intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử THPTQG môn Toán lần 2 năm 2019 - THPT Chuyên Lương Văn Tụy, Ninh Bình

Chia sẻ: Trần Thị Ta | Ngày: | Loại File: PDF | Số trang:30

18
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Xin giới thiệu tới các bạn học sinh Đề thi thử THPTQG môn Toán lần 2 năm 2019 - THPT Chuyên Lương Văn Tụy, Ninh Bình, giúp các bạn ôn tập dễ dàng hơn và nắm các phương pháp giải bài tập, củng cố kiến thức cơ bản. Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPTQG môn Toán lần 2 năm 2019 - THPT Chuyên Lương Văn Tụy, Ninh Bình

  1. THPT CHUYÊN LƯƠNG VĂN ĐỀ THI THỬ THPT QUỐC GIA LẦN 2 NĂM 2019 TỤY Môn thi: TOÁN (Đề thi có 06 trang) Thời gian làm bài: 90 phút, không kể thời gian phát đề --------------------------------------- Họ, tên thí sinh: ................................................................... Số báo danh: ........................................................................ Câu 1: Cho hàm số y  f  x  có bảng biến thiên như hình bên. Mệnh đề nào dưới đây đúng? x - 0 2 + y’ + 0 - 0 + y 5 + - 1 A. Hàm số đạt cực đại tại x = 5 B. Hàm số không có cực trị C. Hàm số đạt cực tiểu tại x = 1 D. Hàm số đạt cực đại tại x = 0 Câu 2: Với  là số thực bất kỳ, mệnh đề nào sau đây sai?  B. 10   100 C. 10   10  10  2 2  A. 10  10 D. 10  2 2 Câu 3: Cho hàm số y  f  x  , x   2;3 có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f  x  trên đoạn  2;3 . Giá trị của S  M  m là: A. 6 B. 3 C. 5 D. 1 Câu 4: Trong các dãy số sau, dãy số nào là một cấp số cộng? A. 1; 3; 6; 9; 12 B. 1;3; 7; 11; 15 C. 1; 2; 4; 6; 8 D. 1; 3; 5; 7; 9 Câu 5: Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi, biết AA’ = 4a; AC = 2a, BD = a. Thế tích V của khối lăng trụ là 8 A. V  2a 3 B. V  4a 3 C. V  a 3 D. V  8a 3 3 Câu 6: Cho khối nón có bán kính đáy là r, chiều cao h. Thể tích V của khối nón đó là : caodangyhanoi.edu.vn
  2. 1 1 A. V  r 2 h B. V  r 2 h C. V  r 2 h D. V  r 2 h 3 3 Câu 7: Đường cong ở hình bên dưới là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ? A. y  x 3  3x 2  1 B. y  x 3  3x 2  1 C. y  x 4  2x 3  1 D. y  x 3  3x  1 Câu 8: Một khối trụ có thiết diện qua một trục là một hình vuông. Biết diện tích xung quanh của khối trụ bằng 16 Thể tích V của khối trụ bằng A. V  8 B. V  16 C. V  64 D. V  32 Câu 9: Với a và b là hai số thực dương, a  1. Giá trị của a loga b bằng 3 1 1 A. 3b B. b3 C. b 3 D. b 3 Câu 10: Cho biết hàm số f  x  có đạo hàm f '  x  và có một nguyên hàm là F  x  . Tìm   2f  x   f '  x   1dx ? A. I  2F  x   f  x   x  C B. I  2xF  x   f  x   x  C C. I  2xF  x   x  1 D. I  2F  x   xf  x   C Câu 11: Trong các hàm số sau, hàm số nào đồng biến trên ? A. f  x   x 4  4x  1 B. f  x   x 3  3x 2  3x  4 2x  1 C. f  x   D. f  x   x 4  2x 2  4 x 1 Câu 12: Tập hợp tâm các mặt cầu đi qua ba điểm phân biệt không thẳng hàng là : A. Một mặt cầu B. Một đường thẳng C. Một mặt phẳng D. Một mặt trụ Câu 13: Tập nghiệm S của bất phương trình 3x  e x là A. S  B. S  \ 0 C. S   0;   D. S   ;0  Câu 14: Cho phương trình log 22  4x   log 2  2x   5 . Nghiệm nhỏ nhất của phương trình thuộc khoảng A.  0;1 B.  3;5 C. 1;3 D.  5;9  Câu 15: Cho hàm số f  x  có đạo hàm f '  x   x  x  1 x  2  ; x  2 . Số điểm cực trị của hàm số đã cho là:
  3. A. 3 B. 4 C. 2 D. 1 Câu 16: Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là 7! A. B. 21 C. A37 D. D37 3! 1 Câu 17: Cho F  x  là một nguyên hàm của hàm số f  x   . Biết F 1  2 . Giá trị của F (2) là 2x  1 1 1 A. F  2   ln 3  2 B. F  2   ln 3  2 C. F  2   ln 3  2 D. F  2   2ln 3  2 2 2 Câu 18: Một hình nón tròn xoay có độ dài đường sinh bằng đường kính đáy. Diện tích đáy của hình nón bằng 9 . Khi đó đường cao hình nón bằng 3 3 A. B. 3 C. D. 3 3 3 2 Câu 19: Các khoảng nghịch biến của hàm số y  x 4  2x 2  4 là A.  ; 1 và 1;   B.  1;0  và 1;   C.  1;0  và  0;1 D.  ; 1 và  0;1 x 1 Câu 20: Đường tiệm cận đứng của đồ thị hàm số y  là x2 A. x = 1 B. y = 2 C. x = 2 D. y = 2 Câu 21: Từ một tập gồm 10 câu hỏi, trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta tạo thành các đề thi. Biết rằng một đề thi phải gồm 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu bài tập. Hỏi có thể tạo được bao nhiêu đề khác nhau? A. 100 B. 36 C. 96 D. 60 Câu 22: Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA   ABC  , SA  3a . Thể tích V của khối chóp S.ABCD là 1 A. V  2a 3 B. V  3a 3 C. V  a 3 D. V  a 3 3 Câu 23: Có bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau, sao cho trong mỗi số đó nhất thiết phải có mặt chữ số 0? A. 5040 B. 120 C. 15120 D. 7056 Câu 24: Giá trị nhỏ nhất của hàm số y  xex 1 trên  2;0 bằng 2 A. e2 B.  C. 1 D. 0 e 1 Câu 25: Cho cấp số nhân  u n  có công bội dương và u 2  , u 4  4 . Giá trị của u1 là 4 1 1 1 1 A. u1  B. u1  C. u1  D. u1   6 16 2 16 Câu 26: Cho hàm số y  f  x  xác định, liên tục trên \ 1 và có bảng biến thiên như hình dưới đây caodangyhanoi.edu.vn
  4. x  -1 0 1  y’ + - 0 + - y 1    -1  Tập hợp S tất cả các giá trị của m đề phương trình f  x   m có đúng ba nghiệm thực là A. S   1;1 B. S  1;1 C.  1;1 D. S  1 Câu 27: Cho hàm số y  x 3  2x  1 có đồ thị (C). Hệ số góc k của tiếp tuyến với (C) tại điểm có hoành độ bằng 1 bằng A. k = 25 B. k = -5 C. k = 10 D. k = 1 x 7 Câu 28: Đồ thị hàm số v  có bao nhiêu đường tiệm cận? x  3x  4 2 A. 0 B. 1 C. 3 D. 2 x 1 1 x Câu 29: Tổng các nghiệm của phương trình 3 3  10 là A. 0 B. 1 C. 1 D. 3 Câu 30: Tập nghiệm S của bất phương trình log 2  x  1  3 là A. S  1;9  B. S   ;10  C. S   ;9  D. S  1;10  Câu 31: Cho tứ diện ABCD có AC = 3a, BD = 4a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN a 5 5a a 7 7a A. MN  B. MN  C. M  D. MN  2 2 2 2 Câu 32: Cho hình chóp S.ABCD có đáy hình vuông cạnh a. Cạnh bên SA  a 6 và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S.ABCD A. 8a 2 B. a 2 2 C. 2a 2 D. 2a 2 Câu 33: Cho tứ diện ABCD có tam giác ABD đều là cạnh bằng 2, tam giác ABC vuông tại B, BC  3 . 11 Biết khoảng cách giữa hai đường thẳng chéo nhau AB và CD bằng . Khi đó độ dài cạnh CD là 2 A. 2 B. 1 C. 3 D. 2 Câu 34: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa đường thẳng SA và mặt phẳng (SHK) 2 2 7 14 A. B. C. D. 2 4 4 4
  5. Câu 35: Biết F  x    ax 2  bx  c  e  x là một nguyên hàm của hàm số f  x    2x 2  5x  2  e  x trên . Giá trị của biểu thức f  F  0   bằng 1 A. 9e B.  C. 3e D. 20e 2 e p Câu 36: Giả sử p, q là các số thực dương thỏa mãn log16 p  log 20 q  log 25  p  q  . Tìm giá trị của q A. 1 2  1  5  B. 1 2  1 5  C. 4 5 D. 8 5 Câu 37: Cho lăng trụ ABCA1B1C1 có diện tích mặt bên ABB1A1 bằng 4, khoảng cách giữa cạnh CC1 và mặt phẳng  ABB1A1  bằng 6. Tính thể tích khối lăng trụ ABCA1B1C1 A. 24 B. 18 C. 12 D. 9 Câu 38: Cho hình lập phương ABCD.A’B’C’D’. Có bao nhiêu mặt trụ tròn xoay đi qua sáu đỉnh A, B, D, A’, B’, D’? A. 2 B. 3 C. 4 D. 1 Câu 39: Cho hình thang ABCD có A  B  900 , AB  BC  a, AD  2a . Tính thể tích khối nón tròn xoay sinh ra khi quay quanh hình thang ABCD xung quanh trục CD 7 a 3 7 2a 3 7 2a 3 7 a 3 A. B. C. D. 12 12 6 6 Câu 40: Cho khối lập phương ABCD.A’B’C’D’. Cắt khối lập phương trên bởi các mặt phẳng (AB’D’) và (C’BD) ta được ba khối đa diện. Xét các mệnh đề sau: (I): Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác. (II): Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều (III): Trong ba khối đa diện thu được có hai khối đa diện bằng nhau Số mệnh đề đúng là: caodangyhanoi.edu.vn
  6. A. 2 B. 1 C. 3 D. 0 Câu 41: Cho một bảng ô vuông 3x3. Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên ( mỗi ô chỉ điền một số). Gọi A là biến cố: “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của biến cố A bằng: 5 1 1 10 A. P  A   B. P  A   C. P  A   D. P  A   7 3 56 21 Câu 42: Tính: tổng S tất cả các giá trị tham số m để đồ thị hàm số f  x   x 3  3mx 2  3mx  m2  2m3 tiếp xúc với trục hoành. 2 4 A. S  1 B. S  0 C. S  D. S  3 3 Câu 43: Cho số thực a dương khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục Ox mà cắt đường thẳng y  4x , y  a x , trục tung lần lượt tại M, N và A thì AN = 2AM. Giá trị của a bằng 1 1 2 1 A. B. C. D. 2 3 2 4 Câu 44: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và AB'  BC' . Tinh thể tích V của khối lăng trụ đã cho a2 6 7a 3 a3 6 A. V  B. V  C. V  a 3 6 D. V  4 8 8 3R Câu 45: Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn IM  . Hai mặt phẳng (P), (Q) qua M 2 và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng 600 . Độ dài đoạn thẳng AB bằng 3R A. AB  R B. AB  R 3 C. AB  D. AB  R hoặc AB  R 3 2
  7. Câu 46: Cho hàm số y  f  x  có đồ thị như hình vẽ bên dưới: Số giá trị nguyên dương của m để phương trình f  x 2  4x  5   1  m có nghiệm là A. 0 B. Vô số C. 4 D. 3 Câu 47: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA   ABCD  . Trên đường thẳng 1 vuông góc với  ABCD  tại D lấy điểm S’ thỏa mãn S'D  SA và S, S’ ở cùng phía đối với mặt phẳng 2 (ABCD). Gọi V1 là thể tích phần chung cảu hai khối chóp S.ABCD và S’.ABCD. Gọi V2 là thể tích khối V chóp S.ABCD, tỉ số 1 bằng V2 1 1 2 1 A. B. C. D. 2 3 2 4 Câu 48: Hình vẽ bên dưới mô tả đoạn đường đi vào GARA Ô TÔ nhà cô Hiền. Đoạn đường đầu tiên có chiều rộng bằng x(m), đoạn đường thẳng vào cổng GARA có chiều rộng 2,6(m). Biết kích thước xe ô tô là 5m x 1,9m (chiều dài x chiều rộng). Để tính toán và thiết kế đường đi cho ô tô người ta coi ô tô như một khối hộp chữ nhật có kích thước chiều dài bằng 5m, chiều rộng 1,9m. Hỏi chiều rộng nhỉ nhất của đoạn đường đầu tiên gần nhất với giá trị nào trong các giá trị bên dưới để ô tô có thể đi vào GARA được ? (giả thiết ô tô không đi ra ngoài đường, không đi nghiêng và ô tô không bị biến dạng). caodangyhanoi.edu.vn
  8. A. x = 3,7(m) B. x = 3,55(m) C. x = 4,27(m) D. x = 2,6(m) Câu 49: Cho hàm số f  x  có bảng biến thiên như sau: Hàm số y   f  x    3.  f  x   nghịch biến trên khoảng nào dưới đây ? 3 2 A.  3; 4  B.  ;1 C.  2;3 D. 1; 2  Câu 50: Số có giá trị nguyên cảu tham số m thuộc đoạn  2019; 2 để phương trình  x  1 log3  4x  1  log 5  2x  1  2x  m có đúng hai nghiệm thực là A. 2021 B. 1 C. 2 D. 2022 ----------- HẾT ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. ĐÁP ÁN
  9. 1-D 2-C 3-D 4-B 5-B 6-D 7-D 8-B 9-B 10-A 11-B 12-B 13-D 14-A 15-C 16-D 17-C 18-D 19-B 20-C 21-C 22-D 23-D 24-C 25-B 26-B 27-D 28-B 29-A 30-A 31-B 32-A 33-D 34-B 35-D 36-A 37-C 38-B 39-C 40-B 41-A 42-D 43-A 44-A 45-A 46-D 47-A 48-A 49-C 50-A (http://tailieugiangday.com – Website đề thi – chuyên đề file word có lời giải chi tiết) Quý thầy cô liên hệ đặt mua word: 03338.222.55 MA TRẬN ĐỀ THI Vận dụng Lớp Chương Nhận Biết Thông Hiểu Vận Dụng cao Đại số C3 C11 C15 C26 C28 C42 Chương 1: Hàm Số C1 C7 C20 C19 C24 C27 C46 C49 Chương 2: Hàm Số Lũy Thừa Hàm Số C2 C9 C13 C29 C30 C14 C36 C43 C50 Mũ Và Hàm Số Lôgarit Chương 3: Nguyên Hàm - Tích Phân Và C10 C17 C35 Ứng Dụng Lớp Chương 4: Số Phức 12 (88%) Hình học Chương 1: Khối Đa C31 C34 C37 C22 C5 C32 C40 C33 C48 Diện C44 C47 Chương 2: Mặt Nón, C6 C8 C12 C38 C18 C39 C45 Mặt Trụ, Mặt Cầu Chương 3: Phương Pháp Tọa Độ Trong Không Gian caodangyhanoi.edu.vn
  10. Đại số Chương 1: Hàm Số Lượng Giác Và Phương Trình Lượng Giác Chương 2: Tổ Hợp - C16 C21 C23 C41 Xác Suất Lớp 11 Chương 3: Dãy Số, (12%) Cấp Số Cộng Và Cấp C4 C25 Số Nhân Chương 4: Giới Hạn Chương 5: Đạo Hàm Hình học Chương 1: Phép Dời Hình Và Phép Đồng Dạng Trong Mặt Phẳng  Chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song Chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian Đại số Chương 1: Mệnh Đề Tập Hợp Chương 2: Hàm Số Bậc Nhất Và Bậc Hai Chương 3: Phương Trình, Hệ Phương Lớp Trình. 10 Chương 4: Bất Đẳng (0%) Thức. Bất Phương Trình Chương 5: Thống Kê Chương 6: Cung Và Góc Lượng Giác. Công Thức Lượng Giác
  11. Hình học Chương 1: Vectơ Chương 2: Tích Vô Hướng Của Hai Vectơ Và Ứng Dụng Chương 3: Phương Pháp Tọa Độ Trong Mặt Phẳng Tổng số câu 8 18 20 4 Điểm 1.6 3.6 4.0 0.8 NHẬN XÉT ĐỀ Đề thi gồm 50 câu trắc nghiệm khách quan. Kiến thức tập trung trong chương trình lớp 12, còn lại là câu hỏi lớp 11 chiếm 10%. Không có câu hỏi lớp 10. Cấu trúc tương tự đề thi minh họa năm 2018-2019. 23 câu hỏi VD-VDC phân loại học sinh. 4 câu VDC: C33, C48, C49, C50. Chủ yếu các câu hỏi ở mức thông hiểu và vận dụng. Đề thi phân loại học sinh ở mức khá HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: D Phương pháp Ta có x  x 0 là điểm cực trị của hàm số y  f  x   tại điểm x  x 0 thì hàm số có y’ đổi dấu từ dương sang âm hoặc ngược lại. Cách giải Dựa vào BBT ta thấy hàm số cực đại tại x = 0 và đạt cực tiểu tại x = 2. Câu 2: C Phương pháp m Sử dụng các công thức  a  m n a m.n , a  n am n Cách giải caodangyhanoi.edu.vn
  12. Ta có 10   102  đáp án C sai. 2 Câu 3: D Phương pháp Dựa vào đồ thị hàm số để nhận xét GTLN và GTNN của hàm số và chọn đáp án đúng. Cách giải M  max f  x   f  3  3 Dựa vào đồ thị hàm số ta thấy trong  2; 3 thì  m  min f  x   f  2   2  S  M  m  3 2 1 Câu 4: B Phương pháp Các số a, b, c, d lập thành một CSC  b  a  c  b  d  c. Cách giải +) Đáp án A ta có: 3  1  4; 6   3  3  các số trong đáp án A không lập thành CSC. +) Đáp án B ta có: 3  1  4; 7   3  4; 11   7   4; 15   11  4  các số trong đáp án B lập thành một CSC có công sai d = -4. Câu 5: B Phương pháp Thể tích khối lăng trụ có diện tích đáy S và chiều cao h: V = Sh. 1 Công thức tính diện tích hình thoi ABCD là: SABCD  AC.BD. 2 Cách giải 1 1 Diện tích hình thoi ABCD: SABCD  AC.BD  .2a.a  a 2 . 2 2 Thể tích khối lăng trụ là: VABCD.A'B'C'D'  SABCD .AA'=a 2 .4a  4a 3 . Câu 6: D Phương pháp 1 Thể tích khối nón có bán kính đáy R và chiều cao h: V  R 2 h. 3 Cách giải 1 Thể tích khối nón có bán kính đáy R và chiều cao h: V  R 2 h. 3
  13. Câu 7: D Phương pháp Dựa vào dáng điệu của đồ thị và các điểm thuộc đồ thị hàm số để đưa ra nhận xét và chọn đáp án đúng. Cách giải Ta thấy đồ thị hàm số là hàm bậc 3 có nét cuối đi lên nên hàm số và có a > 0  loại đáp án B và C. Đồ thị hàm số đi qua điểm  1;3 nên ta có: Đáp án A:  1  3.  1  1  3  3  loại đáp án A. 3 2 Câu 8: B Phương pháp Công thức tính diện tích xung quanh hình trụ có bán kính đáy R, chiều cao h: Sxq  2rh. Công thức tính thể tích của khối trụ có bán kính đáy R và chiều cao h: V  R 2 h. Cách giải Theo đề bài ta có: h = 2r.  Sxq  2rh  16  2.2r 2  16  r  2.  V  r 2 h  22.2.2  16. Câu 9: B Phương pháp Sử dụng công thức : a loga b  bloga a  b. Cách giải Ta có: a loga b  b3loga a  b3 . 3 Câu 10: A Phương pháp Ta có : F  x    f  x  dx;f  x    f '  x  dx,  adx  ax  C. Cách giải Theo đề bài ta có : F  x    f  x  dx;f  x    f '  x  dx.  I    2f  x   f '  x   1dx  2F  x   f  x   x  C. Câu 11: B Phương pháp caodangyhanoi.edu.vn
  14. +) Hàm số y = f(x) đồng biến trên R  f '  x   0x  R. +) Hàm số y = f(x) nghịch biến trên R  f '  x   0x  R. Cách giải +) Đáp án A có: f '  x   2x  4  f '  x   0  x  2.  hàm số đồng biến trên  2;   , nghịch biến trên  ; 2  .  loại đáp án A. +) Đáp án B có: f '  x   3x 2  6x  3  3  x 2  2x  1  3  x  1  0x  R 2  hàm số đồng biến trên R.  chọn đáp án B. Câu 12: B Phương pháp Tập hợp tâm các mặt cầu đi qua ba điểm phân biệt A, B, C không thẳng hàng là trục của đường tròn ngoại tiếp tam giác ABC. Cách giải Tập hợp tâm các mặt cầu đi qua ba điểm phân biệt A, B, C không thẳng hàng là trục của đường tròn ngoại tiếp tam giác ABC. Câu 13: D Phương pháp Giải bất phương trình mũ bằng cách loganepe hai vế. Cách giải Ta có: 3x  ex  ln 3x  ln ex  x ln 3  x  x9ln 3 1)  0  x  0. Câu 14: A Phương pháp +) Đặt điều kiện để phương trình có nghĩa.  x  log a xy  log a x  log a y;log a  log a x  log a y y +) Sử dụng các công thức:  (giả sử các biểu thức là có log x  1 log x;log x m  m log x  a n n a a a nghĩa). Cách giải Điều kiện: x > 0. Ta có: log 22 (4x)  log 2 (2x)  5   log 2 4  log 2 x   2  log 2 2  log 2 x   5  0 2  4  4 log 2 x  log 22 x  2  2 log 2 x  5  0  log 22 x  2 log 2 x  3  0 x  2 log 2 x  1    2 log x   3  x  13  1  2 8
  15. 1 Vậy nghiệm bé nhất của phương trình là x    0;1 8 Câu 15: C Phương pháp Số điểm cực trị của đồ thị hàm số y = f(x) là nghiệm bội lẻ của phương trình f’(x) = 0. Cách giải x  0 Ta có: f '(x)  0  x  x  1 x  2   0   x  1 2  x  2 Trong đó có x  2 là nghiệm bội chẵn của phương trình, còn lại x  0; x  1 là các nghiệm bội lẻ của phương trình f '(x)  0 . Vậy hàm số có 2 điểm cực trị. Câu 16: D Phương pháp Số tập con gồm k phần tử của tập hợp gồm n phân tử là: Ckn tập hợp. Cách giải Số tập con gồm 3 phần tử của tập hợp gồm 7 phân tử là: C37 tập hợp. Câu 17: C Phương pháp 1 1 Sử dụng công thức nguyên hàm cơ bản:  ax  b dx  a ln ax  b  C. Cách giải 1 1 Ta có: F(x)   dx  ln 2x  1  C. 2x  1 2 1 F(1)  2  ln 2.1  1  C  2  C  2. 2 Có 1 1 1  F(x)  ln 2x  1  2  F(2)  ln 2.2  1  2  ln 3  2. 2 2 2 Câu 18: D Phương pháp +) Diện tích đường tròn có bán kính đáy R: S  R 2 . +) Công thức liên hệ giữa đường sinh với bán kính đáy và chiều cao của hình nón là: h  l2  r 2 Cách giải Theo đề bài ta có: Sd  r 2  9  r  3,l  2r  h  l2  r 2  4r 2  r 2  r 3  3 3. Câu 19: B Phương pháp +) Hàm số y = f(x) đồng biến trên  a; b   f '(x)  0x  (a; b). caodangyhanoi.edu.vn
  16. +) Hàm số y = f(x) nghịch biến trên  a; b   f '(x)  0x  (a; b). Cách giải x  0 Ta có: f '(x)  4x 3  4x  f '(x)  0  4x 3  4x  0  4x  x 2  1  0   x  1  x  1 Ta có xét bảng dấu: Như vậy hàm số đồng biến trên  ;1 và (0;1). Hàm số nghịch biến trên (-1;0) và 1;   . Câu 20: C Phương pháp +) Đường thẳng x = a được gọi là TCĐ của đồ thị hàm số y  f (x)  limf  x    x a Cách giải x 1 x 1 Ta có: lim  ; lim    x  2 là TCĐ của đồ thị hàm số. x 2 x2 x 2 x  2 Câu 21: C Phương pháp Sử dụng quy tắc cộng để làm bài toán. Cách giải Để chọn được 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu bài tập ta chia thành 2 TH: TH1: Chọn 1 câu lý thuyết và 2 câu bài tập có: C14 .C62 cách chọn. TH2: Chọn 2 câu lý thuyết và 1 câu bài tập có: C24 .C16 cách chọn. Như vậy có: C14 .C62 + C24 .C16 = 96 cách chọn. Câu 22: D Phương pháp 1 Công thức tính thể tích khối chóp có diện tích đáy S và chiều cao h là: V  Sh. 3 Cách giải 1 1 Ta có: VSABCD  SA.SABCD  .a 2 .3a  a 3 . 3 3
  17. Câu 23: D Phương pháp Gọi số cần lập có dạng abcde . Vì số cần lập là số chẵn nên e  0; 2; 4;6;8 e  0 Xét 2 TH:  để làm bài toán.  e  0; 2; 4;6;8 Cách giải Gọi số cần lập có dạng abcde . Vì số cần lập là số chẵn nên e  0; 2; 4;6;8 TH1: Chọn e  0  e có 1 cách chọn. Khi đó a, b, c, d có A94 cách chọn  có A94 cách chọn TH1. TH2: Chọn e  0; 2; 4;6;8  e có 4 cách chọn. a  0, a  e  a có 8 cách chọn. Chọn b, c, d trong các chữ số còn lại và nhất định phải có chữ số 0 nên có: 3. A72 cách chọn.  có 4.8.3. A72 = 4032 cách chọn. Như vậy có: A94 + 4032 = 7056 cách chọn. Câu 24: C Phương pháp Cách 1: Tìm GTLN và GTNN của hàm số y = f(x) trên  a; b bằng cách: +) Giải phương trình y’ = 0 tìm các nghiệm xi +) Tính các giá trị f  a  , f  b  , f  x i   x i   a; b  . Khi đó: min f  x   min f  a  ;f  b  ;f  x i  , max f  x   max f  a  ;f  b  , f  x i  a;b a;b Cách 2: Sử dụng tính năng MODE 7 để tìm GTLN và GTNN của hàm số trên  a; b . Cách giải Ta có: y '  e x 1  xe x 1  e x 1  x  1  0  x  1  0  x  1.  2 f  2   2e  e 1   f  1  e0  1  min y  1 khi x  2  2;0  f  0   0  Câu 25: B caodangyhanoi.edu.vn
  18. Phương pháp Công thức tổng quát của CSN có số hạng đầu là u1 và công bội q là: u n  u1.q n 1 Cách giải Gọi CSN có số hạng đầu là u1 và công bội q (q > 0).  1 u 2  u1.q  Theo đề bài ta có hệ phương trình:  4  q 2  16  q  4 (do q > 0). u  u .q 3  4  4 1 u2 1  u1   . q 16 Câu 26: B Phương pháp Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m song song với trục hoành. Cách giải Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m song song với trục hoành. Dựa vào BBT ta thấy, phương trình f(x) = m có đúng 3 nghiệm thực khi và chỉ khi m  1. Vậy S  1;1 . Câu 27: D Phương pháp Hệ số góc của tiếp tuyến với đồ thị hàm số y = f(x) tại điểm có hoành độ x  x 0 là k  f '  x 0  . Cách giải Ta có: y'  3x 2  2 Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ x = 1 là k  f ' 1  3.12  2  1. Câu 28: B Phương pháp Cho hàm số y = f(x). +) Nếu lim y  y 0  y  y 0 là TCN của đồ thị hàm số. x  +) Nếu lim y    x  x 0 là TCĐ của đồ thị hàm số. x  Cách giải TXĐ: D   7;   1 7  4 x 7 x 3 x 0 Ta có: lim y  lim 2  lim x  x  x  3x  4 x  3 4 x  2 x x Do D   7;   nên x 2  3x  4  0x  D  7;    Đồ thị hàm số không có TCĐ. Vậy đồ thị hàm số đã cho có 1 TCN duy nhất.
  19. Câu 29: A Phương pháp Sử dụng các công thức a m .a n  a mn ,a m : a n  a mn đưa về cùng cơ số 3. Cách giải 3x  3 x  1  10  3.3x  x  10  3.32x  10.3x  3  0   x 1   3 3x 1  31 x 3 3   x  1  3 Vậy S  1;1  Tổng số nghiệm của phương trình là -1 + 1 = 0. Câu 30: A Phương pháp Giải bất phương trình logarit cơ bản: log a f  x   b  a  1  0  f  x   a b . Cách giải log 2  x  1  3  0  x  1  8  1  x  9. Vậy tập nghiệm của bất phương trình S = (1;9). Chú ý: Chú ý tìm ĐKXĐ của phương trình. Câu 31: B Phương pháp +) Gọi P là trung điểm của AB. Chứng minh MNP vuông tại P. +) Áp dụng định lý Pytago trong tam giác vuông MNP tính MN. Cách giải Gọi P là trung điểm của AB. Ta có: 1 MP là đường trung bình của tam giác ABD  MP / /BD và MN  BD  2a 2 1 3a NP là đường trung bình của tam giác ABC  NP / / AC và NP  AC  2 2 Lại có AC  BD  MP  NP  MNP vuông tại P. Áp dụng định lý Pytago trong tam giác vuông MNP ta có: 9a 2 5a MN  MP 2  NP 2  4a 2   4 2 Câu 32: A caodangyhanoi.edu.vn
  20. Phương pháp Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp h2 chóp R   R day 2 4 Cách giải a 2 Bán kính đường tròn ngoại tiếp hình vuông ABCD cạnh a: R  2 Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp 2 2 h2 a 6 a 2  chóp R   R day 2        a 2 4  2   2    2 Vậy diện tích mặt cầu là S  4R 2  4 a 2  8a 2 Câu 33: D Phương pháp +) Dựng E sao cho ABCE là hình bình hành. Chứng minh d(AB;CD) = d(M;(CDE)). +) Dựng khoảng cách từ M đến (CDE). +) Áp dụng định lí Pytago trong các tam giác hình vuông tính CD. Cách giải Dựng E sao cho ABCE là hình bình hành như hình vẽ. Ta có: AB // CE  AB / /  CDE   CD  d  AB;CD   d  AB;  CDE    d  M;  CDE   với M là trung điểm của AB. Gọi N là trung điểm của CE. Tam giác ABD đều  MD  AB ABCE là hình bình hành có ABC  900 (gt)  ABCE là hình chữ nhật. (dhnb)  MN / /BC, BC  AB  MN  AB  AB   AND   CE   AND  MH  DN Trong (MND) kẻ MH  DN ta có:   MH   CDE  MH  CE  d  M;  CDE    MH  11 2
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2