Khóa luận tốt nghiệp đại học: Một số bài toán về tích phân chuyển động trong cơ lý thuyết
lượt xem 9
download
Nội dung khóa luận được tổ chức thành 3 chương như sau: Chương 1: Các khái niệm cơ bản, Chương 2: Tích phân của chuyển động, Chương 3: Một số bài toán về tích phân của chuyển động. Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Khóa luận tốt nghiệp đại học: Một số bài toán về tích phân chuyển động trong cơ lý thuyết
- TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA VẬT LÝ ====== NGUYỄN THỊ THANH TÂM MỘT SỐ BÀI TOÁN VỀ TÍCH PHÂN CHUYỂN ĐỘNG TRONG CƠ HỌC LÝ THUYẾT Chuyên ngành: Vật lý lý thuyết và vật lý toán KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC HÀ NỘI, 2018
- TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA VẬT LÝ ====== NGUYỄN THỊ THANH TÂM MỘT SỐ BÀI TOÁN VỀ TÍCH PHÂN CHUYỂN ĐỘNG TRONG CƠ HỌC LÝ THUYẾT Chuyên ngành: Vật lý lý thuyết và vật lý toán KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Ngƣời hƣớng dẫn khoa học: PGS.TS. Nguyễn Thị Hà Loan HÀ NỘI, 2018
- LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc tới cô PGS.TS. Nguyễn Thị Hà Loan đã tận tình hƣớng dẫn, chỉ bảo tạo mọi điều kiện thuận lợi và thƣờng xuyên động viên để tôi hoàn thành khóa luận này. Tôi xin trân trọng cảm ơn các thầy, cô giáo của trƣờng Đại học Sƣ Phạm Hà Nội 2 và các thầy cô trong khoa Vật Lý đã quan tâm và tạo điều kiện thuận lợi giúp đỡ em hoàn thành khóa luận này. Tôi cũng xin gửi lời cảm ơn tới gia đình, bạn bè đã luôn bên cạnh động viên, giúp đỡ trong suốt quá trình học tập và nghiên cứu. Hà nội, ngày 25 tháng 04 năm 2018 Sinh viên Nguyễn Thị Thanh Tâm
- LỜI CAM ĐOAN Tôi xin cam đoan rằng khóa luận tốt nghiệp này hòan tòan do sự nỗ lực của bản thân cùng với sự hƣớng dẫn của PGS.TS. Nguyễn Thị Hà Loan và NCS. Đỗ Thị Thu Thủy, khóa luận này không hề sao chép từ các công trình nghiên cứu của ngƣời khác. Các dữ liệu thông tin đƣợc sử dụng trong khóa luận là có nguồn gốc và đƣợc trích dẫn rõ ràng. Tôi xin chịu hoàn tòan trách nhiệm về lời cam đoan này! Hà Nội, ngày 25 tháng 04 năm 2018 Sinh viên Nguyễn Thị Thanh Tâm
- MỤC LỤC PHẦN I: MỞ ĐẦU ....................................................................................... 1 1. Lý do chọn đề tài ..................................................................................... 1 2. Mục đích nghiên cứu ............................................................................... 2 3. Nhiệm vụ nghiên cứu............................................................................... 2 4. Đối tƣợng nghiên cứu .............................................................................. 2 5. Phƣơng pháp nghiên cứu ......................................................................... 2 PHẦN II: NỘI DUNG ................................................................................. 4 CHƢƠNG 1: CÁC KHÁI NIỆM CƠ BẢN .................................................. 4 1.1. Phƣơng trình chuyển động ................................................................... 4 1.1.1. Phƣơng trình vi phân chuyển động của chất điểm. ........................ 4 1.1.2. Phƣơng trình chuyển động của hệ chất điểm. ................................ 5 1.2. Định luật bảo toàn xung lƣợng ............................................................. 6 1.3. Định luật bảo toàn moment xung lƣợng ............................................... 9 1.4. Định luật bảo toàn năng lƣợng ........................................................... 14 CHƢƠNG 2 : TÍCH PHÂN CỦA CHUYỂN ĐỘNG ................................ 16 2.1. Toạ độ suy rộng.................................................................................... 16 2.2. Xung lƣợng suy rộng............................................................................ 17 2.3. Hàm Hamilton ...................................................................................... 18 2.4. Các phƣơng trình Hamilton ................................................................. 20 2.5 Dấu ngoặc Poisson. Tích phân của chuyển động.................................. 21 CHƢƠNG 3. MỘT SỐ BÀI TOÁN VỀ TÍCH PHÂN CỦA CHUYỂN ĐỘNG..... 30
- 3.1.Một số bài toán về tích phân chuyển động của chất điểm .................... 30 3.2. Một số bài toán về tích phân chuyển động của cơ hệ .......................... 33 PHẦN III: KẾT LUẬN ............................................................................... 36 TÀI LIỆU THAM KHẢO........................................................................... 37
- PHẦN I: MỞ ĐẦU 1. Lý do chọn đề tài Với sự phát triển hiện nay của nhiều ngành khoa học chúng ta có thể dần khám phá ra những điều bí ẩn tồn tại trong thế giới tự nhiên. Một trong những ngành khoa học ngày càng phát triển đó là vật lý. Trong ngành vật lý học có rất nhiều kiến thức chuyên sâu giúp ta lý giải những vấn đề của thế giới mà các ngành khoa học khác không thể giải thích rõ ràng đƣợc. Một trong những công cụ chủ yếu của Vật lí học là Vật lí lý thuyết và Vật lí toán. Sự ra đời của ngành vật lý lý thuyết này đã góp phần nâng cao và khái quát hóa những định luật vật lý thành những quy luật, những học thuyết hết sức tống quát, có ý nghĩa to lớn đối với sự phát triển của khoa học, đời sống và kĩ thuật. Với sự kết hợp những phƣơng pháp toán học hiện đại, phát triển cao, vật lý lý thuyết còn tìm ra đƣợc những quy luật mới chƣa tìm đƣợc bằng thực nghiệm và tiên đoán trƣớc những mối quan hệ giữa các hiện tƣợng vật lý. Phƣơng pháp toán học giải tích nghiên cứu vật lý đặc biệt là nghiên cứu cơ học đƣợc gọi là cơ lý thuyết. Cơ lý thuyết là môn khoa học nghiên cứu quy luật chung nhất về chuyển động của vật thể mà không đề cập đến nguyên nhân gây ra chuyển động, sự tƣơng tác giữa chúng trong không gian theo thời gian. Để học tập tốt hơn phần cơ học lý thuyết cần có hệ thống kiến thức cũng nhƣ hệ thống bài tập cơ bản. Vì vậy, tôi xin chọn đề tài “Một số bài toán về tích phân chuyển động trong cơ lý thuyết” làm đề tài nghiên cứu. 1
- 2. Mục đích nghiên cứu Nghiên cứu về đại lƣợng bảo toàn trong cơ lý thuyết Áp dụng để giải một số bài toán về tích phân chuyển động trong cơ học lý thuyết 3. Nhiệm vụ nghiên cứu Nghiên cứu các đại lƣợng động lực trong cơ học lý thuyết Nghiên cứu quy luật bảo toàn trong cơ lý thuyết Nghiên cứu một số bài tập về tích phân chuyển động trong cơ lý thuyết. 4. Đối tƣợng nghiên cứu Nghiên cứu quy luật bảo toàn đối với chất điểm và hệ chất điểm trong hệ toạ độ suy rộng Áp dụng giải một số bài tập 5. Phƣơng pháp nghiên cứu Phƣơng pháp nghiên cứu trong cơ học Phƣơng pháp giải tích toán học PHẦN II: NỘI DUNG Chƣơng 1: Các khái niệm cơ bản 1.1 Phƣơng trình chuyển động 1.1.1. Phƣơng trình vi phân chuyển động của chất điểm 1.1.2. Phƣơng trình chuyển động của hệ chất điểm 1.2 Định luật bảo toàn xung lƣợng 1.3 Định luật bảo toàn Moment xung lƣợng 1.4 Định luật bảo toàn năng lƣợng 2
- Chƣơng 2: Tích phân của chuyển động 2.1 Toạ độ suy rộng 2.2 Xung lƣợng suy rộng 2.3 Hàm Hamilton 2.4 Các phƣơng trình Hamilton 2.5 Dấu ngoặc Poisson. Tích phân của chuyển động Chƣơng 3: Một số bài toán về tích phân của chuyển động 3.1 Một số bài toán về tích phân chuyển động của chất điểm 3.2 Một số bài toán về tích phân chuyển động của cơ hệ PHẦN III: KẾT LUẬN 3
- PHẦN II: NỘI DUNG CHƢƠNG 1: CÁC KHÁI NIỆM CƠ BẢN 1.1. Phƣơng trình chuyển động 1.1.1. Phƣơng trình vi phân chuyển động của chất điểm. Khảo sát chuyển động của chất điểm trong hệ quy chiếu quán tính . Theo tiên đề độc lập tác dụng, chất điểm có khối lƣợng m sẽ chuyển động với gia tốc ⃗⃗ thỏa mãn phƣơng trình ⃗⃗ (1.1) Trong đó ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ . Tùy theo những điều kiện cụ thể của bài toán, ta có thể chọn các hệ toạ độ khác nhau và viết phƣơng trình(1.1) trong hệ toạ độ đã chọn để sao cho giải bài toán là đơn giản nhất. Trong trƣờng hợp tổng quát ta chọn hệ toạ độ Descartess và chiếu phƣơng trình (1.1) lên các trục của hệ toạ độ đã chọn với chú ý rằng: ̈ ̈ ̈ Ta đƣợc phƣơng trình vô hƣớng: z 𝐹 M ̈ (1.2.a) ̈ (1.2.b) O y ̈ (1.2.c) x Hình 1.1 gọi là hệ phƣơng trình vi phân chuyển động của chất điểm trong hệ toạ độ Descartes. Trong nhiều trƣờng hợp ta biết trƣớc quỹ đạo chuyển động của chất điểm, do đó ta có thể xây dựng đƣợc hệ toạ độ tự nhiên ⃗ ⃗ , tại mỗi điểm trên đƣờng cong. Trong các trƣờng hợp đó ta thƣờng chọn các hệ toạ độ tự nhiên để viết các phƣơng trình hình chiếu của phƣơng trình (1.1) với chú ý rằng: 4
- ⃗⃗ ̈ ⃗ ta đƣợc: 𝜏 M ̈ (1.3.a) 𝑏⃗ 𝑛⃗ (1.3.b) Hình 1.2 (1.3.c) Hệ phƣơng trình vừa viết gọi là hệ phương trình vi phân chuyển động của chất điểm dưới dạng tự nhiên. Trong các chuyển động phẳng ta còn dùng các hệ toạ độ cực để viết các phƣơng tình hình chiếu. Chú ý rằng: ⃗⃗ ̇ ̇ ̈ ̇ ̇ Ta nhận đƣợc các phƣơng trình hình chiếu của(1.1) ̇ ̇ (1.4.a) 𝑒𝜑 ̈ ̇ ̇ , (1.4.b) 𝑒𝑟 O 𝜑 Hệ phƣơng trình vi phân vừa thu đƣợc gọi là hệ phương trình vi phân chuyển động của chất điểm dưới dạng toạ độ cực. Hình 1.3 Nói chung, tuỳ theo các bài toán cụ thể ta còn có thể sử dụng các hệ toạ độ khác để viết các phƣơng trình vi phân chuyển động của chất điểm nhƣ hệ toạ độ cầu, hệ toạ độ trụ, v.v… 1.1.2. Phƣơng trình chuyển động của hệ chất điểm. Hệ chất điểm - Là tập hợp các vật thể mà mỗi vật thể đƣợc xem nhƣ là một chất điểm 5
- Nội lực - Là lực do các chất điểm của hệ tƣơng tác với nhau - Kí hiệu: là nội lực do chất điểm tác dụng lên chất điểm ; là nội lực do (N – 1)chất điểm còn lại trong hệ tác dụng lên chất điểm Ngoại lực - Là lực do các vật thể bên ngoài tác dụng lên chất điểm của hệ - Kí hiệu: là ngoại lực tác dụng lên chất điểm của hệ Phƣơng trình chuyển động của hệ chất điểm - Xét chuyển động của hệ gồm N chất điểm đối với hệ quy chiếu quán tính, khi ấy chuyển động của hệ đối với hệ quy chiếu quán tính đó đƣợc xác định bởi N phƣơng trình vi phân hạng hai sau đây: (k =1, 2, 3, …, N) Hay ⃗⃗ (k =1, 2, 3, …, N) (1.2) Trong đó: là khối lƣợng của chất điểm thứ k ⃗⃗ là gia tốc của chất điểm thứ k 1.2. Định luật bảo toàn xung lƣợng Định luật bảo toàn xung lƣợng liên quan chặt chẽ với tính đồng nhất của không gian. Do tính đồng nhất của không gian, các tính chất cơ học của hệ kín không thay đổi đối với sự dịch chuyển song song bất kì của cả hệ trong không gian. Tƣơng ứng với nhận xét trên chúng ta sẽ xem xét một sự dịch chuyển song song vô cùng nhỏ đi một đoạn và yêu cầu sao cho hàm Lagrange không thay đổi 6
- Sự dịch chuyển song song có nghĩa là pháp biến đổi trong đó tất cả các điểm của hệ đã dịch chuyển đi cùng một đoạn, có nghĩa là các vector bán kính của chúng . Sự thay đổi của hàm Lagrange trong kết quả của sự dịch chuyển song song đi một đoạn vô cùng nhỏ, khi vận tốc của các hạt không đổi sẽ là: ∑ ∑ (1.2.1) Ở đây tổng đƣợc lấy theo tất cả số hạt của hệ. Vì đƣợc chọn tùy ý cho nên yêu cầu tƣơng đƣơng với yêu cầu ∑ (1.2.2) Từ phƣơng trình chuyển động Lagrange và điều kiện trên ta sẽ nhận đƣợc: ∑ ∑ (1.2.3) ⃗ ⃗ Nhƣ vậy chúng tá đi đến kết luận là đối với hệ cơ học kín đại lƣợng vector. ∑ (1.2.4) ⃗ Không thay đổi trong quá trình chuyển động. Vector ⃗ đƣợc gọi là xung lƣợng của hệ. Thay hàm Lagrange ∑ vào biểu thức (1.2.4) trên ta có: ∑ ∑ (1.2.5) Tính chất cộng tính của xung lƣợng đƣợc thể hiên qua công thức trên một cách rõ rệt. Khác với năng lƣợng, xung lƣợng của hệ bằng tổng các xung lƣợng của từng hạt của hệ. 7
- Định luật bảo toàn tất cả ba thành phần của véc tơ xung lƣợng chỉ xảy ra trong trƣờng hợp không có trƣờng ngoài. Tuy nhiên từng thành phần của vector xung lƣợng có thể bảo toàn khi tồn tại trƣờng ngoài có thế năng không phụ thuộc vào các toạ độ Descartes. Khi dịch chuyển dọc theo trục toạ độ tƣơng ứng nào đó hiển nhiên là các tính chất cơ học của hệ sẽ không thay đổi và cũng bằng lí luận nhƣ trên chúng ta sẽ thấy rằng hình chiếu của xung lƣợng lên trục đó bảo toàn. Nhƣ vậy trong trƣờng đồng nhất hƣớng dọc theo trục z, thì các thành phần xung lƣợng dọc theo trục x, y đƣợc bảo toàn. Đẳng thức (1.2.2) có ý nghĩa vật lí đơn giản nhƣ sau: ∑ ∑ ∑ (1.2.6) Tổng các lực tác động lên tất cả các hạt của hệ kín bằng không. Trong trƣờng hợp riêng khi hệ kín tạo bởi hai hạt thì ∑ (1.2.7) Từ (1.2.7) ta thấy lực tác động lên hạt thứ nhất từ phía hạt thứ hai bằng vền giá trị nhƣng ngƣợc hƣớng với lực tác động lên hạt thứ hai từ phía hạt thứ nhất. Đó chính là định luật cân bằng tác động lực và phản lực ( định luật thứ ba Newton). Nếu chuyển động của hệ đƣợc mô tả bởi các toạ độ suy rộng qi thì các đại lƣợng : ̇ đƣợc gọi là các xung lƣợng suy rộng đƣợc gọi là lực suy rộng Trong kí hiệu đó thì phƣơng trình chuyển động Lagrange có dạng: 8
- ̇ 1.3. Định luật bảo toàn moment xung lƣợng Bây giờ chúng ta xem xét định luật bảo toàn khác có nguồn gốc liên quan với tính chất đẳng hƣớng của không gian. Tính chất đẳng hƣớng của không gian có nghĩa là các tính chất cơ học của hệ kín sẽ không đổi khi ta quay hệ nhƣ một thể thống nhất trong không gian. Tƣơng ứng với điều vừa nêu ra, ta xem xét một phép quay vô cùng nhỏ của cả hệ và yêu cầu hàm Lagrange của hệ không đổi ( . Ta đƣa vào khái niệm vector yếu tố góc quay vô cùng nhỏ ⃗ , nó là vector hƣớng theo trục quay và có giá trị bằng góc quay ( sao cho chiều quay ứng với quy tắc đinh vít đối với chiều của ⃗ ). Trƣớc hết ta tính xem trong phép quay đó số gia của bán kính bằng bao nhiêu; vector bán kính này vẽ từ gốc toạ độ chung( nằm trên trục quay ) đến một chất điểm nào đó thuộc hệ cơ học quay. | | (1.3.1) Hƣớng của vector vuông góc với mặt phẳng chứa các vector và ⃗, do vậy ta có: [ ⃗ ] (1.3.2) Số gia vận tốc của chất điểm tƣơng đối với hệ toạ độ bất động sẽ là: [ ⃗ ] (1.3.3) Thay các biểu thức đó vào điều kiện bất biến của hàm Lagrange trong phép quay ta có: ∑ ( ) ⃗ 𝛿𝜑 𝛿𝜑 ⃗ 𝜃 𝛿𝑟 O 𝑟 9
- ∑ ( [ ⃗ ] [ ⃗ ]) (1.3.4) ⃗ Thay ̇ và vào biểu thức trên ta có: ⃗ ∑ ( ̇ [ ⃗ ] [ ⃗ ]) (1.3.5) Làm phép giao hoán đối với tích hỗn hợp ta sẽ thu đƣợc: ∑ ⃗[ ̇ ] ∑ ⃗[ ] ⃗ ∑ ([ ̇ ] [ ]) (1.3.6) ⃗ ∑ [ ] Vì vector yếu tố góc ⃗ đƣợc chọn tùy ý nên ta có: a ∑ [ ] (1.3.7) Nhƣ vậy, ta đi đến kết luận là trong quá trình chuyển động của một hệ kín, đại lƣợng: ⃗⃗ ∑ [ ] (1.3.8) đƣợc bảo toàn. Đại lƣợng đó đƣợc gọi là moment xung lƣợng ( đơn giản còn gọi là moment quay hay moment góc) của hệ cơ học. Từ công thức (1.3.8) ta nhận thấy moment xung lƣợng có tính chất cộng tính và cũng nhƣ xung lƣợng. tính chất đó không phụ thuộc và việc các hạt có tƣơng tác với nhau hay không . Nhƣ vậy đối với hệ cơ học độc lập kín có bảy tích phân chuyển động đó là năng lƣợng , ba thành phần của vector xung lƣợng và ba thành phần của moment xung lƣợng. 10
- Vì trong định nghĩa của moment xung lƣợng có chứa vector bán kính của hạt nên nói chung giá trị của moment xung lƣợng phụ thuộc vào sự lựa chọn gốc toạ độ. Nếu và là các vector bán kính của cùng một điểm tƣơng đối với các gốc toạ độ, cách nhau một khoảng thì các vector đó liên hệ với nhau bởi biểu thức và khi đó ta có : ⃗⃗ ∑ [ ] ∑ [( ) ] ∑ [ ] [ ∑ ] (1.3.9) Hay ⃗⃗ ⃗⃗ [ ⃗] (1.3.10) Ở đó ⃗ ∑ . Từ công thức (1.3.10) ta thấy chỉ trong trƣờng hợp hệ nhƣ một vât thể đứng yên ( có nghĩa ⃗ ) thì moment xung lƣợng của hệ mới không phụ thuộc vào việc chọn gốc toạ độ. Bây giờ chúng ta đi xét mối quan hệ của moment xung lƣợng đối với hai hệ quy chiếu quán tính khác nhau K và K’. Giả sử K’ chuyển động tƣơng đối với hệ quy chiếu quán tính K với vận tốc không đổi ⃗ và các gốc toạ độ của K và K’ ở một thời điểm cho trƣớc nào đó trùng nhau. Ở thời điểm này các vector bán kính của hạt ở trong hai hệ quy chiếu là nhƣ nhau , còn vận tốc của chúng thì liên hệ với nhau theo biểu thức: ⃗ (1.3.11) 11
- Nhƣ vậy ta có: ⃗⃗ ∑ [ ] ∑ [ ( ⃗ )] ∑ [ ] ∑ [ ⃗] ⃗⃗ ∑ [ ⃗] Hay ⃗⃗ ⃗⃗ [⃗ ⃗] (1.3.12) Ở đó ⃗ là vectơ bán kính của tâm quán tính của hệ. Công thức trên xác định quy luật biến đổi của moment xung lƣợng khi chuyển từ hệ quy chiếu quán tính này sang hệ quy chiếu quán tính khác. Nếu hệ là hệ quy chiếu quán tính mà tƣợng đối với nó hệ cơ học bất động nhƣ một vật thể thống nhất thì khi đó ⃗ ⃗ chính là xung lƣợng của hệ cơ học nhƣ một vật thể thống nhất tƣơng đối với hệ quy chiếu quán tinh K và: ⃗⃗ ⃗⃗ [⃗ ⃗] (1.3.13) Nói cách khác , moment xung lƣợng của hệ cơ học bằng tổng của moment riêng của hệ cơ học ⃗⃗ tƣơng đối với hệ quy chiếu trong đó hệ cơ học bất động tuyến tính và moment [ ⃗ ⃗ ] liên quan với sự chuyển động của hệ nhƣ một vật thể thống nhất. Mặc dầu định luật bảo toàn ba thành phần của vector moment xung lƣợng ( đối với điểm gốc toạ độ tùy ý) chỉ đúng với hệ kín, nhƣng cả trƣờng hợp khi hệ cơ học nằm ở trƣờng ngoài, định luật bảo toàn moment vẫn có thể dúng trong một dạng hẹp hơn. Từ những suy luận ở trên ta thấy hình chiếu của 12
- moment trên trục đối xứng của trƣờng ngoài luôn đƣợc bảo toàn. Vì rằng những tính chất cơ học của hệ không thay đổi khi quay hệ với một góc tùy ý xung quanh trục đó, dĩ nhiên moment ở đây phải đƣợc xác định đối với điểm (gốc toạ độ) nằm trên trục đối xứng của trƣờng ngoài. Trƣờng hợp quan trọng nhất về loại trƣờng đó là trƣơng đối xứng xuyên tâm, có nghĩa là trƣờng có thế năng chỉ phụ thuộc vào khoảng cách đến một điểm nào đó xác định trong không gian ( tâm của trƣờng). Dĩ nhiên nếu cơ học chuyển động trong một trƣờng nhƣ vậy thì hình chiếu của momnen trên mọi trục đi qua tâm của trƣờng đều đƣợc bảo toàn. Nói ⃗⃗ đƣợc bảo toàn nhƣng ở đây, ⃗⃗ xác định không phải đối với bất kì điểm nào trong không gian, mà phải đối với tâm của trƣờng. Một ví dụ khác: trƣờng đồng nhất dọc theo trục z trong đó hình chiếu M đƣợc bảo toàn, ở đây gốc toạ độ có thể lấy tùy ý. Ta nhận thấy rằng hình chiếu của moment trên trên trục z có thể tính bằng cách lấy đạo hàm hàm số Lagrange theo công thức : ∑ (1.3.14) ̇ Với toạ độ là góc quay quanh trục z. Đúng vậy, trong toạ độ trụ ta có ; và ∑ ̇ ̇ ∑ ̇ (1.3.15) Mặt khác, hàm Lagrange trong toạ độ trụ của hệ có dạng ∑ ̇ ̇ 13
- Và nếu thay biểu thức này vào công thức (1.3.14) ta đƣợc ngay biểu thức (1.3.15 1.4. Định luật bảo toàn năng lƣợng Khi chuyển động, các đại lƣợng qi, ̇ i(i = 1,2,….,s) xác định trạng thái của hệ cơ học sẽ thay đổi theo thời gian. Tuy nhiên vẫn tồn tại các hàm của qi và ̇ i có giá trị không đổi khi hệ chuyển động và chỉ phụ thuộc vào điều kiện ban đầu. các hàm đó đƣợc gọi là các tích phân chuyển động. Tìm tất cả các tích phân chuyển động đối với một hệ cơ học tùy ý là rất phức tạp và trong một số ít trƣờng hợp có thể đạt đƣợc dƣới dạng giải tích. Mặt khác, không phải tất cả tích phân chuyển động có vai trò quan trọng nhƣ nhau trong cơ học. Giữa chúng có vài đại lƣợng mà sự bảo toàn của chúng có nguồn gốc sâu xa liên quan đến các tính chất cơ bản của không gian và thời gian- tính chất đồng nhất và đẳng hƣớng của không gian và thời gian. Chúng ta bắt đầu xem xét tích phân chuyển động thứ nhất, đó là năng lƣợng. Định luật bảo toàn năng lƣợng liên quan mật thiết với tính đồng nhất của thời gian. Do tính chất đồng nhất của thời gian, hàm Lagrange của hệ kín không phụ thuộc tƣờng minh vào thời gian ( có nghĩa là = 0 ) và ta có thể viết đạo hàm toàn phần theo thời gian của hàm Lagrange của hệ cơ học kín nhƣ sau: ∑ ̇ ∑ ̇ (1.4.1) ̇ Từ các phƣơng trình Lagrange ̇ =0 Với i = 1,2,….s, ta suy ra: ̇ (1.4.2) Thay (1.4.2) vào (1.4.1) ta có: 14
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Khóa luận tốt nghiệp Đại học: Khảo sát ảnh hưởng của một số yếu tố trong quá trình lên men tỏi đen và phân tích một số hoạt chất trong tỏi đen
51 p | 380 | 104
-
Đề cương Khóa luận Tốt nghiệp Đại học: Hiệu quả sử dụng vốn tại Công ty Xuất Nhập Khẩu An Giang Angimex
71 p | 705 | 71
-
Khóa luận tốt nghiệp đại học: Nghiên cứu khả năng sinh trưởng và phát triển của chủng nấm sò trắng (Pleurotus florida) trên giá thể mùn cưa bồ đề
48 p | 326 | 68
-
Khóa luận tốt nghiệp Đại học: Thực trạng kế toán nguyên vật liệu tại Công ty Cổ phần Việt Trì Viglacera
89 p | 288 | 51
-
Khóa luận tốt nghiệp Đại học: Thiết kế phần mở đầu và củng cố bài giảng môn Hóa học lớp 11 THPT theo hướng đổi mới
148 p | 186 | 40
-
Khóa luận tốt nghiệp đại học: Người kể chuyện trong tiểu thuyết Tạ Duy Anh
72 p | 201 | 27
-
Tóm tắt Khóa luận tốt nghiệp Đại học: Quản lý rác thải tại bệnh viện đa khoa Thủ Đức hiện trạng một số giải pháp
20 p | 177 | 24
-
Khóa luận tốt nghiệp Đại học ngành Công nghệ thông tin: Phân đoạn từ Tiếng Việt sử dụng mô hình CRFs
52 p | 191 | 24
-
Khóa luận tốt nghiệp Đại học: Khảo sát khả năng hấp phụ Amoni của vật liệu đá ong biến tính
59 p | 134 | 23
-
Khóa luận tốt nghiệp Đại học: Kỹ năng nhập vai của nhà báo viết điều tra - Nguyễn Thùy Trang
127 p | 179 | 22
-
Khóa luận tốt nghiệp Đại học ngành Công nghệ sinh học: Khảo sát hiệu quả của thanh trùng lên một số chỉ tiêu chất lượng của rượu vang
53 p | 188 | 21
-
Khóa luận tốt nghiệp đại học: Nghiên cứu tình trạng methyl hóa một số chỉ thị phân tử ở bệnh nhân ung thư đại trực tràng Việt Nam
47 p | 77 | 15
-
Khóa luận tốt nghiệp Đại học: Khảo sát hiệu ứng trùng phùng tổng trong đo phổ Gamam
74 p | 92 | 12
-
Khóa luận tốt nghiệp Đại học: Xác định hoạt động phóng xạ trong mẫu môi trường bằng phương pháp FSA
65 p | 93 | 12
-
Khóa luận tốt nghiệp Đại học: Xây dựng quy trình chế tạo mẫu chuẩn Uran và Kali để xác định hoạt độ phóng xạ trong mẫu đất
54 p | 110 | 11
-
Khóa luận tốt nghiệp Đại học: Xây dựng chương trình mô phỏng vận chuyển Photon Electron bằng phương pháp Monte Carlo
71 p | 94 | 11
-
Khóa luận tốt nghiệp đại học: Nghiên cứu tình trạng methyl hoá chỉ thị phân tử SEPT9 ở bệnh nhân ung thư đại trực tràng Việt Nam
84 p | 69 | 11
-
Khóa luận tốt nghiệp Đại học: Xây dựng chương trình hiệu chỉnh trùng phùng cho hệ phổ kế gamma
69 p | 104 | 10
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn