Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, A1, B, D năm 2014 - THPT Quế Võ 1
lượt xem 5
download
"Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, A1, B, D năm 2014 - THPT Quế Võ 1" đưa ra lời giải chi tiết các câu hỏi có trong "Đề thi thử Đại học lần 1 môn Toán khối A, A1, B, D năm 2014 - THPT Quế Võ 1", nhằm giúp các bạn dễ dàng ôn luyện và kiểm tra kết quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, A1, B, D năm 2014 - THPT Quế Võ 1
- www.VNMATH.com TRƯỜNG THPT QUẾ VÕ 1 HƯỚNG DẪN CHẤM THI THỬ ĐH LẦN 1 NĂM HỌC 2013-2014 Môn: Toán khối A, A1, B,D - Lớp 11 Câu NỘI DUNG Điểm 1 a. (1,0 điểm) (2,0 TXĐ:R, Toạ độ đỉnh I(1;-4) 0.25 điểm) Khoảng đồng biến , nghịch biến, BBT 0.25 Vẽ đồ thị (P): Đỉnh, Giao Ox, Oy,Trục ĐX 0.25 Vẽ đúng, đẹp 0.25 b.(1,0 điểm) Phương trình hoành độ giao điểm của(P) và (d) là: x 2 − 2 x − 3 = − x + m 0.25 ⇔ x 2 − x − 3 − m = 0 (1) Để (d) cắt (P) tại 2 điểm phân biệt thì pt(1) phải có 2 nghiệm phân biệt −13 0.25 ⇔ ∆ = 4m + 13 >0 ⇔ m > (*) 4 Gọi A ( x1 ; − x1 + m ) , B ( x2 ; − x2 + m ) là giao điểm của (d) và (P) thì x1, x2 là nghiệm của pt(1) x1 + x2 = 1 0.25 Ta có AB2 = 2( x1 − x2 ) 2 = 2( x1 + x2 ) 2 − 8 x1 x2 . Theo viet ta có x1 x2 = −m − 3 Suy ra AB2 = 8m+26 0.25 Theo gt AB = 3 2 ⇔ 8m+26 =( 3 2 )2 ⇔ m = -1 (thỏa mãn đk (*)). KL:… 2 Giải phương trình... (1,0 Pt cos 2 x cos x + cos x = sin 2 x sin x ⇔ cos 2 x cos x − sin 2 x sin x = − cos x 0.25 điểm) ⇔ cos 3 x = − cos x ⇔ cos 3 x = cos(π − x ) 0.25 π kπ x = + 3x = π − x + k 2π 4 2 ⇔ ⇔ (k ∈ Z) 0.25 3x = x − π + k 2π x = −π + kπ 2 π π kπ Vậy PT đã cho có nghiệm: x = − 2 + kπ ; x = 4 + 2 (k ∈ Z ) 0.25 3 Giải bất phương trình... (1,0 Bpt x 2 + 3x ≥ 2 + 5 x 2 + 15 x + 14 ⇔ 5 x 2 + 15 x + 14 − 5 5 x 2 + 15 x + 14 − 24 ≥ 0 0.25 điểm) t ≥ 8(tm) Đặt t = 5 x 2 + 15 x + 14 , đk t ≥ 0 , bpt trở thành t 2 − 5t − 24 ≥ 0 ⇔ 0.25 t ≤ −3( L) Với t ≥ 8 thì 5 x 2 + 15 x + 14 ≥ 8 ⇔ 5 x 2 + 15 x + 14 ≥ 64 ⇔ x 2 + 3 x − 10 ≥ 0 x ≥ 2 0.25 ⇔ x ≤ −5 KL : Vậy bpt có nghiêm là x ≥ 2 hoặc x ≤ −5 0.25 4 Giải hệ phương trình (1,0 x 2 − 3 y + 2 + 2 x 2 y + 2 y = 0(1) y ≥ 0 điểm) 2 đk 2 x + 4 x − y + 1 + 3 2 x − 1 = 1(2) x + 4x − y + 1 ≥ 0 0.25 y y y Ta có pt (1) ⇔ 3 −2 2 −1 = 0 ⇔ 2 = 1 ⇔ y = x 2 + 2 (3) x +2 2 x +2 x +2 2
- www.VNMATH.com Thay (3) vào (2) ta được 4 x − 1 + 3 2 x − 1 = 1 (4) 0.25 u = 4 x − 1 u + v = 1 u = 1 Giải pt(4) đặt đk u ≥ 0 , ta được hệ pt 2 ⇔ … ⇔ 0.25 = − u − 2v = 1 v = 0 3 v 3 2 x 1 u = 1 4 x − 1 = 1 1 9 V ới thì ⇔ … ⇔ x = .Suy ra y= (tmđk) v = 0 3 2 x − 1 = 0 2 4 0.25 1 9 KL: Vậy hệ pt có nghiệm là ; 2 4 5 (1,0 M ∈(d1) ⇒ M(2a-3; a), N ∈(d2) ⇒ N(b; 3b-2) 0.25 điểm) Ta có 3OM = (6a-9; 3a) ON = (b; 3b-2) 0.25 5 6 a + b = 9 a = 3OM + ON = 0 ⇔ ⇔ 3 0.25 3a + 3b = 2 b = −1 1 5 Suy ra M ; , N(-1;-5) 0.25 3 3 6 Tìm giá trị nhỏ nhất của biểu thức… (1,0 x4 y 4 z 4 x y z điểm) Ta có M = + + + + + 4 4 4 yz zx xy x4 y 4 z 4 x2 + y 2 + z 2 = + + + 4 4 4 xyz ( x − y ) ≥ 0 0.25 2 Ta có ( y − z ) ≥ 0 ⇒ x 2 + y 2 + z 2 ≥ xy + yz + zx .Dấu = xảy ra khi và chỉ khi 2 ( z − x ) ≥ 0 2 x= y=z x 4 y 4 z 4 xy + yz + zx x4 1 y4 1 z 4 1 Suy ra M ≥ + + + ⇔ M ≥ + + + + + 0.25 4 4 4 xyz 4 x 4 y 4 z Áp dụng bđt cô si với 5 số dương ta có x4 1 x4 1 1 1 1 x4 1 1 1 1 5 + = + + + + ≥ 55 = . 4 x 4 4x 4x 4x 4x 4 4x 4x 4x 4x 4 4 x 1 Dấu= xảy ra ⇔ = ⇔ x =1. 4 4x 0.25 y4 1 5 y4 1 Chứng minh tương tự ta được + ≥ . Dấu= xảy ra ⇔ = ⇔ y = 1. 4 y 4 4 4y z4 1 5 z4 1 + ≥ . Dấu= xảy ra ⇔ = ⇔ z =1. 4 z 4 4 4z 15 Suy ra M ≥ . Dấu đẳng thức xảy ra khi và chỉ khi x = y = z = 1 4 0.25 15 Vậy min M = . Đạt được khi x = y = z = 1 . 4 7.a . (1,0 điểm) Dễ thấy D ∉ (d ) , suy ra đường thẳng (d): 2x + y – 4 = 0 là pt của đường chéo AC 0.25 3
- www.VNMATH.com Vì ABCD là hình thoi nên AC ⊥ BD, và D ∈ BD suy ra pt của BD là: x – 2y – 7 = 0 Gọi I= AC ∩ BD , tọa độ điểm I là nghiệm của hệ pt: x − 2y = 7 x=3 ⇔ . ⇒ I (3; −2) 2 x + y = 4 y = −2 0.25 Mặt khác I là trung điểm của BD. Suy ra: B(5;-1) ⇒ IB = 5 Vì AC ⊥ BD nên S=2IA.IB mà S=20 ⇒ IA = 2 5 0.25 Lại có A∈(d) ⇒ A( x; 4 − 2 x) . Có IA = 2 5 ⇔ IA2 = 20 ⇔ 5( x − 3) 2 = 20 ⇔ ( x − 3) 2 = 4 x = 1 ⇒ A(1; 2) ⇔ 0.25 x = 5 ⇒ A(5; −6) Theo gt suy ra A (5;-6) (thỏa mãn) . Vì C đối xứng với A qua I nên C(1;2) KL: Vậy A(5;-6), B(5;-1), C(1:2) 8.a (1,0 T a có a 2 = 6; b 2 = 2 mà c 2 = a 2 − b 2 ⇒ c 2 = 4 ⇒ c = 2 . điểm) 0.25 Suy ra F1(-2;0), F2 (2;0) Vì ∆ // ∆1 và ∆ đi qua F2 nên pt của ( ∆ ) là: y = -x + 2 0.25 y = −x + 2 y = −x + 2 Tọa độ A,B là nghiệm của hpt x 2 y 2 ⇔ 2 + = 1 2 x − 6 x + 3 = 0 6 2 3+ 3 3− 3 x = x = 2 hoặc 2 0.25 ⇔ 1− 3 y = 1+ 3 y = 2 2 3 + 3 1− 3 3 − 3 1+ 3 Suy ra A ; ; B ; 2 2 2 2 Ta có AB = 6 , d ( F1 , AB) = d ( F1 , ∆) = 2 2 1 0.25 Suy ra diện tích tam giác ABF1 là S = d ( F1 , AB ). AB = 2 3 (đvdt) 2 9.a (1,0 1 + cos x + cos 2 x + cos 3 x điểm) = 2 cos x (*), đk cos 2 x + cos x ≠ 0 2 cos 2 x + cos x − 1 0.25 (1 + cos 2 x) + (cos x + cos 3 x) Ta có VT(*) = 2 cos 2 x − 1 + cos x 2 cos 2 x + 2 cos x cos 2 x VT(*) = 0.25 cos 2 x + cos x 2 cos x(cos x + cos 2 x) VT(*) = 0.25 cos 2 x + cos x VT(*) = 2 cos x =VP(*) (đpcm) 0.25 7.b (1,0 I ∈ (d ) ⇒ I ( x; −2 x) . Vì I là trung điểm của AC nên A(2x - 1; - 4x + 3) 0.25 điểm) Có BC = (3; −4) ⇒ BC = 5 0.25 PT của BC là: 4x + 3y + 5 = 0 4
