intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 25 - Đề 24

Chia sẻ: Mao Ga | Ngày: | Loại File: PDF | Số trang:2

20
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử đại học khối a, a1, b, d toán 2013 - phần 25 - đề 24', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 25 - Đề 24

  1. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Gọi (Cm) là đồ thị của hàm số y   x3  (2m  1) x 2  m  1 (1) m là tham số 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2.Tìm để đồ thị (Cm) tiếp xúc với đường thẳng y  2mx  m  1 Câu II (2 điểm):   1. Tìm nghiệm x   0;  của phương  2 rình: (1  cos x) (sin x  1)(1  cos x)  (1  cos x) (sin x  1)(1  cos x)  sin x  2  x 2  2  x  y2  3  y  5 2. Giải hệ phương trình:   2 .  x  2  x  y2  3  y  2  Câu III (1 điểm):  4 sin 4x Tính tích phân I   dx . cos x. tan 4 x  1 0 2 Câu IV (1 điểm): Cho khối lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a và đỉnh A’ cách đều các đỉnh A, B, C. Cạnh bên AA’ tạo với đáy góc 600. Tính thể tích của khối lăng trụ theo a. Câu V (1 điểm) Cho 4 số thực x, y, z, t  1 . Tìm giá trị nhỏ nhất của biểu thức:  1 1 1 1  P  (xyzt  1)  4  4  4  4   x  1 y 1 z 1 t 1  II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy cho D ABC có cạnh AC đi qua điểm M(0;– 1). Biết AB = 2AM, pt đường phân giác trong (AD): x – y = 0, đường cao (CH): 2x + y + 3 = 0. Tìm tọa độ các đỉnh của D ABC . 2. Trong không gian với hệ trục tọa độ Oxyz cho 4 điểm A(3;0;0), B(0;1;4), C(1;2;2), D(-1;-3;1). Chứng tỏ A,B,C,D là 4 đỉnh của một tứ diện và tìm trực tâm của tam giác ABC. Câu VIIa (1 điểm): Cho tập hợp X = {0; 1; 2; 3; 4; 5; 6}. Từ các chữ số của tập X có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và phải có mặt chữ số 1 và 2. B. Theo chương trình Nâng cao: Câu VIb(2 điểm): x +3 y-5 1. Viết phương trình đường thẳng (d) qua A(1 ; 2) và tạo với đường thẳng (D): = một 1 2 góc 450 .
  2. 2. Trong không gian với hệ tọa độ Oxyz cho đường thẳng d là giao tuyến của 2 mp: (P) : x - my + z - m = 0 và Q) : mx + y - mz -1 = 0, m là tham số. a) Lập phương trình hình chiếu Δ của (d) lên mặt phẳng Oxy. b) Chứng minh rằng khi m thay đổi, đường thẳng Δ luôn tiếp xúc với một đường tròn cố định trong mặt phẳng Oxy. Câu VIIb (1 điểm): Giải phương trình sau trên tập C : (z2 + z)2 + 4(z2 + z) – 12 = 0 -----------------------------------------Hết --------------------------------------------
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2