intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề ôn tập tốt nghiệp THPT môn Toán năm 2020 - Sở GD&ĐT Khánh Hòa - Đề số 27

Chia sẻ: Ochuong_999 Ochuong_999 | Ngày: | Loại File: DOC | Số trang:7

41
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề ôn tập tốt nghiệp THPT môn Toán năm 2020 - Sở GD&ĐT Khánh Hòa - Đề số 27 là tài liệu tham khảo hữu ích dành cho giáo viên trong quá trình giảng dạy và phân loại học sinh. Đồng thời giúp các em học sinh củng cố, rèn luyện, nâng cao kiến thức môn Toán. Để nắm chi tiết nội dung các bài tập mời các bạn cùng tham khảo đề thi.

Chủ đề:
Lưu

Nội dung Text: Đề ôn tập tốt nghiệp THPT môn Toán năm 2020 - Sở GD&ĐT Khánh Hòa - Đề số 27

  1.      SỞ GD&ĐT KHÁNH HÒA          KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2020 ĐỀ THAM KHẢO SỐ 27                               Bài thi: TOÁN                                                   (Đề kiểm tra gồm 6  trang)     (Thời gian:90  phút, không kể thời gian phát đề) Họ, tên thí sinh: ........................................................................ Số báo danh: ............................................................................... Câu 1. Lan có 10 bông hoa hồng và 8 bông hoa cúc, có bao nhiêu cách chọn ra một bông hoa? A. 10 . B. 18 . C. 80 . D. 8 Câu 2. Cho cấp số nhân  ( un )  với  u1 = 2 , u2 = −8 . Lựa chọn đáp án đúng. A.  S6 = 130 . B.  u5 = 256 . C.  S5 = 256 . D.  q = −4 . Câu 3. Nghiệm của phương trình  log 2 ( − x + 1) = 3  là A.  x = 1 . B.  x = −1 . C.  x = −7 . D.  x = −8 . Câu 4. Cho hình lập phương có cạnh bằng  b . Tính diện tích toàn phần của hình lập phương. A.  S = 6b 2 . B.  S = 6b . C.  S = 4b 2 . D.  S = b3 . Câu 5. Tập xác định của hàm số  y = log5 ( x − 1)   là  A.  ( 1; + ). B.  ( − ;1) . C.  ( 0; + ). D.  ( − ; + ). Câu 6. Nếu  F ( x )  là  một nguyên hàm của hàm số  f ( x ) trên khoảng  K  thì: A.  f ( x)dx = F ( x). B.  f ( x)dx = − F ( x ) + C , C ᄀ. C.  f ( x)dx = F ( x) + C , C ᄀ. D.  F ( x) dx = f ( x) + C , C ᄀ. 3a Câu 7. Hình chóp tứ  giác đều có cạnh đáy bằng a và chiều cao bằng  . Thể  tích của khối chóp  2 bằng a3 a3 a3 a3 A.  . B.  . C.  . D.  . 3 2 6 9 Câu 8. Cho khối nón có đường cao h và bán kính đáy r. Thể tích khối nón đã cho bằng 1 A.  π r 2 h . B.  π r r 2 + h 2 . C.  2π r r 2 + h 2 . D.  π r 2 h . 3 Câu 9. 3 ( ) Khối cầu có thể tích bằng  36π cm , khi đó bán kính mặt cầu bằng A.  6 ( cm ) . B.  3 ( cm ) . C.  9 ( cm ) . D.  6 ( cm ) . Câu 10. Cho hàm số  y = f ( x ) có bảng biến thiên như sau: Hàm số đã cho đồng biến trên khoảng nào dưới đây? Trang 1 / 7
  2. ( A.  − ; 2 . ) B.  ( 1; + ). C.  ( −1;1) . D.  ( − ; −2 ) . Câu 11. Với  a  là số thực dương tùy ý,  log 2 a 2  bằng 1 1 A.  2 + log 2 a . B.  + log 2 a . C.  2 log 2 a . D.  log 2 a 2 2 Câu 12. Cho hình vuông  ABCD  cạnh bằng  3 . Gọi  I  và  H  lần lượt là trung điểm của các cạnh  AB   và  CD .Khi quay hình vuông đó xung quanh trục  IH  ta được một hình trụ tròn xoay. Diện tích   xung quanh của khối trụ tròn xoay tạo thành là A.  9π . B.  18π . C.  36π . D.  27π . Câu 13. Cho hàm số  y = f ( x )  có bảng biến thiên dưới đây. Khẳng định nào sau đây đúng? A. Hàm số có đúng một cực trị. B. Hàm số đạt cực tiểu tại  x = 1  và không có điểm cực đại. C. Đồ thị hàm số có điểm cực đại  A ( 0;6 ) . D. Hàm số có giá trị cực tiểu bằng  1 . Câu 14. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?  A.  y = − x 4 + 2 x 2 . B.  y = x 4 − 2 x 2 . C.  y = x3 − 3 x 2 . D.  y = − x 3 + 3 x 2 . Câu 15. Cho hàm số  y = f ( x)  xác định trên  R \ { 0} , liên tục trên mỗi khoảng xác định và có bảng biến  thiên như sau Trang 2 / 7
  3. Hỏi đồ thị hàm số trên có bao nhiêu đường tiệm cận? A. 0. B. 1. C. 2. D. 3 2 Câu 16. Tập nghiệm của bất phương trình  2 x + 2 > 2 x + 4 x −2  là A.  (−4;1). B.  [ −4;1] . C.  ( −�; −4] �[ 1; +�) . D.  ( −�; −4 ) �( 1; +�) . Câu 17. Cho hàm số   y = f ( x ) có đồ  thị  như  hình bên. Tìm tất cả  các giá trị  thực của tham số   m  để  phương trình  f ( x ) = m + 2  có bốn nghiệm phân biệt. y 1 1 O x 3 4 A.  −4 < m < −3 . B.  −4 m −3 . C.  −6 m −5 . D.  −6 < m < −5 . 3 3 4 Câu 18. Cho  f ( x)dx = a , f ( x)dx = b  thì  f ( x)dx bằng 1 4 1 A.  a + b . B.  a − b . C.  b − a . D.  −a − b . Câu 19. Số phức liên hợp của số phức  z = −2 + 3i  là  A.  z = 2 + 3i . B.  z = 2 + 3i . C.  z = −2 + 3i . D.  z = −2 − 3i . Câu 20. Cho hai số phức  z1 = 3 + i  và  z2 = 5 − i . Phần thực của số phức  z1.z2  là A.  14 . B. 16 . C.  2 . D. 8 . Câu 21. Cho hai số phức  z1 = 1 + 2i và  z2 = 3 − 4i . Điểm biểu diễn của số  phức  w = z1 + z2 trong mặt  phẳng tọa độ  Oxy là điểm nào trong các điểm sau? A.  M ( 4; − 2 ) . B.  N ( −2; 4 ) . C.  P ( 4; 2 ) . D.  Q ( 2; 4 ) . r r rr Câu 22. Cho  a = ( −1; − 1;0 ) , b = ( 1;0; − 1) . Tính góc giữa hai vectơ  a, b. A.  1500 . B.  300 . C.  1200 . D.  600 . Câu 23. Trong không gian  Oxyz , cho mặt cầu  ( S ) : x + y + z + 8 y − 6 z + 4 = 0 . Tâm của  ( S )  có tọa độ  2 2 2 là A.  ( 0; −4;3) . B.  ( 0; 4;3) . C.  ( −4;3; −2 ) . D.  ( 0; 4; −3) . Câu 24. Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng Oxy? r r r r A.  n = (0;0;1) . B.  n = (0;1;0) . C.  n = (1;0;0) . D.  n = (1;1;0) . x =  2  −  t Câu 25. Trong không gian  Oxyz , điểm nào dưới đây thuộc đường thẳng  d : y =  −  t ? z = −3 + t A.  M ( 1; −1; −2 ) . B.  N ( 2; −1; −3) . C.  P ( −1; −1;1) . D.  Q ( −2;0;3) . Câu 26. Cho hình chóp  S . ABC có  SA  vuông góc với mặt phẳng  ( ABC ) ,  SA = a , tam giác  ABC vuông  cân tại  B và  AC = a 2  (minh họa như hình vẽ). Góc giữa  SB  và  ( ABC )  bằng Trang 3 / 7
  4. A.  30o . B.  45o . C.  60o . D.  90o . Câu 27. Cho hàm số   y = f ( x ) liên tục trên  ᄀ và có bảng biến thiên như sau : Số điểm cực trị của hàm số đã cho là A.  0 . B.  3 . C.  1 . D.  2 . Câu 28. Tổng giá trị  lớn nhất và giá trị  nhỏ  nhất của hàm số   y = f ( x) = x3 − 3 x 2 + 5  trên đoạn [1;3]  bằng A. 4. B. 5. C. 6. D. 7. 9 � �b Câu 29. Xét các số thực  a  và  b  thỏa mãn  log 3 �a � � �= log 1 3 3 . Mệnh đề nào dưới đây đúng? �3 � 27 1 1 1 1 A.  a − 2b = . B.  a + 2b = . C.  2b − a = . D.  2a − b = . 18 18 18 18 Câu 30. Số giao điểm của đồ thị hàm số  y = x3 − x 2 + 5 và trục hoành là  A.  0 . B.  3 . C.  1 . D.  2 . Câu 31. Số nghiệm nguyên thuộc đoạn  [ 0;10]  của bất phương trình  7 7 x  là x+6 A.  3 . B.  4 . C.  11 . D. 10 . 2 Câu 32. Cho hình nón có góc ở đỉnh bằng  60 , diện tích xung quanh bằng  18a π . Thể tích  V của khối  nón đã cho bằng A.  9π a 3 3 . B.  3π a 3 3 . C.  9π a 3 . D.  3π a 3 . 1 0 Câu 33. Cho  f ( x ) dx = 9 . Tính tích phân  I = f ( 3x + 1) dx . −2 −1 1 A.  I = 3 . B.  I = −3 . C.  I = 9 . . D.  I = 3 Câu 34. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số  y = x3 − 4 x  và trục hoành. A.  S = 6 . B.  S = 8 . C.  S = 16 . D.  S = 0 . Câu 35. Môđun của số phức  z = 1 − 3i  bằng A.    11. B.  8 . C.  10 . D.  12. Câu 36. Gọi  z0  là nghiệm phức có phần  ảo dương của phương trình  z 2 − 2 z + 5 = 0 . Môđun của số  phức  z0 − i  bằng Trang 4 / 7
  5. A.  2 . B.  2 . C.  10 . D. 10 . Câu 37. Trong không gian  Oxyz , cho mặt phẳng  ( P ) : 2 x − 4 y − 1 = 0 . Vectơ  nào sau đây là một vectơ  chỉ phương của đường thẳng vuông góc với mặt phẳng  ( P ) ? r r r r A.  u4 = ( 2; −4; −1) . B.  u3 = ( 2;1;0 ) . C.  u1 = ( 1; −2;0 ) . D.  u2 = ( −2; 4;1) . Câu 38. Trong không gian  Oxyz, cho hai điểm   A(1; −3; 2)   và   B (2; 4;0) . Phương trình chính tắc của  đường thẳng  d  qua hai điểm  A, B  là x −1 y + 3 z − 2 x−2 y−4 z A.  = = . B.  = = . 1 7 −2 1 7 2 C.  x − 1 = y + 3 = z − 2 . D.  x − 2 = y − 4 = z . 1 −7 2 1 7 2 Câu 39. Có  6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên  6 học sinh, gồm  3  học sinh  lớp A ,  2  học sinh lớp  B  và  1  học sinh lớp  C  ngồi vào hàng ghế đó sao cho mỗi ghế có đúng   một học sinh. Xác suất để học sinh lớp  C  không ngồi cạnh học sinh lớp  B  bằng 1 3 2 4 A.  B.  C.  D.  6 20 15 5 Câu 40. Cho hình chóp  SABC có đáy là tam giác vuông tại  A ,  AB = 2a, AC = 4a ,  SA vuông góc với  mặt phẳng đáy. Góc giữa mặt phẳng  ( SBC ) và mặt phẳng  ( ABC ) bằng  45o . Gọi  M là trung  điểm  AB . Khoảng cách giữa hai đường thẳng SM  và  BC bằng 2a 4a 5 4a 2a 5 A.  . B.  . C.  . D.  . 5 5 5 5 mx + 3 Câu 41. Cho hàm số  f ( x ) =  ( m là tham số thực). Gọi  S  là tập hợp các giá trị nguyên của  m   x+m+2 sao cho hàm số  f ( x )  nghịch biến trên khoảng  ( − ; −2 ) . Tính tổng các phần tử của  S . A.  −5 . B.  −3 . C.  −6 . D.  −4 . Câu 42. Một người gửi tiền tiết kiệm vào một ngân hàng với lãi suất  6,1% năm. Biết rằng nếu không  rút tiền ra khỏi ngân hàng thì sau mỗi năm số  tiền lãi sẽ  được nhập vào gốc và tính lãi cho  năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được số  tiền lãi ít nhất bằng số  tiền gửi ban đầu, giả định trong thời gian này lãi suất không thay đổi và người đó không rút   tiền ra ? A. 12 năm. B. 11 năm. C. 10 năm. D. 13 năm. Câu 43. Cho hàm số  y = ax 3 + bx 2 + cx + d  có đồ thị như hình dưới đây. Trong các giá trị  a ,  b , c , d  có  bao nhiêu giá trị âm? Trang 5 / 7
  6. A.  2 . B.  1 . C.  4 . D.  3 . Câu 44. Cắt một hình trụ bởi mặt phẳng song song với trục ta được thiết diện là hình vuông có diện   tích bằng 36, biết khoảng cách từ  tâm đáy đến thiết diện bằng  1 .Tính thể  tích của khối trụ  giới hạn bởi hình trụ đã cho. A.  20π . B. 10π . C.  30π . D.  60π . 1 Câu 45. Cho hàm số   f ( x )   có đạo hàm liên tục trên đoạn   [ 0;1] , thỏa mãn   ( x + 1) f ( x ) dx = 10   và  0 1 2 f ( 1) − f ( 0 ) = 2 . Tính  I = f ( x ) dx . 0 A.  I = 1 . B.  I = 8 . C.  I = −12 . D.  I = −8 . Câu 46. Cho hàm số  f ( x )  có bảng biến thiên như sau: � 5π � Số nghiệm thuộc đoạn  �0;  của phương trình  f ( cos x ) = 1  là � 2 �� A. 7. B. 4. C. 5. D. 6. 1 + xy x 2 + y 2 + xy − 1 Câu 47. Cho  x, y  là các số thực dương thỏa mãn  ln = . Biết giá trị lớn nhất của  x+ y 2 xy a của biểu thức  P =  bằng   trong đó  a  là số nguyên tố. Tính  a.b 2 . x+ y b A.  80 . B. 180 . C.  48 . D. 108 . Câu 48. Cho hàm số  y = f ( x ) = ax + bx + c  có đồ thị như hình vẽ. Tính tổng tất cả các giá trị nguyên  2 của tham số  m  sao cho giá trị lớn nhất của hàm số  g ( x ) = f ( x ) + m  trên đoạn  [ 0; 4]  bằng  9 . A.  −10 . B.  −6 . C.  4 . D. 8 . Câu 49. Cho khối tứ diện đều  ABCD  có thể tích là  V . Gọi  M ,  N ,  P ,  Q  lần lượt là trung điểm của  AC ,  AD ,  BD ,  BC . Thể tích khối chóp  BMNPQ  là Trang 6 / 7
  7. V V V V 2 A.  . B.  . C.  . D.  . 6 3 4 3 log 3 ( x + y ) = m � Câu 50. Cho hệ phương trình  , trong đó  m là tham số thực. Hỏi có bao nhiêu giá  ( ) log 2 x 2 + y 2 = 2m trị của  m để hệ phương trình đã cho có đúng hai nghiệm nguyên phân biệt? A. 3. B. 2. C. 1. D. Vô số. ­­­Hết ­­ Trang 7 / 7
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
4=>1