Các bài toán về sự tương giao giữa conic với các đường khác (Bài tập và hướng dẫn giải)
lượt xem 42
download
Tham khảo tài liệu 'các bài toán về sự tương giao giữa conic với các đường khác (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các bài toán về sự tương giao giữa conic với các đường khác (Bài tập và hướng dẫn giải)
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 29 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 29-04 Bài toán về sự tương giao giữa cônic với các đường khác. Bài 1: x2 y 2 Trên mặt phẳng tọa độ Oxy cho Hypebol: ( H ) : − = 1 và điểm M(2;1). Viết 2 3 phương trình đường thẳng qua M cắt (H) tại A và B sao cho m là trung điểm của AB Bài 2: x2 y 2 x2 y 2 Trên mặt phẳng tọa độ Oxy cho: Elip ( E ) : + = 1 và Hypebol ( H ) : − = 1 9 1 1 4 Lập phương trình đường tròn đi qua các giao điểm của (E) và (H). Bài 3: Trên mặt phẳng tọa độ cho Parabol (P) và đường thẳng d có phương trình: ( P ) : y 2 = 2 x ; d : 2my − 2 x + 1 = 0 a) CMR: Với mọi m, d luôn đi qua tiêu điểm F của (P) và cắt (P) tại 2 điểm M, N phân biệt. b) Tìm quỹ tích trung điểm I của đoạn MN khi m thay đổi. ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 1
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN • BTVN NGÀY 27-04 Bài 1: x2 y 2 Trên mặt phẳng tọa độ Oxy cho elip: ( E ) : + = 1 F1; F2 lần lượt là tiêu điểm 8 4 phải và trái của (E). Tìm điểm M trên (E) sao cho MF1 - MF2 =2 HDG: Gọi M(x0;y0) Vì MF1 - MF2 =2 nên: cx cx a 2 2 a + 0 − a − 0 = 2 ⇔ x0 = = = 2 a a c 2 2 x0 1 ⇒ y0 = 4(1 − ) = 4(1 − ) = 3 ⇒ y0 = ± 3 2 8 4 ⇒ M 1 ( 2; 3); M 2 ( 2; − 3) Bài 2: Trên mặt phẳng tọa độ Oxy hãy lập phương trình chính tắc cuả Elip (E) có độ dài trục lớn là 4 2 , các đỉnh trên trục nhỏ và hai tiêu điểm cùng nằm trên một đường tròn. HDG: Do 2a = 4 2 ⇒ a = 2 2 ⇒ a 2 = 8 Ví các đỉnh của trục nhỏ và 2 tiêu điểm cùng nằm trên một đường tròn nên : b 2 = c 2 x2 y 2 2 ⇒ 2b = 8 ⇒ b = 4 ⇒ ( E ) : + 2 2 =1 a = b2 + c 2 8 4 Bài 3: Trên mặt phẳng tọa độ cho Parabol (P) có phương trình: y2 = x và điểm I(0;2). uuu r uur Tìm tọa độ 2 điểm M,N trên (P) sao cho: IM = 4 IN HDG: Page 2 of 6
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Gọi: uuu 2 r IM (m ; m − 2) M ( m ; m) 2 uur 2 m 2 = 4n 2 ∈ ( P ) ⇒ IN (m ; m − 2) ⇒ m − 2 = 4n − 8 2 N ( n ; n) uuu r uur IM = 4 IN m = 2n m = −6 M (36;6) ⇔ ⇔ ⇔ m = 4n − 6 n = 3 N (9;3) m = −2n m = −2 M (4; −2) ⇔ ⇔ m = 4n − 6 n = 1 N (1;1) • BTVN NGÀY 29-04 Bài 4: x2 y 2 Trên mặt phẳng tọa độ Oxy cho Hypebol: ( H ) : − = 1 và điểm M(2;1). Viết 2 3 phương trình đường thẳng qua M cắt (H) tại A và B sao cho M là trung điểm của AB. HDG: Xét đường thẳng đi qua M song song với Oy là d: x=2 thì: d ∩ ( H ) = M 1,2 (2; ± 3) nên trung điểm I (2;0) khác M (loại ) Gọi phương trình đường thẳng cần tìm có dạng: y=k(x-2)+1 hay y= kx+1-2k Hoành độ giao điểm của đường thẳng này với (H) là nghiệm của phương trình: 3 x 2 − 2(kx + 1 − 2k ) 2 = 6 ⇔ x 2 (3 − 2k 2 ) + 4k (2k − 1) x − 2(2k − 1)2 − 6 = 0(∆ > 0) 4k (2k − 1) M là trung diem ⇒ x1 + x2 = =4⇔ k =3 2k 2 − 3 ⇒ y = 3 x − 5 hay 3 x − y − 5 = 0 Page 3 of 6
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bài 5: x2 y 2 x2 y 2 Trên mặt phẳng tọa độ Oxy cho: Elip ( E ) : + = 1 và Hypebol ( H ) : − =1 9 1 1 4 Lập phương trình đường tròn đi qua các giao điểm của (E) và (H). HDG: Đặt: a 45 + b = 1 a = x = a 9 2 37 77 2 ⇒ ⇔ ⇒ a+b = y = b a − b = 1 b = 32 37 4 37 77 ⇒ x 2 + y 2 = (C ) 37 Vậy quỹ tích giao điểm của (E) và (H) chính là đường tròn (C). Bài 6: Trên mặt phẳng tọa độ cho Parabol (P) và đường thẳng d có phương trình: ( P ) : y 2 = 2 x ; d : 2my − 2 x + 1 = 0 c) CMR: Với mọi m, d luôn đi qua tiêu điểm F của (P) và cắt (P) tại 2 điểm M, N phân biệt. d) Tìm quỹ tích trung điểm I của đoạn MN khi m thay đổi. HDG: 1 1 a) Vì: y = 4 px ⇒ p = ⇒ F ( ; 0) . Thay vào ta có: 2 2 2 1 2m.0 − 2. + 1 = 0 ⇒ F ∈ d 2 Tung độ giao điểm của (P) và d là nghiệm của phương trình: y 2 = 2my + 1 ⇔ y 2 − 2my − 1 = 0 ∆ ' = m2 + 1 ≥ 1 > 0 ⇒ ( P) ∩ d = M , N ( M ≠ N ) b) Vì M,N thuộc d nên trung điểm I của chúng cũng thuộc d nên: Page 4 of 6
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 2myI − 2 xI + 1 = 0 1 y1 + y2 xI = myI + 1 Nhưng: = yI = m ⇒ 2 ⇒ xI = y I + 2 2 m = yI 2 Vậy quỹ tích trung điểm I là parabol có phương trình: 1 x = y2 + 2 • BTVN NGÀY 03-05 Bài 1: Cho đường tròn: (C ) : ( x + 2) 2 + y 2 = 36 và điểm F2(2;0). Xét các đường tròn tâm M đi qua F2 và tiếp xúc với (C). Tìm quỹ tích tâm M HDG: Trước hết ta xét vị trí tương đối giữa F2 và (C), ta có: IF2 = 4 < R = 6 nên F2 nằm bên trong đường tròn và sự tiếp xúc nói đến ở đây chính là tiếp xúc trong.Ta có: MF2 + MI = MI + MK = IK = R = 6 Vậy quỹ tích điểm M chính là Elip có 2 tiêu điểm là I và K ( K là điểm tiếp xúc của 2 đường tròn). Trục thực có độ dài: 2a=6 nên a=3. Nhưng: F2(2;0) nên c=2. Và ta có: b2=5 hay Elip có PT là: x2 y 2 + =1 9 5 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 5 of 6
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Page 6 of 6
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Rèn luyện kỹ năng giải toán sự tương giao của đồ thị hàm số bậc 3
1 p | 537 | 81
-
KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN VỀ SỰ TƯƠNG GIAO
3 p | 362 | 56
-
Rèn luyện kỹ năng giải toán sự tương giao của đồ thị hàm số trùng phương
1 p | 292 | 46
-
Rèn luyện kỹ năng giải toán sự tương giao của đồ thị hàm số hữu tỷ
2 p | 169 | 39
-
Toán 12: Sự tương giao của hàm phân thức (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
5 p | 218 | 25
-
Toán 12: Sự tương giao của hàm trùng phương (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
3 p | 237 | 23
-
Tuyển chọn các bài toán về hàm số: Phần 1 (Khóa luyện thi 2015 - 2016) - Đặng Việt Hùng
41 p | 136 | 23
-
Toán 12: Sự tương giao của hàm đa thức bậc ba (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
3 p | 111 | 9
-
Các bài toán liên quan đến hàm số
21 p | 111 | 9
-
Sáng kiến kinh nghiệm: Bồi dưỡng học sinh giỏi toán ở Tiểu học, chuyên đề “Các bài toán về tính tuổi
22 p | 108 | 9
-
Sáng kiến kinh nghiệm THCS: Phương pháp giải một số dạng toán về sự tương giao của đường thẳng và Parabol
18 p | 19 | 7
-
Toán 12: Sự tương giao của hàm trùng phương (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
1 p | 126 | 7
-
Toán 12: Sự tương giao của hàm trùng phương (Bài tập tự luyện) - GV. Lê Bá Trần Phương
1 p | 117 | 6
-
Toán 12: Sự tương giao của hàm phân thức (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
1 p | 117 | 6
-
Toán 12: Sự tương giao của hàm phân thức (Bài tập tự luyện) - GV. Lê Bá Trần Phương
2 p | 90 | 5
-
Bài tập về sự tương giao liên quan đến hàm phân thức
7 p | 78 | 2
-
Sáng kiến kinh nghiệm THPT: Phát triển các dạng bài toán vận dụng cao về sự tương giao của đồ thị hàm hợp có chứa dấu giá trị tuyệt đối từ bài toán cơ bản
44 p | 7 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn