Các bài toán sử dụng các phương pháp khác (Bài tập và hướng dẫn giải)
lượt xem 30
download
Tham khảo tài liệu 'các bài toán sử dụng các phương pháp khác (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các bài toán sử dụng các phương pháp khác (Bài tập và hướng dẫn giải)
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 19-03 Sử dụng các phương pháp khác. Bài 1: Cho 3 số dương x,y,z thõa mãn điều kiện: xyz=1. Chứng minh rằng: x2 y2 z2 P= + + ≥1 x + y + y 3 z y + z + z 3 x z + x + x3 y Bài 2: Cho 3 số thực a,b,c tùy ý. Chứng minh rằng: a−c a−b b−c ≤ + (*) 1+ a . 1+ c 2 2 1+ a . 1+ b 2 2 1+ b . 1+ c 2 2 Bài 3: Cho 4 số thực a,b,c,d thõa mãn: a2 +b2=1; c – d =3. Chứng minh: 9+6 2 F = ac + bd − cd ≤ 4 Bài 4: Cho: a ≥ c ≥ 0; b ≥ c Chứng minh: c(a − c) + c(b − c) ≤ ab Bài 5: Cho x,y,z thuộc khoảng (0;1) thõa mãn điều kiện: xy + yz + zx = 1. Tìm Min của: x y z P= + + 1 − x2 1 − y2 1 − z 2 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 1
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG BTVN NGÀY 15-03 Bất đẳng thức Côsi. Bài 1: Cho 3 số dương tùy ý x,y,z. x x x 3 CMR: + + ≤ 2x + y + z 2x + y + z 2x + y + z 4 Giải: Ta có: 1 1 1 1 1 = ≤ + 2x + y + z ( x + y ) + ( x + z ) 4 x + y x + z x 1 x x ≤ + 2x + y + z 4 x + y x + z y 1 y y 1 x+ y y+ z x+ z 3 ⇒ ≤ + ⇒ VT ≤ + + = x + 2y + z 4 x + y y + z 4 x+ y y+ z x+ z 4 z 1 z z =≤ + x + y + 2z 4 x + z y + z Dấu “=” xảy ra khi và chỉ khi x=y=z Bài 2: Cho 3 số dương x,y,z thõa mãn: xyz=1 x2 y2 z2 3 CMR: + + ≥ 1+ y 1+ z 1+ x 2 Giải: Ta có: x2 1 + y + ≥ x 1+ y 4 y 2 1+ z 3 + ( x + y + z ) 3( x + y + z ) − 3 9 3 xyz − 3 3 + ≥ y ⇒ VT ≥ ( x + y + z ) − = ≥ = 1+ z 4 4 4 4 2 z 2 1+ x + ≥z 1+ x 4 Dấu “=” xảy ra khi và chỉ khi x=y=z=1 Page 2 of 9
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bài 3: Cho 3 số không âm tùy ý x,y,z thõa mãn: x+y+z=0. CMR: 2 + 4x + 2 + 4 y + 2 + 4z ≥ 3 3 Giải: Đặt: a = 4 x a, b, c > 0 b = 4 ⇒ Và : 2 + a + 2 + b + 2 + c ≥ 3 3 (1) y c = 4 z abc = 1 11 1 1 Ta có : 2 + a = 1 + 1 + a ≥ 3 a ⇒ 2 + a ≥ 3.a ⇒ VT(1) ≥ 3. a + b + c 6 3 6 6 6 1 ≥ 3 3. ( abc ) 18 =3 3 Dấu “=” xảy ra khi và chỉ khi x=y=z=0 Bài 4: Cho 3 số dương tùy ý a,b,c: a b c Tìm Min: A = 3 4(a + b ) + 3 4(b + c ) + 3 4(c + a ) + 2 + 2+ 2 3 3 3 3 3 3 2 b c a Giải: a b c A = 3 4(a 3 + b3 ) + 3 4(b3 + c3 ) + 3 4(c3 + a 3 ) + 2 2 + 2 + 2 b c a Vì :4(a 3 + b3 ) ≥ 8 (ab)3 ⇒ 3 4(a 3 + b3 ) ≥ 2 ab ⇒ 3 4(a 3 + b3 ) + 3 4(b3 + c3 ) + 3 4(c3 + a 3 ) ≥ 2 ( ) ab + bc + ca ≥ 6 3 abc a b c 1 1 Và 2 2 + 2 + 2 ≥ 6 3 ⇒ A ≥ 6 3 abc + 3 ≥ 12 ⇒ Min A = 12 b c a abc abc Dấu “=” xảy ra khi và chỉ khi a=b=c=1. Bài 5: Cho 3 số dương tùy ý x,y,z. x 1 y 1 z 1 Tìm Min của: P = x + + y + + z + 2 yz 2 zx 2 xy Giải: Page 3 of 9
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Ta có: x2 + y 2 + z 2 x2 y2 z2 x2 + y2 + z 2 x2 + y2 + z 2 1 1 P= + + + = + = ( x2 + y 2 + z 2 ) + 2 xyz xyz xyz 2 xyz 2 xyz 1 1 1 1 1 3 1 Vì : x 2 + y 2 + z 2 ≥ 3 3 ( xyz ) 2 Và + = 1 + + ≥ .3 2 xyz 2 xyz xyz 2 ( xyz ) 2 3 1 9 9 ⇒ P ≥ 3 3 ( xyz ) 2 . . = ⇒ MinP = 2 3 ( xyz ) 2 2 2 Dấu “=” xảy ra khi và chỉ khi x=y=z=1 BTVN NGÀY 17-03 Sử dụng chiều biến thiên. Bài 1: Tìm Min, Max của: xy 2 A= (x 2 ( + 3 y 2 ) x + x 2 + 12 y 2 ) Giải: 1 y Ta có : A = . Coi : t = x 2 y 2 x + 3 1 + 1 + 12 y x ⇒ A= 1 = t 2 = ( t 2 1 − 1 + 12t 2 ) 1 ( 2 + 3 1 + 1 + 12t t 2 ) ( 1 + 3t ) ( 1 + 2 1 + 12t 2 ) ( 1 + 3t ) ( −12t ) 2 2 1 1 + 12t 2 − 1 u −1 = . Coi : u = 1 + 12t 2 (u ≥ 1) ⇒ 3 A = 2 = f (u ) 3 12t + 4 2 u +3 u = −1 1 1 ⇒ f '(u ) = 0 ⇔ ⇒ 3 A = f (u ) ≤ f (3) = ⇒ MaxA = . u = 3 6 18 Và : lim f (u ) = 0 ⇒ MinA = 0 u →∞ Bài 2: Cho 3 số thực thõa mãn: x2 + y2 + z2 =1. Tìm Min, Max của: P = ( x + y + z ) − ( xy + yz + zx) Page 4 of 9
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Giải: Đặt: t = x + y + z ⇒ t 2 ≤ 3( x 2 + y 2 + z 2 ) = 3 ⇒ t ∈ − 3; 3 t 2 − 1 −t 2 + 2t + 1 Và P = t − = = f (t ) ⇒ f '(t ) = 0 ⇔ t = 1 ∈ − 3; 3 2 2 MaxP = f (1) = 1 Qua BBT ta có : MinP = f (− 3) = −( 3 + 1) Bài 3: Cho 2 số dương x,y thõa mãn: x+y=5/4. Tìm Min của: 4 1 A= + x 4y Giải: Ta có: 5 16 y + − y 16 y + x 4 60 y + 5 A= = = . 4 xy 5 4 y (5 − 4 y ) 4 y( − y) 4 a = 4 y 0 < a , b < 5 16a + b 16 1 16 1 Coi : ⇒ Và : A = = + = + = f (a) b = 5 − 4 y a + b = 5 ab b a 5−a a a = 0 16 1 16 ⇒ f '(a) = − 2 =0⇒ 5 ⇒ MinA = f (1) = + 1 = 5 ( 5 − a) 2 a a = − 4 3 Dấu “=” xảy ra khi và chỉ khi x=1; y=1/4 Bài 4: CMR: Với mọi tam giác ABC ta luôn có: A A A 1 + cos 1 + cos 1 + cos 2+ 2+ 2 >3 3 A A A Giải: x2 Xét hàm số: y = + cos x − 1 2 Page 5 of 9
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 π y ' = x − sin x và y '' = 1 − cos x > 0; ∀x ∈ o; 2 x2 Ta thấy y’ đồng biến và ta có: y > 0. Vậy ta có: cos x > 1 − 2 Áp dụng cho các góc A/2, B/2 , C/2 ta có: A A2 B B2 C C2 cos > 1 − ; cos > 1 − ;cos > 1 − 2 8 2 8 2 8 1 1 1 1 9 A+ B+C ⇒ VT > 2 + + − ( A + B + C ) ≥ 2. − A B C 8 A+ B +C 8 18 π 144 − π 2 = − = >3 3 π 8 8π Bài 5: Cho 2 số không âm tùy ý x,y thõa mãn x+y=1: Tìm Min, Max của: x y S= + y +1 x +1 Giải: Ta có: x y ( x 2 + y 2 ) + ( x + y ) 2 − 2 xy S= + = = . y +1 x +1 xy + ( x + y ) + 1 2 + xy ( x + y)2 1 1 2 − 2t 6 Mà : 0 ≤ xy ≤ = . Coi : t = xy ⇒ t ∈ 0; và S = = −2 + = f (t ) 4 4 4 2+t t+2 1 2 −6 MinS = f ( ) = ⇒S'=
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 x2 y2 z2 P= + + ≥1 x + y + y 3 z y + z + z 3 x z + x + x3 y Giải: x2 x3 Vì : = x + y + y 3 z x 2 + xy + y 2 x3 − y 3 x3 − y 3 y3 − z3 z 3 − x3 Mà : 2 = x− y⇒ 2 + + =0 x + xy + y 2 x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 y3 z3 y3 z3 x3 ⇔ 2 + + = + + x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x 2 + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 + y 3 y3 + z3 z 3 + x3 ⇔ 2P = 2 + + . x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 + y 3 x 2 − xy + y 2 x 2 − xy + y 2 1 Vì : 2 = ( x + y) 2 . mà : 2 ≥ x + xy + y 2 x + xy + y 2 x + xy + y 2 3 x3 + y 3 x+ y 2 ⇒ 2 ≥ ⇒ 2 P = ( x + y + z ) ≥ 2 3 xyz = 2 ⇒ P ≥ 1. x + xy + y 2 3 3 Bài 2: Cho 3 số thực a,b,c tùy ý. Chứng minh rằng: a−c a −b b−c ≤ + (*) 1+ a . 1+ c 2 2 1+ a . 1+ b 2 2 1+ b . 1+ c 2 2 Giải: Đặt: Page 7 of 9
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 a = tan α b = tan β ⇒ (*) ⇔ sin(α − β ) + sin( β − γ ) ≥ sin(α − γ ) c = tan γ Vì : sin(α − γ ) = sin [ (α − β ) + ( β − γ ) ] ) = sin(α − β )cos( β − γ ) + cos(α − β ) sin( β − γ ) ≤ sin(α − β ) cos( β − γ ) + cos(α − β ) sin( β − γ ) ≤ sin(α − β ) + sin( β − γ ) Điều phải chứng minh. Bài 3: Cho 4 số thực a,b,c,d thõa mãn: a2 +b2=1; c – d =3. Chứng minh: 9+6 2 F = ac + bd − cd ≤ 4 Giải: Gọi: A ( a; b ) ⇒ A ∈ (C ) : x 2 + y 2 = 1 và B ( c; d ) ⇒ B ∈ d : x − y = 3 Ta có : AB 2 = (a − c) 2 + (b − d ) 2 = a 2 + b 2 + c 2 + d 2 − 2ac − 2bd = ( a 2 + b 2 ) + (c − d ) 2 − 2(ac + bd − cd ) = 1 + 9 − 2 F Vì AB nhỏ nhất khi và chỉ khi A,B thuộc đường vuông góc với d kẽ từ O. 3 2 3 2 −2 22 − 12 2 ⇒ AB Min = OB − OA = −1 = ⇒ AB 2 ≥ 2 2 4 22 − 12 2 11 − 6 2 9+6 2 ⇒ 10 − 2 F ≥ ⇒ 5− F ≥ ⇒F≤ 4 4 4 Bài 4: Cho: a ≥ c ≥ 0; b ≥ c Chứng minh: c(a − c) + c(b − c) ≤ ab Giải: Page 8 of 9
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Gọi: r r a ( ) c, b − c ⇒ a = c + b − c = b r r b ( ) a − c, c ⇒ b = a − c + c = a rr r r Do : a.b ≤ a . b ⇔ c(a − c) + c(b − c) ≤ ab Bài 5: Cho x,y,z thuộc khoảng (0;1) thõa mãn điều kiện: xy + yz + zx = 1. Tìm Min của: x y z P= + + 1 − x2 1 − y2 1 − z 2 Giải: Đặt A x = tan 2 A B C tan tan tan B 2 + 2 + 2 = 1 ( t anA + tan B + tan C ) y = tan ⇒ P = A B C 2 2 1 − tan 2 1 − tan 2 1 − tan 2 C 2 2 2 z = tan 2 Vì :Trong ∆ABC ta có : t anA + tan B + tan C = t anA.tan B.tan C ≥ 3 3 t anA.tan B.tan C 3 3 ⇒ t anA + tan B + tan C = t anA.tan B.tan C ≥ 3 3 ⇒ P ≥ 2 1 Dấu “=” xảy ra khi và chỉ khi A=B=C=600 hay x = y = z = 3 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 9 of 9
CÓ THỂ BẠN MUỐN DOWNLOAD
-
SKKN: Phân loại và phuơng pháp giải nhanh các bài toán pH trong các dung dịch axit – bazơ – muối và chuẩn độ axit – bazơ trên cơ sở máy tính cầm tay CASIO fx - 570 ES
25 p | 617 | 107
-
Bài giảng Tin học 7 bài 4: Sử dụng các hàm để tính toán
22 p | 458 | 87
-
Tuyển tập và hướng dẫn giải các chuyên đề và kỹ thuật tính tích phân: Phần 1
200 p | 295 | 64
-
Giáo án tin học 7 - BÀI 4: SỬ DỤNG CÁC HÀM ĐỂ TÍNH TOÁN
17 p | 511 | 58
-
Các bài toán sử dụng chiều biến thiên (Bài tập và hướng dẫn giải)
12 p | 176 | 50
-
Giáo án Tin học 7 bài 4: Sử dụng các hàm để tính toán
29 p | 328 | 49
-
BÀI TẬP QUY TẮC ĐẾM CƠ BẢN
2 p | 267 | 26
-
Sáng kiến kinh nghiệm THPT: Phát huy năng lực lập trình cho học sinh THPT qua giải các bài toán sử dụng kỹ thuật chia để trị bằng ngôn ngữ lập trình Python theo chương trình giáo dục phổ thông 2018
46 p | 43 | 18
-
BÀI TẬP ÔN CHƯƠNGII
3 p | 98 | 12
-
Cẩm nang hướng dẫn giải toán trắc nghiệm Hóa học: Phần 1
107 p | 100 | 10
-
Bài giảng Tin học 7 bài 4: Sử dụng các hàm để tính toán - Nguyễn Thị Ánh Diễm
33 p | 141 | 10
-
Sáng kiến kinh nghiệm THPT: Giúp học sinh phát triển tư duy và rèn luyện kỹ năng thông qua các bài toán vận dụng-vận dụng cao của số phức trong đề thi tốt nghiệp trung học phổ thông
37 p | 12 | 7
-
Giáo án Tin học lớp 7 - Bài 4: Sử dụng các hàm để tính toán (Tiết 1)
4 p | 42 | 4
-
Sáng kiến kinh nghiệm THPT: Phát triển năng lực toán học cho học sinh thông qua các bài toán sử dụng đồ thị của hàm đạo hàm chương trình Giải tích 12 nhằm nâng cao chất lượng ôn thi tốt nghiệp THPT môn Toán
43 p | 54 | 4
-
Sáng kiến kinh nghiệm THPT: Phương pháp giải các dạng toán sử dụng công thức khai triển nhị thức Newton trong các đề thi đại học
29 p | 42 | 4
-
Bài giảng Tin học lớp 7 bài 4: Sử dụng các hàm để tính toán
17 p | 10 | 4
-
Giáo án Tin học lớp 7 - Bài 4: Sử dụng các hàm để tính toán (Tiết 2)
4 p | 40 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn