intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Khóa luận tốt nghiệp đại học: Một số bài tập về liên kết trong cơ học lý thuyết

Chia sẻ: Minh Nhân | Ngày: | Loại File: PDF | Số trang:50

46
lượt xem
10
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tài tập trung giải quyết những vấn đề sau: Nghiên cứu cơ hệ có chịu liên kết hình học, nghiên cứu cơ hệ có chịu liên kết động học, ứng dụng để giải quyết một số bài tập về liên kết trong cơ học lý thuyết. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Khóa luận tốt nghiệp đại học: Một số bài tập về liên kết trong cơ học lý thuyết

  1. TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA VẬT LÝ HOÀNG THỊ HOÀI LINH MỘT SỐ BÀI TẬP VỀ LIÊN KẾT TRONG CƠ LÝ THUYẾT Chuyên ngành: Vật lý lý thuyết KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC HÀ NỘI, 2018
  2. TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA VẬT LÝ HOÀNG THỊ HOÀI LINH MỘT SỐ BÀI TẬP VỀ LIÊN KẾT TRONG CƠ LÝ THUYẾT Chuyên ngành: Vật lý lý thuyết KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Ngƣời hƣớng dẫn khoa học PGS.TS. NGUYỄN THỊ HÀ LOAN HÀ NỘI, 2018
  3. LỜI CẢM ƠN Lời đầu tiên, tôi xin bày tỏ lòng biết ơn chân thành tới PGS.TS. Nguyễn Thị Hà Loan, người đã chỉ bảo và nhiệt tình giúp tôi hoàn thành khóa luận này. Tôi cũng xin chân thành cảm ơn các thầy cô trong Khoa Vật lý trường Đại học Sư phạm Hà Nội 2 đã quan tâm, tạo mọi điều kiện thuận lợi giúp đỡ tôi hoàn thành khóa luận này. Cuối cùng tôi xin gửi lời cảm ơn chân thành đến gia đình, bạn bè luôn sát cánh bên tôi, động viên giúp đỡ tôi trong suốt quá trình học tập và nghiên cứu để hoàn thành khóa luận này. Hà Nội, ngày 19 tháng 04 năm 2018 Sinh viên Hoàng Thị Hoài Linh
  4. LỜI CAM ĐOAN Tôi xin cam đoan đề tài “ Một số bài tập về liên kết trong cơ học lý thuyết” được hoàn thành do sự nỗ lực của bản thân cùng sự hướng dẫn, giúp đỡ nhiệt tình của cô giáo PGS.TS. Nguyễn Thị Hà Loan. Tôi cũng xin cam đoan rằng kết quả này không trùng với kết quả của bất kỳ khóa luận tốt nghiệp khác. Nếu có gì không trung thực trong khóa luận tôi xin hoàn toàn chịu trách nhiệm. Hà Nội, ngày 19 tháng 04 năm 2018 Sinh viên Hoàng Thị Hoài Linh
  5. Mục lục MỞ ĐẦU ........................................................................................................... 1 1. Lý do chọn đề tài ........................................................................................... 1 2. Mục đích nghiên cứu ..................................................................................... 1 3. Nhiệm vụ nghiên cứu .................................................................................... 2 4. Đối tượng nghiên cứu.................................................................................... 2 5. Phương pháp nghiên cứu............................................................................... 2 6. Cấu trúc của khóa luận .................................................................................. 2 N I DUNG ....................................................................................................... 3 H NG : NH NG KH I NI M N ............................................... 3 1.1 Phương trình chuyển động .......................................................................... 3 1.1.1 Phương trình chuyển động, vectơ vận tốc, vectơ gia tốc ......................... 3 . .2 Phương trình chuyển động, vận tốc, gia tốc trong hệ tọa độ ................... 4 . .3 Phương trình chuyển động, vận tốc, gia tốc trong hệ tọa độ tự nhiên ..... 6 1.1.4 Phương trình chuyển động, vận tốc, gia tốc trong hệ tọa độ trụ .............. 7 . .5 Phương trình chuyển động, vận tốc, gia tốc trong hệ tọa độ cầu........... 10 .2 Xung lượng............................................................................................... 11 .2. Định luật biến thiên và bảo toàn xung lượng của chất điểm ................. 11 .2.2 Định luật biến thiên và bảo toàn xung lượng của hệ chất điểm. ............ 12 .3 Momen xung lượng .................................................................................. 14 .3. Định luật biến thiên và bảo toàn momen xung lượng của chất điểm .... 14 .3.2 Định luật biến thiên và bảo toàn momen xung lượng của hệ chất......... 15 .4 Năng lượng ................................................................................................ 17 .4. Định luật biến thiên động năng và bảo toàn cơ năng của chất điểm. .... 17 .4.2 Định luật biến thiên động năng và bảo toàn cơ năng của hệ chất.......... 18 1.5 Tọa độ suy rộng ......................................................................................... 19 1.6 Số bậc tự do .............................................................................................. 20
  6. H NG 2: LI N K T ................................................................................ 21 2. Khái niệm liên kết ..................................................................................... 21 2.2 Phương trình liên kết hình học .................................................................. 21 2.3 Phương trình liên kết động học ................................................................. 22 2.4 Liên kết lý tưởng ....................................................................................... 23 2.5 Dịch chuyển có thể và dịch chuyển ảo.................................................... 24 2.6 Lực suy rộng.............................................................................................. 26 H NG 3: M T S I T P V LI N K T ......................................... 27 3. ài tập về liên kết của vật với mặt tiếp xúc .............................................. 28 3.2 ài tập về liên kết của các vật trong hệ với nhau ..................................... 31 K T LU N ..................................................................................................... 43 T I LI U THAM KH O ............................................................................... 44
  7. MỞ ĐẦU 1. Lý do chọn đề tài Trong quá trình học tập và lĩnh hội phần kiến thức về lý thuyết nói chung và lý thuyết vật lý nói riêng thì việc giải bài tập giữ vai trò khá quan trọng. Nó giúp chúng ta củng cố, nắm vững và hiểu sâu sắc hơn phần lý thuyết đã học. Một trong những học phần trong chuyên ngành vật lý được học ở đại học đó là môn ơ học lý thuyết. Đây là bộ môn khoa học nghiên cứu các quy luật về chuyển động hoặc sự cân bằng và tương tác cơ học giữa các vật thể trong không gian, theo thời gian. Do đó số lượng bài tập tương đối nhiều và đa dạng. Ta có thể giải bài tập động lực học bằng các nguyên lý của cơ học. ác nguyên lý cơ học cũng cho phép ta thành lập được các phương trình vi phân chuyển động của cơ hệ và điều kiện cân bằng của cơ hệ. Giải các bài tập bằng các nguyên lý của cơ học đặc biệt thuận lợi khi tìm các lực liên kết tác dụng vào cơ hệ. Đồng thời áp dụng công cụ cơ học giải tích là một phần của cơ học lý thuyết trong đó nghiên cứu quy luật cân bằng và chuyển động của cơ hệ không tự do theo di chuyển và năng lượng dạng giải tích, cho ta một phương pháp ưu việt để giải các bài tập cơ học. Nội dung của cơ học giải tích trình bày các nguyên lý tổng quát của cơ học, từ đó rút ra các phương trình vi phân cơ bản của chuyển động, nghiên cứu phương trình đó và đề ra các phương pháp tích phân chúng. Vì vậy, tôi đã chọn đề tài “Một số bài tập về liên kết trong cơ học lý thuyết”. 2. Mục đích nghiên cứu - Nghiên cứu các loại liên kết 1
  8. - Giải quyết một số bài tập về liên kết 3. Nhiệm vụ nghiên cứu - Nghiên cứu cơ hệ có chịu liên kết hình học - Nghiên cứu cơ hệ có chịu liên kết động học - Ứng dụng để giải quyết một số bài tập về liên kết trong cơ học lý thuyết 4. Đối tƣợng nghiên cứu - Nghiên cứu liên kết một vật với các bề mặt tiếp xúc - Nghiên cứu liên kết của một cơ hệ với nhau 5. Phƣơng pháp nghiên cứu - Phương pháp nghiên cứu của vật lý lý thuyết và vật lý toán - Phương pháp nghiên cứu của cơ học 6. Cấu trúc của khóa luận - Đề tài “ Một số bài tập về liên kết trong cơ học lý thuyết ” có kết cấu gồm 3 phần: mở đầu, nội dung và kết luận. - Phần nội dung được chia làm 3 chương: hương : Những khái niệm cơ bản hương 2: Liên kết hương 3: Một số bài tập áp dụng 2
  9. NỘI DUNG CHƢƠNG 1: NH NG KH I NIỆM CƠ BẢN 1.1 Phƣơng trình chuyển động 1.1.1 Phương trình chuyển động, vectơ vận tốc, vectơ gia tốc a. Phương trình chuyển động Xét chuyển động của chất điềm M đối với hệ quy chiếu K được quy ước là đứng yên. Giả sử chất điềm M chuyển động trên đường cong AB. Đường cong do chất điểm chuyển động vạch ra trong không gian gọi là quỹ đạo của nó. Vị trí của M đối với hệ quy chiếu K được xác định bằng bán kính vectơ ⃗ kẻ từ gốc tọa độ O đến chất điểm M. Khi chất điểm M chuyển động thì bán kính vectơ ⃗ thay đổi cả về độ lớn và phương. Vì vậy, bán kính vectơ ⃗ là hàm của thời gian t: A ⃗ = ⃗( ) (1.1) z B Hệ thức trên xác định vị trí của chất điềm M trong không gian ở thời điểm t bất kỳ và được gọi là phương trình chuyển động của O chất điểm cho dưới dạng vectơ. Đó cũng chính x là phương trình quỹ đạo của chất điểm y cho dưới dạng thông số. b. Vectơ vận tốc: Để đặc trưng cho sự thay đổi bán kính vectơ ⃗ theo thời gian người ta đưa ra khái niệm vận tốc. Vận tốc là đại lượng vectơ đặc trưng cho độ nhanh, chậm, phương chiều chuyển động của chất điểm tại mỗi thời điểm và bằng đạo hàm hạng nhất của bán kính vectơ ⃗ theo thời gian. dr v (1.2) dt 3