- www.VNMATH.com −4 x + 10 1 1 −4 x + 10 d ( A, BC ) = , S = d ( A, BC ).BC mà S = 3 ⇔ 5=3 5 2 2 5 0.25 ⇔ 5 − 2x = 3 x =1 0.25 ⇔ x = 4 Suy ra A(1;-1); A(7;-13) 8.b (1,0 Tọa độ A, B là nghiệm của hệ pt điểm) x − 2 y −1 = 0 x = 2 y +1 0.25 2 ⇔ x + y − 4x − 6 y + 3 = 0 (2 y + 1) + y − 4(2 y + 1) − 6 y + 3 = 0 2 2 2 x = 2 y +1 x = 1 x = 5 ⇔ 2 ⇔ hoặc 5 y − 10 y = 0 y = 0 y = 2 0.25 Suy ra A(5;2), B(1;0) Đường tròn (T) có tâm I(2;3). 0.25 Vì A, B, C ∈ (T) và ∆ ABC vuông tại B ⇒ AC là đường kính của đường tròn (T) Suy ra I là trung điểm của AC ⇒ C(-1;4) 0.25 9.b π (1,0 Chứng minh rằng: cos 4 − x − cos 4 x = 2sin 2 x − 1 (**) 2 điểm) π Ta có VT(**) = cos 4 − x − cos 4 x = sin 4 x − cos 4 x 0.25 2 VT(**) = ( sin 2 x − cos 2 x )( sin 2 x + cos 2 x ) 0.25 VT(**) = sin 2 x − cos 2 x vì sin 2 x + cos 2 x = 1 0.25 VT(**) = −(cos 2 x − sin 2 x) = − (1 − 2sin 2 x ) = 2sin 2 x − 1 =VP(**) (đpcm) 0.25 Lưu ý: Học sinh làm theo cách khác đúng thì cho điểm tối đa 5
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đáp án đề thi thử Đại học môn Hóa học lần 2, năm 2012-2013
14 p | 192 | 22
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 143 | 9
-
Đáp án Đề thi thử Đại học môn Toán khối A năm 2012-2013 - Huỳnh Đức Khánh
6 p | 104 | 9
-
Đáp án đề thi thử đại học môn Toán khối A, A1, B năm 2014
7 p | 138 | 9
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối B năm 2014 - THPT Ngô Gia Tự
5 p | 91 | 7
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối D năm 2014 - THPT Ngô Gia Tự
5 p | 78 | 7
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối D năm 2014 - THPT Tứ Kỳ
5 p | 75 | 6
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1, B tháng 4/2014
11 p | 82 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối B năm 2014 - THPT Lê Quý Đôn
8 p | 107 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1 năm 2014 - THPT Lý Thái Tổ
4 p | 66 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối B, D năm 2014 - THPT Ngô Gia Tự
4 p | 103 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A tháng 5/2014
7 p | 82 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A tháng 5/2014
7 p | 81 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, B năm 2013 - THPT Thuận Thành số 1
4 p | 90 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, A1, B năm 2014 - THPT Tứ Kỳ
5 p | 97 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A tháng 4/2014
8 p | 81 | 5
-
Đáp án đề thi thử đại học năm 2012 môn: Toán - Đề số 06
9 p | 63 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn