (19/12/2018)
1 p | 10 | 2
-
Đề thi học kì 1 môn Đại số tuyến tính và Cấu trúc đại số năm 2023-2024 có đáp án - Trường Đại học sư phạm Kỹ thuật, TP HCM (CLC)
4 p | 5 | 2
-
Đề thi học kì 1 môn Đại số tuyến tính năm 2023-2024 có đáp án - Trường Đại học sư phạm Kỹ thuật, TP HCM
6 p | 13 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn