intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 27 - Đề 27

Chia sẻ: Mao Ga | Ngày: | Loại File: PDF | Số trang:2

26
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử đại học khối a, a1, b, d toán 2013 - phần 27 - đề 27', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 27 - Đề 27

  1. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) 2x  2 Câu I (2 điểm) Cho hàm số y  (H) x2 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (H) 2. Gọi M là một điểm tùy ý trên (H). Chứng minh rằng tiếp tuyến tại M luôn cắt hai đường tiệm cận của (H) tạo thành một tam giác có diện tích không đổi. Câu II (2 điểm) sin x sin 5 x 1. Giải phương trình lượng giác:   8 cos x.cos 3x sin 3x sin x 3 x  2 y  3  x  y  5  2. Giải hệ phương trình:   x, y  ¡  2 3  x  y  2 x  3 y  4  2  Câu III. (1 điểm) Tính thể tích khối tròn xoay tạo thành khi quay quanh trục hoành hình phẳng giới hạn e bởi đồ thị hàm số y   ln x , trục hoành và đường thẳng x  1 x Câu IV. (1 điểm) Cho tứ diện ABCD có tam giác BCD đều cạnh a. Gọi O là trung điểm BD, E là điểm đối xứng với C qua O. Biết AE vuông góc với mặt phẳng (ABD) và khoảng cách giữa 3a AE và BD bằng . Tính thể tích tứ diện ABCD cùng tang của góc giữa AC và mặt phẳng 4 (BCD). Câu V. (1 điểm) Cho x, y, z là 3 số thực dương có tổng bằng 3. Tìm giá trị nhỏ nhất của biểu thức: P = 2(x2 + y2 + z2) – 4xyz – 9x + 2011. PHẦN RIÊNG (3 điểm): Thí sinh chỉ được làm một trong hai phần (Phần A hoặc phần B) PHẦN A: Theo chương trình Chuẩn. Câu VI.a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(4; - 2), phương trình đường cao kẻ từ C và đường trung trực của BC lần lượt là x – y + 2 = 0; 3x + 4y – 2 = 0. Tìm tọa độ các đỉnh B và C. x 1 y 1 z  2 2. Trong không gian tọa độ Oxyz cho đường thẳng  :   và mặt phẳng 2 3 1 (P): 2x – y – 2z + 3 = 0. Gọi d là đường thẳng cắt  tại I và vuông góc với (P). Viết phương trình tham số của đường thẳng d biết khoảng cách từ I đến (P) bằng 3. Câu VII.a (1 điểm) Tìm tập hợp các điểm trên mặt phẳng tọa độ biểu diễn cho số phức z thỏa mãn:    2  z  i  z là số thuần ảo. PHẦN B: Theo chương trình Nâng cao. Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông cân tại A ngoại tiếp (C): x2 + y2 = 2. Tìm tọa độ 3 đỉnh của tam giác biết điểm A thuộc tia Ox. x 1 y z  2 2. Trong không gian tọa độ Oxyz cho đường thẳng d:   và mặt phẳng 2 1 3 (P): 2x + y + 2z – 2 = 0. Tìm tọa độ điểm M trên d có khoảng cách đến trục hoành gấp 2 lần khoảng cách đến mặt phẳng (P).
  2. log  2 x  2 y  1  2 xy  2 Câu VII.b (1 điểm) Giải hệ phương trình trên tập số thực:  x y x y 9.2  4.3  2 .3  36  ---------------------------------------Hết--------------------------------------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2