ĐỀ THI MÔN: HÀM PHỨC VÀ PHÉP BIẾN ĐỔI LAPLACE<br />
MÃ MÔN HỌC: 1001060<br />
THỜI GIAN: 75 PHÚT<br />
NGÀY THI: 04/06/2015<br />
Đề thi gồm 02 trang bao gồm 10 câu hỏi trắc nghiệm và 3 câu hỏi tự luận<br />
(Được phép sử dụng tài liệu)<br />
MÃ ĐỀ THI: 1001-060-132<br />
<br />
PHẦN TRẮC NGHIỆM LỰA CHỌN (5 ĐIỂM)<br />
Câu 1: Tìm biến đổi Laplace L te −2t sin (5t ) :<br />
<br />
<br />
10p + 20<br />
A. L te −2t sin (5t ) =<br />
2<br />
<br />
<br />
p 2 + 4 p + 29<br />
<br />
(<br />
<br />
B. L te −2t sin (5t ) =<br />
<br />
<br />
<br />
)<br />
<br />
(<br />
<br />
)<br />
<br />
A. Re f (z ) = −<br />
C. Re ( f ( z ) ) =<br />
<br />
(p<br />
<br />
2<br />
<br />
)<br />
<br />
− 4 p + 29<br />
<br />
2<br />
<br />
10 (p + 2)<br />
D. L te −2t sin (5t ) =<br />
2<br />
<br />
<br />
2<br />
<br />
(p − 2) + 25<br />
<br />
<br />
<br />
<br />
<br />
10p − 20<br />
C. L te −2t sin (5t ) =<br />
2<br />
<br />
<br />
2<br />
<br />
( p + 2) + 25<br />
<br />
<br />
<br />
<br />
<br />
Câu 2: Cho hàm phức f (z ) =<br />
<br />
10p − 20<br />
<br />
( ) . Tìm phần thực Re<br />
<br />
z Re e z<br />
<br />
Im (z )<br />
<br />
xe x cos y<br />
y<br />
<br />
( f ) với z = x + iy .<br />
<br />
(<br />
<br />
)<br />
<br />
(<br />
<br />
)<br />
<br />
B. Re f (z ) = e x cos y<br />
<br />
xe x cos y<br />
y<br />
<br />
D. Re f (z ) = −e x cos y<br />
<br />
Câu 3: Cho hàm số u (x , y ) = ax + e x cos (ay ). Xác định hằng số phức a sao cho u(x , y ) là phần thực<br />
của một hàm giải tích trên ℂ .<br />
A. a = 1 hoặc a = 2<br />
C. a = 1 hoặc a = −1<br />
<br />
B. a = 0<br />
D. Không tồn tại a<br />
1<br />
Câu 4: Khai triển Laurent của hàm f (z ) = (2z + 1) cos trong lân cận của điểm z = 0 là:<br />
<br />
<br />
z <br />
<br />
<br />
<br />
<br />
2<br />
1 1<br />
<br />
<br />
A. ∑ (−1) <br />
+<br />
<br />
(2n + 2)! (2n )! z 2n<br />
<br />
<br />
<br />
n =0<br />
<br />
<br />
<br />
<br />
∞<br />
n<br />
2<br />
1 <br />
<br />
C. ∑ (−1) <br />
<br />
+<br />
<br />
(n + 1)! z 2n −1 n ! z 2n <br />
<br />
<br />
<br />
n =0<br />
<br />
<br />
∞<br />
<br />
<br />
<br />
<br />
<br />
2<br />
1<br />
<br />
<br />
B. ∑ (−1) <br />
+<br />
<br />
(2n )! z 2n −1 (2n )! z 2n <br />
<br />
<br />
<br />
n =0<br />
<br />
<br />
<br />
<br />
∞<br />
n<br />
2<br />
1 1<br />
<br />
D. ∑ (−1) <br />
+<br />
<br />
<br />
(2n + 2)! (2n )! z 2n<br />
<br />
<br />
<br />
n =0<br />
<br />
<br />
∞<br />
<br />
n<br />
<br />
n<br />
<br />
Câu 5: Cho hàm f (z ) có khai triển Laurent tại trong lân cận của điểm z = 0 là<br />
f (z ) =<br />
<br />
Tính tích phân I =<br />
<br />
∫<br />
<br />
∞<br />
<br />
∑ (−1)<br />
<br />
n<br />
<br />
n =0<br />
<br />
<br />
<br />
<br />
<br />
22n<br />
1<br />
.<br />
<br />
+<br />
<br />
<br />
(2n )! z 2n +1 (2n )! z 2n <br />
<br />
<br />
<br />
<br />
<br />
<br />
z 5 f (z )dz .<br />
<br />
|z |=2<br />
<br />
4<br />
1<br />
<br />
A. 2πi − <br />
<br />
<br />
5! 6! <br />
<br />
<br />
<br />
B.<br />
<br />
2πi<br />
6!<br />
<br />
C.<br />
<br />
8πi<br />
5!<br />
<br />
D. −<br />
<br />
2πi<br />
6!<br />
<br />
3<br />
<br />
Câu 6: Cho hàm phức f (z ) =<br />
<br />
(<br />
<br />
ez<br />
<br />
z z 2 + 6z + 18<br />
<br />
)<br />
<br />
. Hãy chọn phát biểu SAI:<br />
Trang 1/7 - Mã đề thi 1001-060-132<br />
<br />
A.<br />
B.<br />
C.<br />
D.<br />
<br />
z<br />
z<br />
z<br />
z<br />
<br />
= −3 − 3i là cực điểm cấp 1<br />
= −3 + 3i và z = −3 − 3i là các điểm bất thường cô lập<br />
= −3 + 3i là cực điểm cấp 1<br />
= 0 là cực điểm cấp 2<br />
<br />
Câu 7: Cho hàm phức f (z ) =<br />
<br />
sin πz<br />
<br />
z (2z − 1)<br />
2<br />
<br />
. Hãy chọn phát biểu ĐÚNG:<br />
<br />
<br />
1<br />
<br />
A. Res f (z ), 0 = −π và Res f (z ), = 2<br />
<br />
<br />
<br />
<br />
2<br />
<br />
<br />
1<br />
<br />
C. Res f (z ), 0 = −πi và Res f (z ), = 2<br />
<br />
<br />
<br />
<br />
2<br />
<br />
<br />
(<br />
<br />
(<br />
<br />
<br />
1<br />
<br />
<br />
<br />
B. Res f (z ), 0 = −π và Res f (z ), = 4<br />
<br />
<br />
2<br />
<br />
<br />
1<br />
<br />
D. Res f (z ), 0 = 2 và Res f (z ), = −π<br />
<br />
<br />
<br />
<br />
2<br />
<br />
<br />
)<br />
<br />
(<br />
<br />
)<br />
<br />
(<br />
<br />
Câu 8: Biến đổi Laplace ngược nào sau đây là SAI?<br />
<br />
<br />
1<br />
= e 2t − et<br />
A. L −1 2<br />
p − 3p + 2 <br />
<br />
<br />
<br />
<br />
<br />
<br />
2p − 1 <br />
1<br />
<br />
= e t 2 cos (2t ) + sin (2t )<br />
<br />
C. L −1 <br />
<br />
2<br />
<br />
<br />
<br />
<br />
<br />
2<br />
<br />
<br />
(p − 1) + 4 <br />
<br />
)<br />
<br />
)<br />
<br />
B. L<br />
<br />
−1<br />
<br />
3<br />
2<br />
t<br />
3 <br />
t<br />
2<br />
<br />
−<br />
= 2e − 3e<br />
p − 1 2p + 3 <br />
<br />
<br />
<br />
3p − 2 <br />
= 3 cos (3t ) − 2 sin (3t )<br />
D. L −1 2<br />
p + 9<br />
3<br />
<br />
<br />
<br />
Câu 9: Giả sử hàm gốc f (t ) có ảnh là F (p ) , L f (t ) = F (p ) . Hãy chọn phát biểu ĐÚNG:<br />
<br />
<br />
t<br />
F ( p − 3)<br />
B. L ∫ e 3u f (u )dt =<br />
A. L e 3t f (t ) = F (p − 3)<br />
<br />
<br />
p −3<br />
0<br />
<br />
<br />
p<br />
C. L e t f (3t ) = F <br />
<br />
<br />
3<br />
<br />
<br />
<br />
<br />
D. L e 3t * f (t ) =<br />
<br />
<br />
<br />
F ( p − 3)<br />
p<br />
<br />
t<br />
<br />
Câu 10: Tìm ảnh của hàm gốc e * ∫ sin (3u )du :<br />
2t<br />
<br />
0<br />
<br />
A.<br />
<br />
C.<br />
<br />
3<br />
<br />
(<br />
<br />
B.<br />
<br />
)<br />
<br />
p ( p − 2) p 2 + 9<br />
<br />
1<br />
3<br />
+<br />
2<br />
p −2 p p +9<br />
<br />
(<br />
<br />
D.<br />
<br />
)<br />
<br />
3<br />
<br />
( p − 2 )( p<br />
<br />
2<br />
<br />
)<br />
<br />
+9<br />
<br />
1<br />
1<br />
3<br />
+<br />
+ 2<br />
p p −2 p + 9<br />
<br />
PHẦN TỰ LUẬN (5 ĐIỂM)<br />
Câu 11 (1.5 điểm). Áp dụng phép biến đổi Laplace giải phương trình vi phân sau:<br />
y′′ + y = tet + 1 với điều kiện y ( 0 ) = y′ ( 0 ) = 0.<br />
Câu 12 (2.0 điểm). Áp dụng phép biến đổi Laplace giải phương trình tích phân:<br />
t<br />
<br />
y + e * ∫ y ( u ) du = t + e 2t .<br />
2t<br />
<br />
0<br />
3<br />
<br />
Câu 13 (1.5 điểm). Cho hàm phức f ( z ) = ze z −1 .<br />
a) Khai triển Laurent hàm f trong lân cận của điểm z = 1.<br />
b) Sử dụng kết quả này tính tích phân I =<br />
<br />
∫<br />
<br />
f ( z ) dz.<br />
<br />
| z − i|= 3<br />
<br />
Trang 2/7 - Mã đề thi 1001-060-132<br />
<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
Trang 3/7 - Mã đề thi 1001-060-132<br />
<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
.........................................................................................................................................................................<br />
Trang 4/7 - Mã đề thi 1001-060-132<br />
<br />
.........................................................................................................................................................................<br />
<br />
Trang 5/7 - Mã đề thi 1001-060-132<br />
<br />