ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 172
lượt xem 5
download
Tham khảo đề thi - kiểm tra 'đáp án và đề thi thử đại học - trường thpt nguyễn huệ - đắk lắk - đề số 172', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 172
- SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐẮK LẮK ĐỀ THI THỬ ĐẠI HỌC TRƯỜNG THPT NGUYỄN HUỆ MÔN TOÁN NĂM 2012 - 2013 Thời gian làm bài: 180 phút. Câu I: (2 điểm) Cho hàm số: y = x − 3 ( m + 1) x + 9 x + m − 2 (1) có đồ thị là (Cm) 3 2 1) Khảo sát và vẽ đồ thị hàm số (1) với m =1. 2) Xác định m để (Cm) có cực đại, cực tiểu và hai điểm cực đại cực ti ểu đ ối xứng v ới nhau qua đ ường 1 thẳng y = x . 2 Câu II: (2,5 điểm) 1) Giải phương trình: sin 2 x ( cos x + 3) − 2 3cos3 x − 3 3cos2 x + 8 ( ) 3 cos x − s inx − 3 3 = 0 . 1 �1 � 2) Giải bất phương trình : log 2 ( x 2 + 4 x − 5 ) > log 1 � �. 2 2 � +7� x π 3) Tính diện tích hình phẳng giới hạn bởi các đường y=x.sin2x, y=2x, x= . 2 Câu III: (2 điểm) 1) Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đ ều c ạnh a, c ạnh bên h ợp v ới đáy m ột góc là uuu r 1 uuur 450. Gọi P là trung điểm BC, chân đường vuông góc h ạ từ A’ xu ống (ABC) là H sao cho AP = AH . gọi K 2 là trung điểm AA’, ( α ) là mặt phẳng chứa HK và song song với BC c ắt BB’ và CC’ t ại M, N. Tính t ỉ s ố th ể VABCKMN tích . VA ' B ' C ' KMN 6 =5 a2 +a − 2) Giải hệ phương trình sau trong tập số phức: a +a 2 a 2b 2 + ab 2 + b ( a 2 + a ) − 6 = 0 Câu IV: (2,5 điểm) 1) Cho m bông hồng trắng và n bông hồng nhung khác nhau. Tính xác su ất đ ể lấy đ ược 5 bông h ồng trong đó có ít nhất 3 bông hồng nhung? Biết m, n là nghiệm của hệ sau: 9 19 1 Cm −2 + Cn +3 + < m 2 Am 2 2 Pn −1 = 720 x2 y 2 2 ) Cho Elip có phương trình chính tắc + = 1 (E), viết phương trình đường thẳng song song Oy và 25 9 cắt (E) tại hai điểm A, B sao cho AB=4. 3) Cho hai đường thẳng d1 và d2 lần lượt có phương trình: x = 2+t x −1 y − 2 z −1 d1 : y = 2 + t d2 : = = 2 1 5 z = 3−t Viết phương trình mặt phẳng cách đều hai đường thẳng d1 và d2? Câu V: Cho a, b, c 0 và a 2 + b 2 + c 2 = 3 . Tìm giá trị nhỏ nhất của biểu thức a3 b3 c3 P= + + 1 + b2 1 + c2 1 + a2
- ĐÁP ÁN – BIỂU ĐIỂM
- Câu NỘI DUNG Điểm Câu I. b) y ' = 3 x 2 − 6( m + 1) x + 9 Để hàm số có cực đậi, cực tiểu: ∆' = 9(m + 1) 2 − 3.9 > 0 0,25đ = (m + 1) 2 − 3 > 0 ⇔ m ∈ (−∞ ;−1 − 3 ) ∪ (−1 + 3;+ ∞ ) m +1 2 1 Ta có y = x − ( ) 3 x − 6(m + 1) x + 9 − 2(m + 2m − 2) x + 4m + 1 2 3 3 Gọi tọa độ điểm cực đại và cực tiểu là (x1; y1) và (x2; y2) ⇒ y1 = −2(m 2 + 2m − 2) x1 + 4m + 1 0,25đ y 2 = −2(m 2 + 2m − 2) x2 + 4m + 1 Vậy đường thẳng đi qua hai điểm cực đại và cực tiểu là y = −2(m 2 + 2m − 2) x + 4m + 1 1 Vì hai điểm cực đại và cực tiểu đối xứng qua đt y = x ta có điều kiện cần 2 là [ ]1 − 2( m 2 + 2m − 2) . = −1 2 0,5đ ⇔ m + 2m − 2 = 1 2 m = 1 ⇔ m 2 + 2m − 3 = 0 ⇔ m = −3 x1 + x2 = 2(m + 1) Theo định lí Viet ta có: x1 .x2 = 3 Khi m = 1 ⇒ ptđt đi qua hai điểm CĐ và CT là: x1 + x 2 4 2 = 2 =2 y = - 2x + 5. Tọa độ trung điểm CĐ và CT là: y1 + y 2 = − 2( x1 + x2 ) + 10 = 1 2 2 0,25đ 1 Tọa độ trung điểm CĐ và CT là (2; 1) thuộc đường thẳng y = x ⇒ m = 1 2 thỏa mãn. Khi m = -3 ⇒ ptđt đi qua hai điểm CĐ và CT là: y = -2x – 11. Tọa độ trung x1 + x 2 = −2 2 điểm CĐ và CT là: y1 + y 2 = − 2( x1 + x2 ) + 10 = 9 2 2 0,25đ A' 1 C' Tọa độ trung điểm CĐ và CT là (-2; 9) không thuộc đường thẳng y = x Q 2 ⇒ m = −3 không thỏa mãn. B' Vậy m = 1 thỏa mãn điều kiện đề bài.K J 1) Giải phương trình: sin 2 x(cos x + 3) − 2 3. cos 3 x − 3 3. cos 2 x + 8( 3.I cos xE− sin x) − 3 3 = 0 N A 45 0,25đ ⇔ 2 sin x. cos 2 x + 6 sin x. cos x − 2 3. cos 3 x − 6 3 cos 2 x + 3 3 + 8( 3. cos x − sin x) − 3 3 = 0 M C ⇔ −2 cos 2 x( 3 cos x − sin x) − 6. cos x( 3 cos x − sin x) + 8( 3 cos x − sin x) = 0 P ⇔ ( 3 cos x − sin x)(−2 cos 2 x − 6 cos x + 8) = 0 B H
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đáp án và đề thi thử ĐH môn Lý phần điện xoay chiều (4 đề)
20 p | 256 | 87
-
Đáp án và đề thi thử ĐH môn Hóa (2007-2008)_M234
4 p | 135 | 26
-
Đáp án và đề thi thử ĐH môn Hóa_Biên soạn: Phạm Ngọc Sơn
5 p | 129 | 24
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 1
4 p | 113 | 7
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 6
4 p | 114 | 7
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 8
5 p | 85 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 7
4 p | 82 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 5
4 p | 73 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 15
4 p | 67 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 3
4 p | 101 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 2
4 p | 84 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 14
4 p | 87 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 13
4 p | 72 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 12
4 p | 78 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 11
4 p | 72 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 10
4 p | 69 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 9
4 p | 68 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 4
5 p | 69 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn