intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2020-2021 - Sở GD&ĐT Bắc Ninh

Chia sẻ: Dang Huu Luyen | Ngày: | Loại File: PDF | Số trang:3

40
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

“Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2020-2021 - Sở GD&ĐT Bắc Ninh” là tài liệu tham khảo được TaiLieu.VN sưu tầm để gửi tới các em học sinh đang trong quá trình ôn thi học sinh giỏi Toán, giúp các em củng cố lại phần kiến thức đã học và nâng cao kĩ năng giải đề thi. Chúc các em học tập và ôn thi hiệu quả!

Chủ đề:
Lưu

Nội dung Text: Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2020-2021 - Sở GD&ĐT Bắc Ninh

  1. UBND TỈNH BẮC NINH ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH SỞ GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC 2020 - 2021 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Môn thi: TOÁN 9 Thời gian làm bài: 150 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC Câu 1 (4,0 điểm) x y z a b c x2 y 2 z 2 1. Cho + + = 1 và + + = 0 . Chứng minh rằng: 2 + 2 + 2 = 1 a b c x y z a b c 2x + 2 x x −1 x x + 1 2. Cho biểu thức P = + − x x− x x+ x a. Rút gọn P . b. Tìm giá trị nhỏ nhất của P khi x≥4. Câu 2 (2,0 điểm) Cho phương trình: x2 −2mx + m2 − m −6 = 0 (m là tham số). 1. Tìm m để phương trình có hai nghiệm. 2. Với giá trị nào của m thì phương trình có hai nghiệm x1 và x2 sao cho x1 + x2 = 8 Câu 3 (4,0 điểm)  x3 + xy + x = 2 x 2 y + 2 y 2 + 2 y 1. Giải hệ phương trình:   x + 1 + 4 y − 4 x + 1 = 3 2 y 2 2. Tìm các số tự nhiên x, y, z sao cho x2 + y2 + z2 + 3 < xy + 3y + 2z Câu 4 (2,0 điểm) Cho ba số dương a, b, c thỏa mãn a + b + c =9. Tìm giá trị nhỏ nhất của biểu a b c thức: P = + + b3 + 5b2 − 3b + 18 c3 + 5c2 − 3c + 18 a3 + 5a2 − 3a + 18 ( ) Câu 5 (6,0 điểm): Cho tam giác ABC vuông tại A AB < AC ngoại tiếp đường tròn tâm O . Gọi D, E, F lần lượt là tiếp điểm của (O) với các cạnh AB, AC, BC . Đường thẳng BO cắt các đường thẳng EF, DF lần lượt tại I, K . 1. Tính số đo góc BIF . 2. Giả sử M là điểm di chuyển trên đoạn CE. a. Khi AM = AB, gọi H là giao điểm của BM và EF . Chứng minh rằng ba điểm A, O, H thẳng hàng. b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O); P, Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF . Xác định vị trí điểm M để độ dài đoạn thẳng PQ lớn nhất. Câu 6 (2,0 điểm) 1. Cho 19 điểm trong đó không có 3 điểm nào thẳng hàng nằm trong một hình lục giác đều có cạnh bằng 1. Chứng minh rằng luôn tồn tại một tam giác có ít nhất một góc không lớn hơn 450 và 3 nằm trong đường tròn có bán kính nhỏ hơn . 5 abc − 1 2. Tìm các số tự nhiên a, b, c thỏa mãn 1< a < b < c và P = nhận giá trị (a − 1)(b − 1)(c − 1) nguyên. ====== Hết ====== Họ và tên thí sinh :..................................................... Số báo danh:…….................... (File word đề+đáp án: zalo 0984024664 (5k))
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
10=>1