Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 32 - Đề 19
lượt xem 3
download
Tham khảo đề thi - kiểm tra 'đề thi thử đại học khối a, a1, b, d toán 2013 - phần 32 - đề 19', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 32 - Đề 19
- ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013 A.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm): Câu I (2 điểm): Cho hàm số y x 3 3mx 2 3(m 2 1) x m3 m (1) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. Câu II (2 điểm): 1. Giải phương trình : 2cos3x.cosx+ 3(1 s in2x)=2 3cos 2 (2 x ) 4 2. Giải phương trình : log 2 (5 2 x) log 2 (5 2 x).log 2 x 1 (5 2 x) log 2 (2 x 5) 2 log 2 (2 x 1).log 2 (5 2 x) 1 2 tan( x ) 6 Câu III (1 điểm): Tính tích phân I 4 dx 0 cos2x Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SC và mặt phẳng (AMN). Chứng minh SC vuông góc với AI và tính thể tích khối chóp MBAI. Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức P 3( x 2 y 2 z 2 ) 2 xyz . B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng : 3 x 4 y 4 0 . Tìm trên hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15. 2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 y 2 z 2 2 x 6 y 4 z 2 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S). Câu VIIa(1 điểm): Tìm hệ số của x 4 trong khai triển Niutơn của biểu thức : P (1 2 x 3 x 2 )10 2.Theo chương trình nâng cao: Câu VIb (2 điểm): x2 y 2 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp ( E ) : 1 và hai điểm A(3;-2) , B(-3;2) . 9 4 Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. 2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 y 2 z 2 2 x 6 y 4 z 2 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S). Câu VIIb (1 điểm): 2 1 22 2 0 2n n 121 Tìm số nguyên dương n sao cho thoả mãn C Cn Cn ... n Cn 2 3 n 1 n 1 ĐÁP ÁN VÀ THANG ĐIỂM
- Câu Điểm , 2 2 2. Ta có y 3 x 6mx 3(m 1) Để hàm số có cực trị thì PT y , 0 có 2 nghiệm phân biệt 05 x 2 2mx m 2 1 0 có 2 nhiệm phân biệt I 1 0, m Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là 025 B(m+1;-2-2m) m 3 2 2 Theo giả thiết ta có OA 2OB m 2 6m 1 0 025 m 3 2 2 Vậy có 2 giá trị của m là m 3 2 2 và m 3 2 2 . 1. PT cos4x+cos2x+ 3(1 sin 2 x ) 3 1 cos(4x+ ) 05 2 cos4x+ 3 sin 4 x cos2x+ 3 sin 2 x 0 sin(4 x ) sin(2 x ) 0 6 6 x k 18 3 05 2 sin(3 x ).cosx=0 6 x= k 2 Vậy PT có hai nghiệm x k và x k . II 2 18 3 1 5 x 2. ĐK : 2 2. x 0 05 Với ĐK trên PT đã cho tương đương với 2 log 2 (5 2 x ) 2 log 2 (5 2 x ) 2 log 2 (5 2 x) 2 log 2 (5 2 x) log 2 (2 x 1) log 2 (2 x 1) 1 x 4 log 2 (2 x 1) 1 1 log 2 (5 2 x ) 2 log 2 (2 x 1) x x 2 025 2 log 2 (5 2 x ) 0 x 2 Kết hợp với ĐK trên PT đã cho có 3 nghiệm x=-1/4 , x=1/2 và x=2. 025 tan( x ) 6 6 2 2 025 I 4 dx tan x 1 dx , cos 2x 1 tan x 0 cos2x (t anx+1) 2 0 1 tan 2 x
- III 1 Đặt t t anx dt= 2 dx (tan 2 x 1)dx cos x x 0t 0 05 1 x t 6 3 1 1 3 dt 1 3 1 3 025 Suy ra I 2 . 0 (t 1) t 10 2 AM BC , ( BC SA, BC AB ) Ta có AM SC (1) 05 AM SB , (SA AB ) Tương tự ta có AN SC (2) Từ (1) và (2) suy ra AI SC Vẽ IH song song với BC cắt SB tại H. Khi đó IH vuông góc với (AMB) 1 Suy ra VABMI S ABM .IH IV 3 a2 Ta có S ABM 05 4 IH SI SI .SC SA2 a2 1 1 1 2 2 2 2 2 IH BC a BC SC SC SA AC a 2a 3 3 3 2 3 1a a a Vậy VABMI 3 4 3 36 Ta c ó: P 3 ( x y z )2 2( xy yz zx) 2 xyz 025 3 9 2( xy yz zx) 2 xyz 27 6 x( y z ) 2 yz ( x 3) ( y z )2 27 6 x(3 x ) ( x 3) 2 025 1 ( x 3 15 x 2 27 x 27) 2 Xét hàm số f ( x ) x 3 15 x 2 27 x 27 , với 0