  10. c. Vectơ gia tốc Để đặc trưng cho sự thay đổi của vectơ vận tốc theo thời gian ta đưa vào khái niệm gia tốc. Gia tốc chuyển động của chất điểm là một đại lượng vectơ, bằng đạo hàm hạng hai theo thời gian của bán kính vectơ ⃗ dv d 2 r w  (1.3) dt dt 2 Ở đây ta quy ước ký hiệu vi phân theo thời gian của một đại lượng bằng dấu chấm đặt trên ký hiệu của đại lượng ấy. . .. wvr 1.1.2 Phương trình chuyển động, vận tốc, gia tốc trong hệ tọa độ Descartes ác vectơ đơn vị trong hệ tọa độ Descartes Ox, Oy, Oz là ⃗⃗ , ⃗⃗ , ⃗⃗ . Trong hệ tọa độ Descartes có thể biểu diễn bán kính vectơ ⃗ xác định vị trí của chất điểm M z dưới dạng: M ⃗ ⃗⃗ ⃗⃗ ⃗⃗ (1.4) ⃗⃗ ⃗ Trong đó x, y, z là các thành phần của O bán kính vectơ ⃗ trên các trục tọa độ. ⃗⃗ ⃗⃗ y x Khi chất điểm chuyển động thì x, y, z đều biến đổi theo thời gian do đó ta có thể viết: () () (1.5) () 4
  11. ác phương trình ( .5) gọi là các phương trình chuyển động của chất điểm dưới dạng tọa độ hay còn gọi là phương trình quỹ đạo của chất điểm dưới dạng thông số trong tọa độ Descartes. Theo định nghĩa: ⃗⃗ ̇ ⃗⃗ ̇ ⃗⃗ ̇ ⃗⃗ (1.6) Gọi là các thành phần của ⃗⃗ trên các trục tọa độ thì có thể viết ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ Ta nhận được: ̇, ̇ ̇ Nghĩa là mỗi thành phần của ⃗⃗ trên một trục tọa độ bằng đạo hàm bậc nhất theo thời gian của tọa độ tương ứng. Độ lớn của vận tốc: √ √̇ ̇ ̇ (1.7) Gọi là các góc hợp bởi vectơ vận tốc với các trục tọa độ. Hướng của vectơ vận tốc được xác định bởi các cosin chỉ phương: vx vy vz cos α  , cosβ  , cos γ   v v v Theo định nghĩa của vectơ gia tốc ta có: dv d w  ( ̇ ⃗⃗ ̇ ⃗⃗ ̇ ⃗⃗ ) dt dt ⃗⃗⃗⃗ ̈ ⃗⃗ ̈ ⃗⃗ ̈ ⃗⃗ Gọi thành phần gia tốc trên các trục tọa độ là thì có thể viết: ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ Ta có thành phần gia tốc trên các trục tọa độ: ̈ ̈, ̈ Độ lớn của gia tốc: 5
  12. √ √̈ ̈ ̈ (1.8) Gọi là góc hợp bởi véctơ gia tốc với các trục tọa độ thì phương của vectơ gia tốc được xác định bởi các cosin chỉ phương. wx wy wz cos α1  , cosβ1  , cos γ1    w w w 1.1.3 Phương trình chuyển động, vận tốc, gia tốc trong hệ tọa độ tự nhiên Khi quỹ đạo chuyển động của chất điểm cho biết trước thì dùng phương pháp tọa độ tự nhiên để mô tả chuyển động của chất điểm lại thuận lợi hơn. O1 Ta chọn điểm O1 trên quỹ đạo làm điểm gốc S để tính độ dài cung S của quỹ đạo. Chiều dương M d⃗ của S lấy theo chiều tăng của nó trong quá trình ⃗ τ⃗⃗ d chuyển động. O Khi chất điểm M chuyển động trên quỹ đạo bán kính vectơ ⃗ của nó sẽ biến đổi theo sự biến đổi của tọa độ cung S, còn bản thân tọa độ cung S sẽ biến đổi theo thời gian. ⃗ ⃗( ) , () Phương trình ( ) được gọi là phương tình chuyển động của chất điểm theo quỹ đạo của nó. Để nghiên cứu chuyển động của chất điểm khi quỹ đạo của nó đã biết, thuận tiện hơn ta dùng hệ tọa độ vuông góc tạo thành bởi các vectơ đơn vị ⃗⃗ ⃗⃗ và ⃗⃗ [ ⃗ ⃗⃗]. Hệ tọa độ này gọi là hệ tọa độ tự nhiên hay tam diệm tự nhiên. Vectơ vận tốc ⃗⃗ và vectơ gia tốc ⃗⃗⃗⃗ của chất điểm có thể biểu diễn dưới dạng: 6
  13. dr dr ds v  ̇ ⃗⃗ (1.9) dt ds dt dv dn τ w ̈ ⃗⃗ ( ̇) (1.10) dt ds dr Trong đó τ  là vectơ đơn vị, tiếp tuyến với quỹ đạo và hướng theo ds chiều chuyển động của chất điểm. Hình chiếu của ⃗⃗ và ⃗⃗⃗⃗ trên các trục của tọa độ tự nhiên có dạng: ̇ s  2 ̈ wn  , wb  0 R Biết các thành phần ⃗⃗ và ⃗⃗⃗⃗ ta xác định được độ lớn và hướng của nó: √ ̇ (1.11) ̇ √ √( ̈ ) ( ) (1.12) ̈ ̇ Trong đó là các góc tạo bởi vectơ gia tốc ⃗⃗⃗⃗ với các vectơ đơn vị ⃗⃗ ⃗⃗. 1.1.4 Phương trình chuyển động, vận tốc, gia tốc trong hệ tọa độ trụ Trong hệ tọa độ trụ, vị trí của chất điểm M được xác định bởi ba tọa độ . z ⃗⃗ Khi đó bán kính vectơ ⃗ xác định vị trí của ⃗⃗φ O1 ρ chất điểm M được viết dưới dạng M’ ⃗ ( )⃗⃗ ( )⃗⃗ (1.13) 𝜃 ⃗⃗ρ O ρ φ M y x 7
  14. Những tọa độ trụ của điểm M liên hệ với các tọa độ Descartes của nó bằng các hệ thức sau đây: (1.14) Những vectơ đơn vị ⃗⃗ ⃗⃗ ⃗⃗ trong hệ tọa độ trụ liên hệ với các vectơ đơn vị ⃗ ⃗ ⃗⃗ trong hệ tọa độ Descartes được xác định như sau ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗ ⃗⃗ [⃗⃗ ⃗⃗ ] ⃗ ⃗ Khi chất điểm M chuyển động thì các vectơ đơn vị ⃗⃗ ⃗⃗ thay đổi chiều nên đạo hàm của chúng theo thời gian bằng: ⃗⃗̇ ̇( ⃗ ⃗ ) ̇ ⃗⃗ ⃗⃗̇ ̇ (⃗ ⃗ ) ̇ ⃗⃗ Phương trình chuyển động của chất điểm ở trong hệ tọa độ trụ: khi chất điểm M chuyển động thì đều biến đổi theo thời gian: () () (1.15) () Vận tốc của chất điểm trong hệ tọa độ trụ: ⃗⃗ ⃗⃗ ̇ ⃗⃗ ⃗⃗̇ ̇ ⃗⃗ ̇ ⃗⃗ ̇ ⃗⃗ ̇ ⃗⃗ = ⃗⃗ ⃗⃗ ⃗⃗ = ̇ ̇ ̇ √ √ ̇ ( ̇) ̇ (1.16) 8
  15. Gia tốc của chất điểm trong hệ tọa độ trụ: d⃗⃗ d ⃗⃗⃗⃗ ( ̈ )⃗⃗ ( ̇ )⃗⃗ ̈ ⃗⃗ d d ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ̈ wφ  1 d 2 ρ dt   ρ φ  , ̈ √ ⁄ {( ̈ ) [ ( ̇ )] ̈ } Khi chất điểm M chỉ chuyển động trong mặt phẳng thì z = 0 và hệ tọa độ trụ chuyển thành hệ tọa độ cực. Phương trình chuyển động, vận tốc, gia tốc của chất điểm trong hệ tọa độ cực: + Phương trình chuyển động: ( ), () + Vận tốc: √ √ ̇ ( ̇) + Gia tốc: √ ⁄ d {( ̈ ) [ ( ̇ )] } d 9
  16. 1.1.5 Phương trình chuyển động, vận tốc, gia tốc trong hệ tọa độ cầu. Vị trí của chất điểm M trong hệ tọa độ cầu z 𝑛⃗⃗𝑟 được xác định bằng ba tọa độ . M 𝑛⃗⃗𝜑 Khi chất điểm chuyển động thì 𝜃 𝑛⃗⃗𝜃 O 𝑟 y đều biến đổi theo thời gian. 𝜑 x () () () (1.17) Đây chính là phương trình chuyển động của chất điểm trong hệ tọa độ cầu. Mối liên hệ giữa tọa độ cầu và tọa độ Descartes được các định bằng các công thức: (1.18) Với , , ác vectơ đơn vị trong hệ tọa độ cầu liên hệ với các vectơ đơn vị trong hệ tọa độ Descartes: r 1 nr   ( ⃗ ⃗ ⃗⃗) r r =⃗ ⃗ ⃗⃗ ⃗⃗ ⃗ ⃗ ⃗⃗ [⃗⃗ ⃗⃗ ] ⃗ ⃗ ⃗⃗ Đạo hàm bậc nhất theo thời gian các vectơ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗̇ ̇ ⃗⃗ ̇ ⃗⃗ ⃗⃗̇ ̇ ⃗⃗ ̇ ⃗⃗ ⃗⃗̇ ̇ ⃗⃗ ̇ ⃗⃗ 10
  17. ác phương trình chuyển động, vectơ vận tốc và vectơ gia tốc của chất điểm trong hệ tọa độ cầu được biểu diễn dưới dạng: ( )⃗⃗ ( ) (1.19) dr v ̇ ⃗⃗ ⃗⃗̇ ̇ ⃗⃗ ̇ ⃗⃗ ̇ ⃗⃗ dt ̇ ( ̇ ̇ ) (1.20) dv w ̈ ⃗⃗ ̇ ⃗⃗̇ ⃗⃗̈ dt √ (1.21) π Khi θ  thì hệ tọa cầu chuyển thành hệ tọa độ cực. Khi đó ̇ ̈ và 2 chất điểm chuyển động trong mặt phẳng xOy. 1.2 Xung lƣợng 1.2.1 Định luật biến thiên và bảo toàn xung lượng của chất điểm Tích giữa khối lượng m của chất điểm và vận tốc ⃗⃗ của nó được gọi là xung lượng ⃗⃗ của chất điểm. ⃗⃗ ⃗⃗ (1.22) Khối lượng của chất điểm không thay đổi trong quá trình chuyển động nên từ (1.22) có thể nhận được định luật biến thiên xung lượng ⃗⃗̇ ⃗⃗ (1.23) Định luật biến thiên xung lượng của chất điểm: “ Đạo hàm của xung lượng theo thời gian bằng tổng các lực tác dụng lên chất điểm.” Nếu thành phần của lực trên một trục cố định nào đó bằng không tại mọi thời điểm thì thành phần của xung lượng trên trục đó được bảo toàn. Ví dụ: Fz = 0 thì Fz bảo toàn 11
  18. hú ý: Nếu thành phần của lực trên một trục di động bằng 0 thì chưa thể suy ra thành phần xung lượng trên trục đó bằng 0. Định luật bảo toàn xung lượng của chất điểm: “ Nếu chất điểm là cô lập (không có lực tác dụng) hoặc tổng hợp lực tác dụng lên chất điểm bằng 0 thì xung lượng của chất điểm được bảo toàn.” ⃗⃗̇ hay ⃗⃗ ⃗⃗ = const. 1.2.2 Định luật biến thiên và bảo toàn xung lượng của hệ chất điểm. Ký hiệu xung lượng của chất điểm là ⃗⃗ thì theo định nghĩa N N P  Pi  mi vi (1.24) i 1 i 1 Trong đó ⃗⃗ ⃗⃗ là xung lượng của chất điểm thứ i. Nghĩa là xung lượng của hệ chất điểm bằng tổng xung lượng của chất điểm trong hệ. Đạo hàm hai vế của phương trình theo thời gian N dP dv  mi i dt i 1 dt N dP  mi w i (1.25) dt i 1 Trong đó ⃗⃗⃗⃗ là gia tốc của chất điểm thứ i. N N ó: m w  (F i 1 i i i 1 i in  Fie ) (1.26) N Với: F i 1 i in là tổng nội lực tác dụng lên các chất điểm của hệ. N F i 1 i e là tổng ngoại lực tác dụng lên các chất điểm của hệ. 12
  19. N N N Ta có: F i 1 i in  Fij i 1 j 1 i j N N N N N Fiin  Fij  Fij i 1 i 1 j 1 i 1 j 1 i j i j N N N N N F i 1 i in  Fji  Fji i 1 j 1 i 1 j 1 i j i j N N Do đó: F i 1 i in   (Fij  Fji )  0 i. j 1 j i Vậy tổng nội lực của hệ bằng 0 Khi đó (1.26) trở thành: N N m w  F i 1 i i i 1 i e (1.27) Thay (1.27) vào (1.25) ta được N dP dt F i 1 i e dP  Fe hay ⃗⃗̇ ⃗⃗ (1.28) dt Biểu thức (1.28) biểu diễn định luật biến thiên xung lượng của hệ chất điểm được phát biểu như sau:“ Đạo hàm vectơ xung lượng của hệ chất điểm theo thời gian bằng tổng ngoại lực tác dụng lên các chất điểm của hệ” * Nếu thành phần của tổng ngoại lực tác dụng lên hệ trên trục cố định nào đó bằng 0 tại mọi thời điểm thì thành phần của xung lượng của hệ trên trục đó bảo toàn. Ví dụ: thì Pz = const. 13
  20. Trong trường hợp cơ hệ là kín mà trong đó các chất điểm của hệ không chịu một ngoại lực nào tác dụng lên chúng hay ⃗⃗ . ⃗⃗ ⃗⃗ = const Định luật bảo toàn xung lượng của hệ chất điểm được phát biểu như sau: “ Đối với hệ kín, xung lượng của hệ được bảo toàn” 1.3 Momen xung lƣợng 1.3.1 Định luật biến thiên và bảo toàn momen xung lượng của chất điểm Để đưa đến khái niệm momen xung lượng của một chất điểm ta đem nhân hữu hướng hai vế của phương trình định luật II Niuton với bán kính vectơ ⃗ về phía trái, ta có: [ ⃗ ⃗⃗̇] [ ⃗ ⃗⃗] (1.29) Tích hữu hướng [ ⃗ ⃗⃗] được gọi là momen lực được ký hiệu là ⃗⃗ ⃗⃗ [ ⃗ ⃗⃗] (1.30) Vì [⃗⃗ ⃗⃗] nên có thể biến đổi vế trái của (1.29) thành dạng: dM [ ⃗ ⃗⃗̇] (1.31) dt Trong đó ⃗⃗⃗⃗ [ ⃗ ⃗⃗̇] được gọi là momen xung lượng của chất điểm. Từ (1.29), (1.30), (1.31) ta nhận được biểu thức của định luật biến thiên momen xung lượng của chất điểm. ⃗⃗⃗⃗̇ ⃗⃗ Định luật biến thiên momen xung lượng của chất điểm được phát biểu: “ Đạo hàm momen xung lượng của chất điểm theo thời gian bằng momen lực tác dụng lên chất điểm đó.” * Nếu thành phần momen lực tác dụng lên một trục cố định nào đó tại mọi thời điểm bằng 0 thì thành phần momen xung lượng của chất điểm trên trục đó được bảo toàn. 14
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2