intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

CÂU HỎI VÀ BÀI TẬP (Hai đường thẳng vuông góc )

Chia sẻ: Tran Vu | Ngày: | Loại File: DOC | Số trang:3

1.018
lượt xem
123
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

I)Mục tiêu: Luyện tập giải các bài tập về hai đường thẳng vuông góc, góc giữa 2 đường thẳng.Vận dụng tích vô hướng và các hệ thức lượng trong tam giác để giải quyết các bài tập về 2 đường thẳng vuông góc.Phát triển năng lực tư duy logich, tư duy trừu tượng và kĩ năng vẽ hình không gian. Thái độ : Chăm chỉ, cẩn thận, tích cực và say mê. sưu tầm từ internet

Chủ đề:
Lưu

Nội dung Text: CÂU HỎI VÀ BÀI TẬP (Hai đường thẳng vuông góc )

  1. THPT Hương Vinh Tiết : CÂU HỎI VÀ BÀI TẬP (Hai đường thẳng vuông góc ) ***** I)Mục tiêu: Luyện tập giải các bài tập về hai đường thẳng vuông góc, góc giữa 2 đường thẳng.Vận dụng tích vô hướng và các hệ thức lượng trong tam giác để giải quyết các bài tập về 2 đường thẳng vuông góc.Phát triển năng lực tư duy logich, tư duy trừu tượng và kĩ năng vẽ hình không gian. Thái độ : Chăm chỉ, cẩn thận, tích cực và say mê. II) Chuẩn bị : HS chuẩn bị bài tập ở nhà, SGK. Giáo viên chuẩn bị phấn mầu, thước thẳng, giáo án III)Tiến hành bài dạy : * Hoạt động 1 : Kiểm tra bài cũ : 1) Nêu định nghĩa góc giữa 2 đường thẳng trong không gian ? 2) Định nghĩa 2 đường thẳng vuông góc ? 3) Cho hai đường thẳng a,b có hai véc tơ chỉ phương tạo với nhau một góc 150 . Hỏi góc 0 giữa hai đường thẳng a,b là bao nhiêu ? *Hoạt động 2 : (Giải quyết các câu hỏi 7 và 8) Hoạt đông của Hoạt động của HS Tóm tắt ghi bảng GV * GV đặt câu hỏi *Yêu cầu 1 học sinh 7a) Sai. Minh hoạ : 7a trả lời và cho ví dụ a minh hoạ . c * GV đặt câu hỏi * Một HS trả lời và b 7b vẽ hình minh hoạ 7b) Sai. Minh hoạ (tương tự như hình 7a) * a, b có thể bằng * Vì a, b không cùng 8a) vectơ-không phương, suy ra C không ? chúng khác vectơ- * n, a, b đồng không phẳng khi nào ? * Khi và chỉ khi O,A,B,C cùng nằm n A trong 1 mặt phẳng C * OA, OB cùng * Kết luận : OA, OB vuông góc với O B cùng phương (trái OC và chúng giả thiết) cùng nằm trong 1 * Vẽ OA = a, OB = b, OC = n mặt phẳng, ta kết lụân điều gì? * Nếu n, a, b đồng phẳng thì O,A,B,C cùng nằm trong 1 mặt phẳng. Vì OC ⊥ OA, OC ⊥ OB ⇒ OA, OB cùng phương (trái giả thiết),Vậy : n, a, b không đồng phẳng *Nếu a, b không * a, b, n không đồng 8b) Gỉa sử a, b, c cùng vuông góc với n cùng phương thì phẳng (do câu a)
  2. THPT Hương Vinh kết luận gì về 3 * Nếu a, b không cùng phương với nhau thì theo kết quả vectơ a, b, n ? của câu a) ta có : a, b, n không đồng phẳng ⇒ c = xa + yb + z n *suy ra z = ? *z=0 *Vì a.n = b.n = c.n = 0 Do đó : HS kết luận. c.n = x(a.n) + y (b.n) + z (n.n) ⇒ 0 = z (n) 2 ⇒ z = 0 (do n ≠ 0 ⇒ c = x a + y b . Suy ra các đường thẳng cùng vuông góc với 1 đường thẳng thì cùng song song với 1 mặt phẳng. *Hoạt động 3 : (các bài tập chứng minh 2 đường thẳng vuông góc nhau bằng p.p vectơ) Hoạt động của Hoạt động của HS Tóm tắt ghi bảng GV *Nhận xét gì về (Đại diện nhóm lên 11a) Hai tam giác cân BAC, BAD bằng nhau cho ta : tam giác CBD ? bẳng trình bày) BC = BD ⇒ tam giác CBD cân tại B. Gọi J là trung điểm * HS lí luận, kết luận của CD, ta có : BJ ⊥ CD và AJ ⊥ CD *Kết luận gì về tam giác CBD cân tại Do đó: AB.CD = ( JB − JA).CD = JB.CD − JA.CD = 0 BM với CD, B AM với CD * Vuông góc. ⇒ AB ⊥ CD A I D J B C *Phân tích vectơ 1 1 * I .J = ( AD + BC ) 11b) * I J = ( AD + BC ) I.J theo AD, BC 2 2 Do đó : 1 1 1 1 1 1 AB .I .J = AB. AD + AB.BC = a 2 . + a 2 (− ) = 0 2 2 2 2 2 2 ⇒ AB ⊥ CD. Chứng minh tương tự IJ ⊥ CD *Nhận xét gì về * Chúng bằng nhau 9) * Ba tam giác cân ASB, BSC, CSA bằng nhau cho ta : 3 tam ciác cân AB = BC = CA ⇒ tam giác ABC đều. Gọi M là trung ASB, BSC, CSA điểm của BC , ta có : AM⊥BC và SM⊥BC. Do đó : ? BC.SA = BC ( SM + MA) = BC.SM + BC.MA = 0 + 0 = 0 ⇒ BC ⊥ SA . Chứng minh tương tự : SB⊥AC và SC⊥AB *AM như thế * Vuông góc nhau. nào với BC, SM như thế nào với
  3. THPT Hương Vinh BC ? S * SA = SM + MA *Phân tích SA theo SM , MA C M A B *Hoạt động 4 : cũng cố : - Qui tắc 3 điểm, qui tắc trừ, tích vô hướng. - Các định lí côsin, định lí sin trong tam giác. - Các định lí về sự đồng phẳng, không đồng phẳng của các vectơ trong không gian. *Dặn dò : - Xem lại các bài tập đã làm. - Xem trước bài đường thẳng vuông góc với mặt phẳng, Phân công làm đồ dung dạy học( vẽ hình) *Nhóm 1 : hình 97, 101 *Nhóm 2 : hình 99,100 * Nhóm 3 : hình 103, 104 * Nhóm 4 : hình 105, 106a,b. Nguồn maths.vn
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2