- 2 6 3a a 4 Theo giả thiết ta có AB 5 (4 2a )2 25 05 2 a 0 Vậy hai điểm cần tìm là A(0;1) và B(4;4). 2. Ta có mặt cầu (S) có tâm I(1;-3;2) và bán kính R=4 r Véc tơ pháp tuyến của ( ) là n(1; 4;1) 025 r Vì ( P) ( ) và song song với giá của v nên nhận véc tơ uu r r r 025 n p n v (2; 1; 2) làm vtpt. Do đó (P):2x-y+2z+m=0 VIa m 21 Vì (P) tiếp xúc với (S) nên d ( I ( P)) 4 d ( I ( P )) 4 025 m 3 Vậy có hai mặt phẳng : 2x-y+2z+3=0 và 2x-y+2z-21=0. 025 10 10 k 05 Ta có P (1 2 x 3 x 2 )10 C10 (2 x 3x 2 )k ( C10Cki 2k i 3i x k i ) k k k 0 k 0 i 0 k i 4 i 0 i 1 i 2 025 Theo giả thiết ta có 0 i k 10 i, k N k 4 k 3 k 2 VIIa Vậy hệ số của x 4 là: C10 24 C10C3 223 C10C22 32 8085 . 4 3 1 2 025 1. Ta có PT đường thẳng AB:2x+3y=0 x2 y2 Gọi C(x;y) với x>0,y>0.Khi đó ta có 1 và diện tích tam giác ABC là 05 9 4 1 85 85 x y S ABC AB.d (C AB ) 2x 3 y 3 2 2 13 13 3 4 85 x 2 y 2 170 3 2 3 13 9 4 13 VIb x2 y2 05 9 4 1 x 3 2 3 2 Dấu bằng xảy ra khi 2 . Vậy C ( ; 2) . x y y 2 2 3 2 Xét khai triển (1 x )n Cn Cn x Cn x 2 ... Cnn x n 0 1 2 Lấy tích phân 2 vế cân từ 0 đến 2 , ta được: 05 3n 1 1 0 22 1 23 3 2n 1 n VIIb 2Cn Cn Cn ... Cn n 1 2 3 n 1 0 2 1 22 2 2n n 3n 1 1 121 3n 1 1 Cn Cn Cn ... Cn 2 3 n 1 2(n 1) n 1 2(n 1) 3n 1 243 n 4 05 Vậy n=4.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử đại học khối A môn vật lý lần thứ 3
6 p | 268 | 90
-
Đề thi thử Đại học Khối A môn Toán năm 2013
4 p | 241 | 89
-
Đề thi thử Đại học khối A môn Toán năm 2013 - Đề 23
7 p | 202 | 81
-
Đề thi thử Đại học khối A môn Toán năm 2013 - Đề 7
5 p | 213 | 74
-
Đề thi thử Đại học khối D, A1 môn Tiếng Anh năm 2014 - THPT Lương Thế Vinh (357)
7 p | 553 | 72
-
Đề thi thử Đại học lần 2 khối A môn Hóa năm 2013 - Đề 1
5 p | 193 | 67
-
Đề thi thử Đại học khối A môn Toán năm 2013 - Đề 8
6 p | 213 | 63
-
Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 33 - Đề 2
6 p | 172 | 60
-
Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 33 - Đề 6
7 p | 194 | 58
-
Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 33 - Đề 5
2 p | 178 | 47
-
Đề thi thử Đại học khối D, A1 môn Tiếng Anh năm 2014 - THPT Lương Thế Vinh (209)
7 p | 406 | 39
-
Đề thi thử Đại học lần 2 môn Toán khối D năm 2014 - Trường THPT chuyên Vĩnh Phúc
6 p | 383 | 32
-
Đề thi thử Đại học khối D môn Ngữ Văn 2014 - Sở GD&ĐT Vĩnh Phúc (Đề 1)
5 p | 208 | 29
-
Đề thi thử Đại học môn Toán khối B năm 2014 - Đề số 22
4 p | 283 | 29
-
Đề thi thử đại học môn Lý khối A (có đáp án)
5 p | 124 | 21
-
Đề thi thử Đại học môn Lịch sử năm 2014 - Sở GDĐT Vĩnh Phúc
4 p | 227 | 18
-
Đề thi thử Đại học khối D môn Ngữ Văn 2014 - Trường THPT Yên Lạc
5 p | 214 | 16
-
Đề thi thử Đại học khối A, A1 môn Lý năm 2013 - Trường THPT chuyên Nguyễn Trãi (Mã đề 612)
15 p | 96 | 7
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn