intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Khóa luận tốt nghiệp đại học: Sử dụng Tiếng Anh cho Vật lý trong phân dạng bài tập phần Cơ học vật rắn

Chia sẻ: Minh Nhân | Ngày: | Loại File: PDF | Số trang:51

47
lượt xem
13
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Thực tế giảng dạy ở bậc trung học phổ thông,chúng ta có thể thấy tầm quan trọng của việc lồng ghép Tiếng Anh vào các môn học nói chung và môn Vật lý nói riêng, không chỉ bổ sung kiến thức chuyên sâu của môn học mà còn nâng cao vốn ngoại ngữ, từ đó hướng tới việc đọc sách và tài liệu nghiên cứu nước ngoài. Trong khóa luận này, đề tài thực hiện nghiên cứu sử dụng Tiếng Anh cho Vật lý trong phân dạng bài tập phần Cơ học vật rắn. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Khóa luận tốt nghiệp đại học: Sử dụng Tiếng Anh cho Vật lý trong phân dạng bài tập phần Cơ học vật rắn

  1. TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA VẬT LÝ NGUYỄN TRƢỜNG GIANG SỬ DỤNG TIẾNG ANH CHO VẬT LÝ CHO PHÂN DẠNG BÀI TẬP PHẦN CƠ HỌC VẬT RẮN KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Vật lý đại cƣơng HÀ NỘI,2018
  2. TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA VẬT LÝ NGUYỄN TRƢỜNG GIANG SỬ DỤNG TIẾNG ANH CHO VẬT LÝ CHO PHÂN DẠNG BÀI TẬP PHẦN CƠ HỌC VẬT RẮN KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Vật lý đại cƣơng Ngƣời hƣớng dẫn khoa học: GV.ThS Hoàng Văn Quyết HÀ NỘI, 2018
  3. LỜI CẢM ƠN Để hoàn thành đề tài khóa luận và kết thúc khóa học, với tình cảm chân thành, tôi xin bày tỏ lòng biết ơn sâu sắc tới trường Đại học Sư phạm Hà Nội 2 đã tạo điều kiện cho tôi có môi trường học tập tốt trong suốt thời gian tôi học tập, nghiên cứu tại trường. Tôi xin gửi lời cảm ơn tới Thầy Hoàng Văn Quyết đã giúp đỡ tôi trong suốt quá trình nghiên cứu và trực tiếp hướng dẫn tôi hoàn thành đề tài luận văn tốt nghiệp này. Đồng thời, tôi xin bày tỏ lòng cảm ơn tới thầy cô trong Khoa Vật lí, bạn bè đã giúp đỡ, tạo điều kiện cho em trong suốt quá trình học tập và hoàn thành Khóa luận tốt nghiệp lần này. Xuân Hòa, ngày 9 tháng 5 năm 2018 Sinh viên Nguyễn Trƣờng Giang
  4. LỜI CAM ĐOAN Dưới sự hướng dẫn của Ths. Hoàng Văn Quyết khóa luận tốt nghiệp chuyên ngành Vật lí đại cương với đề tài “SỬ DỤNG TIẾNG ANH CHO VẬT LÝ CHO PHÂN DẠNG BÀI TẬP PHẦN CƠ HỌC VẬT RẮN” được hoàn thành bởi chính sự nhận thức của bản thân, không trùng với bất cứ khóa luận nào khác. Trong khi nghiên cứu khóa luận, tôi đã kế thừa những thành tựu của các nhà khoa học với sự trân trọng và biết ơn. Xuân Hòa, ngày 9 tháng 5 năm 2018 Sinh viên Nguyễn Trƣờng Giang
  5. MỤC LỤC MỞ ĐẦU ............................................................................................................ 1 1. Lý do chọn đề tài: ......................................................................................... 1 2. Mục đích nghiên cứu đề tài:.......................................................................... 2 3. Đối tượng và phạm vi nghiên cứu: ............................................................... 2 4. Nhiệm vụ nghiên cứu: ................................................................................... 2 5. Phương pháp nghiên cứu: ............................................................................. 2 6. Cấu trúc khóa luận. ....................................................................................... 2 CHƢƠNG 1: CƠ SỞ LÝ THUYẾT ................................................................ 3 1. Mô men quán tính. Định lí Huy ghen – stennơ:.............................................. 3 2. Chuyển động của vật rắn ................................................................................. 4 3. Mô men lực. Điều kiện cân bằng của vật rắn.................................................. 6 4. Mô men động lượng. Định luật bảo toàn và biến thiên mô men động lượng . 9 5. Động năng của vật rắn................................................................................... 11 CHƢƠNG 2: PHÂN DẠNG BÀI TẬP CƠ HỌC VẬT RẮN ..................... 14 2.1. The problem of finding the center of the solid .......................................... 14 2.2. Balance problem of solids .......................................................................... 17 2.3. The problem using the dynamic method .................................................... 25 2.4. The problem uses conservation law and momentum moment variation ... 31 2.5. The problem uses conservation law and mechanical energy variation...... 37 KẾT LUẬN ...................................................................................................... 45
  6. MỞ ĐẦU 1. Lý do chọn đề tài Việt Nam - Đất nước có hơn bốn ngàn năm văn hiến, cùng với một nền giáo dục được hình thành từ lâu đời, dân tộc Việt Nam luôn được bạn bè khắp năm châu ngưỡng mộ về sự cần cù, chăm học, thông minh.Vì thế, không quá khó để giải thích tại sao những vấn đề trong giáo dục luôn là đề tài nóng bỏng thu hút sự chú ý của báo giới, các chuyên gia,các nhà lãnh đạo và các tầng lớp nhân dân. Giáo dục là nền tảng của sự nghiệp phát triển quốc gia, góp phần đưa đất nước hội nhập với thế giới. Trên những chặng đường thử thách hiện nay, ngành giáo dục đang tích cực đổi mới phương pháp dạy và học. Nhà giáo dục không chỉ chú ý tới việc truyền thụ tri thức thông thường, mà quan trọng hơn là phải biết dạy cách học, cách nghiên cứu, làm cho người học chủ động, sáng tạo, tích cực trong học tập. Đổi mới phương pháp dạy học là nhằm nâng cao hiệu quả, chất lượng giáo dục. Một trong những phương pháp đổi mới hiện nay là đưa sách song ngữ vào việc giảng dạy thay thế cho sách tiếng mẹ đẻ trước đây, nhằm đáp ứng xu hướng hội nhập toàn cầu. Thực tế giảng dạy ở bậc trung học phổ thông,chúng ta có thể thấy tầm quan trọng của việc lồng ghép Tiếng Anh vào các môn học nói chung và môn Vật lý nói riêng, không chỉ bổ sung kiến thức chuyên sâu của môn học mà còn nâng cao vốn ngoại ngữ, từ đó hướng tới việc đọc sách và tài liệu nghiên cứu nước ngoài. Xuất phát từ những lí do trên, tôi quyết định chọn “Sử dụng Tiếng Anh cho Vật lý trong phân dạng bài tập phần Cơ học vật rắn” làm để tài khóa luận tốt nghiệp của mình. 1
  7. 2. Mục đích nghiên cứu đề tài Phân dạng bài tập phần Cơ học vật rắn bằng tiếng anh. 3. Đối tƣợng và phạm vi nghiên cứu - Đối tượng: Các kiến thức Vật lý phần Cơ học vật rắn và Tiếng Anh cho chuyên ngành Vật lý. - Phạm vi: Xét trong Vật lý cổ điển. 4. Nhiệm vụ nghiên cứu - Xây dựng hệ thống từ vựng phần Cơ học vật rắn. - Trình bày logic, khoa học lý thuyết phần Cơ học vật rắn. - Phân dạng các bài toán bằng tiếng anh. 5. Phƣơng pháp nghiên cứu - Đọc, tra cứu tổng hợp tài liệu. 6. Cấu trúc khóa luận Ngoài phần Mở đầu, Kết luận, Danh mục tài liệu tham khảo, nội dung chính của khóa luận gồm hai chương sau: Chương 1: Cơ sở lý thuyết của việc phân dạng bài tập phần cơ học vật rắn Chương 2: Phân dạng bài tập cơ học vật rắn 2
  8. CHƢƠNG 1: CƠ SỞ LÝ THUYẾT 1. Mô men quán tính. Định lí Huy ghen – stennơ Mô men quán tính của một vật đối với một trục nào đó được xác định bởi công thức: I   mi ri 2 (1) Biểu thức này cho ta thấy quán tính I không liên quan gì tới trạng thái quay của vật. Thực tế, mô men quán tính của mỗi vật chỉ thể hiện khi có mô men ngoại lực tác dụng lên vật. Với cùng một mô men tác dụng,vật nhận được gia tốc góc càng lớn nếu mô men quán tính của vật càng bé và ngược lại. Ta thấy có sự tương tự giữa mô men quán tính ( I ) với khối lượng quán tính ( m ) của vật. Vật có khối lượng hay mô men quán tính càng bé,khi chịu tác dụng của lực hoặc mô men lực, thì thu được gia tốc càng lớn và ngược lại. Đối với các vật rắn khối lượng của vật được phân bố theo toàn thể thể tích của vật, do vậy mô men quán tính của vật đối với một trục nào đó được xác định bởi công thức: I   r 2 dm   r 2  dV (2) v v Trong đó: r là khoảng cách từ phần tử khối lượng dm tới trục quay; dV là thể tích của phần tử đó;  là mật độ khối lượng. Tích phân được lấy theo toàn bộ thể tích của vật. Mô men quán tính của một vật phụ thuộc vào hình dạng, kích thước của vật, khối lượng cũng như sự phân bố khối lượng của vật, phụ thuộc vào trục quay vì khi thay đổi trục quay thì r thay đổi. Từ biêu thức ta thấy, mô men quán tính là một đại lượng cộng được. 3
  9. Tính chất này cho phép tính mô men quán tính của một vật bất kì thông qua việc tính mô men quán tính từng phần của vật. Định lí Steno-Huyghen: Trên đây ta đã biết mô men quán tính của một số vật đối với trục đối xứng đi qua khối tâm của chúng. Để tính mô men quán tính đối với trục bất kì ta sử dụng định lí Steno-Huyghen. Định lí: Mô men quán tính I của một vật rắn đối với một trục bất kì bằng mô men quán tính I 0 của vật đó đối với trục song song với trục bất kì và đi qua khối tâm 0 của vật cộng với tích khối lượng của vật với bình phương khoảng cách giữa hai trục đó. I  I 0  ma 2 (3) 2. Chuyển động của vật rắn Vật rắn có kích thước cụ thể nên chuyển động của nó rất phức tạp, song chuyển động bất kì của vật rắn luôn có thể quy về là tổng hợp của hai chuyển động cơ bản: chuyển động tịnh tiến và chuyển động quay. Tính chất chung: Chuyển động tịnh tiến là chuyển động trong đó một đoạn thẳng nối hai chất điểm bất kì của vật rắn luôn song song với chính nó. Trong chuyển động như vậy thì mọi điểm của vật đều vẽ lên những quỹ đạo giống nhau, song song với nhau. Tại mỗi thời điểm, các điểm của vật đều có cùng một véc tơ vận tốc và véc tơ gia tốc. Do vậy, khi nghiên cứu chuyển động tịnh tiến của vật rắn ta chỉ cần khảo sát chuyển động của một điểm bất kì của nó, thường người ta chọn điểm này là khối tâm của vật. Chuyển động tịnh tiến có thể là chuyển động thẳng và cũng có thể là chuyển động cong. 4
  10. Chuyển động quay là chuyển động trong đó mọi điểm của vật rắn vẽ nên những quỹ đạo có tâm nằm trên cùng một đường thẳng gọi là trục quay. Những điểm nằm trên trục quay có vận tốc bằng không. - Trục quay cố định,trục quay tức thời Khi xét chuyển động của các vật ta luôn căn cứ vào một hệ quy chiếu nào đó. Tùy theo hệ quy chiếu được chọn mà trục quay của vật có thể cố định hay chuyển động. Khi khảo sát những chuyển động phức tạp người ta thường sử dụng trục quay tức thời. Trục quay tức thời của một vật ở một thời điểm nào đó là tập hợp những điểm của vật có vận tốc bằng không đổi với hệ quy chiếu khảo sát tại thời điểm đó. Các đặc trưng của chuyển động quay quanh một trục cố định: Khi vật rắn quay quanh một trục cố định, mọi điểm của vật rắn: - Đều vẽ lên những vòng tròn nằm trong những mặt phẳng vuông góc với trục quay và có tâm thuộc trục quay. - Trong cùng một khoảng thời gian quay được góc  như nhau. - Tại cùng một thời điểm có cùng một vân tốc góc  và gia tốc góc  . - Càng xa trục quay, vận tốc và gia tốc càng lớn. - Giữa vận tốc và gia tốc với vận tốc góc và gia tốc góc có mối liên hệ với nhau như sau: v  r (4) a   r Hay dưới dạng véc tơ: 5
  11. v  r a    r Vì góc quay  , vận tốc góc  và gia tốc góc  của các điểm thuộc vật đều như nhau nên khi nghiên cứu chuyển độngquay của vật rắn quanh một trục cố định người ta sử dụng các đại lượng này và chỉ cần khảo sát góc quay, vận tốc góc và gia tốc góc của một điểm bất kì của vật. 3. Mô men lực. Điều kiện cân bằng của vật rắn 3.1. Mô men lực Mô men lực là một đại lượng trong vật lý, thể hiện tác động gây ra sự quay quanh một điểm hoặc một trục của một vật thể. Nó là khái niệm mở rộng cho chuyển động quay từ khái niệm lực trong chuyển động thẳng. Mô men lực,  , là một véc tơ mô men, bằng kết quả phép nhân véc tơ của lực tác dụng, F , với véc tơ cánh tay đòn (véc tơ khoảng cách từ điểm tác dụng tới tâm quay), r .   r  F (5) Khái niệm cánh đòn tay, một đặc điểm về khoảng cách, là chìa khóa hoạt động của đòn bẩy, ròng rọc, bánh răng và đa số các bộ máy cơ bản có khả năng tạo ra các mô hình cơ học nâng cao. Mô men lực được đưa ra từ khi Archimedes khám phá ra nguyên lý hoạt động của đòn bẩy. Trong một đòn bẩy, Archimedes thấy rằng độ lớn của khả năng tác động lực tỷ lệ thuận với độ lớn của lực và đồng thời tỷ lệ thuận với khoảng cách từ điểm tác dụng lực tới tâm quay (cánh tay đòn). Trong chuyển động quay của vật thể rắn, nếu không có mô men lực tác 6
  12. động lên vật, mô men động lượng của vật thể sẽ không thay đổi theo thời gian. Khi có mô men lực, τ, mô men động lượng, L, thay đổi theo phương trình tương tự như định luật 2 Newton: dL (6)  dt Nếu mô men quán tính của vật thể không thay đổi, phương trình trên trở thành: d (7) I  dt Đối với một điểm tựa, tổng các mô men lực của các lực quay theo chiều kim đồng hồ bằng tổng các mô men lực của các lực quay ngược chiều kim đồng hồ. Hệ lực mà tổng các lực bằng không và tổng mô men của chúng cũng bằng không được gọi là hệ lực cân bằng. Như vậy nếu hệ lực Fi (i  1  n) là hệ lực cân bằng thì ta có: F   Fi  0 i M   M i   ri  Fi  0 (8) i i 3.2. Cân bằng của vật rắn Khi tổng các lực tác dụng lên vật rắn bằng không thì khối tâm của vật rắn đứng yên hoặc chuyển động thẳng đều nhưng vật có thể quay quanh trục đi qua khối tâm. Với chuyển động quay, hiện tượng cũng xảy ra hoàn toàn tương tự, nghĩa là vật không quay hoặc quay đều nếu tổng mô men tác dụng lên vật đối với điểm O bất kì bằng 0. Như vậy, khi hệ lực tác dụng lên vật là hệ lực cân 7
  13. bằng thì vật sẽ chuyển động( tịnh tiến, quay) không đổi. Nếu ban đầu vật đứng yên thì nó sẽ giữ nguyên trạng thái đứng yên. Từ đó suy ra, điều kiện để vật rắn ở trạng thái cân bằng là hệ lực tác dụng lên vật phải là hệ lực cân bằng và tại thời điểm ban đầu vật đứng yên. Một số trường hợp cụ thể: +) Cân bằng của vật rắn chịu tác dụng của hai lực: Từ biểu thức (8) suy ra: Muốn cho một vật chịu tác dụng của hai lực ở trạng thái cân bằng thì hai lực đó phải trực đối ( cùng giá, cùng độ lớn và ngược chiều). F1  F2  0  F1   F2 (9) Tác dụng của một lực lên một vật rắn không thay đổi khi điểm đặt của lực đó dời chỗ trên giá của nó. +) Cân bằng của một vật chịu tác dụng của ba lực không song song: Từ biểu thức (8) suy ra: Để một vật chịu tác dụng của ba lực F1 , F2 , F3 không song song ở trạng thái cân bằng thì hợp lực phải cân bằng với lực thứ ba: F1  F2  F3  0  F1  F2   F3 (10) Muốn thỏa mãn điều kiện trên thì ba lực đó phải có giá phẳng và đồng quy. +) Cân bằng của một vật rắn có trục quay cố định (quy tắc mô men lực): Từ biểu thức (8) suy ra: Muốn cho vật rắn có trục quay cố định ở trạng thái cân bằng thì tổng lực tác dụng lên vật đối với trục quay phải bằng 0. i i   M   M i   ri  Fi  0 (11) 8
  14. Hay, tổng các lực có xu hướng làm vật quay theo một chiều nào đó phải bằng tổng mô men lực có xu hướng làm vật quay theo chiều ngược lại. Các dạng cân bằng: Khi vật bị kéo ra khỏi vị trí cân bằng một chút rồi được thả ra thì có thể xảy ra các trường hợp sau: +) Hợp lực tác dụng lên vật có xu hướng đưa vật trở lại vị trí ban đầu, ta nói rằng vật ở vị trí cân bằng bền. +) Hợp lực tác dụng lên vật có xu hướng đưa vật ra xa vị trí cân bằng ban đầu, ta nói rằng vật ở vị trí cân bằng không bền. +) Vật ở vị trí cân bằng mới, ta nói vật ở vị trí cân bằng phiếm định. ` Nguyên nhân gây ra các dạng cân bằng khác nhau là do vị trí trọng tâm của vật. Ở vị trí cân bằng không bền, trọng tâm ở vị trí cao nhất so với các vị trí lân cận. Ở vị trí cân bằng bền, trọng tâm ở vị trí thấp nhất so với các vị trí lân cận. Ở vị trí cân bằng phiếm định, vị trí trọng tâm không thay đổi hoặc ở một độ cao không đổi. 4. Mô men động lƣợng. Định luật bảo toàn và biến thiên mô men động lƣợng 4.1. Mô men động lượng Trong vật lý học, đại lượng mô men động lượng (hay mô men xung lượng, động lượng quay) là một tính chất mô men gắn liền với vật thể trong chuyển động quay đo mức độ và phương hướng quay của vật, so với một tâm quay nhất định. Với vật rắn cổ điển có kích thước nhỏ hơn nhiều khoảng cách tới tâm     quay, mô men động lượng L , phụ thuộc vào động lượng p của vật thể và véc-tơ khoảng cách từ vật thể tới tâm quay r . 9
  15. L  r  p  r  mv (12) Với các vật thể rắn có hình dạng bất kỳ, mô men động lượng có thể được tính từ mô men quán tính I, và vận tốc góc  . (13) L  I  Phương trình chuyển động của vật rắn quanh một trục cố định được viết dưới dạng: Mz  d Lz d dt  dt I  (14) 4.2. Định luật bảo toàn mô men động lượng của vật rắn Từ phương trình chuyển động quay của vật rắn quanh một trục cố định ta thấy: Nếu không có ngoại lực tác dụng lên vật hay tổng mô men ngoại lực tác dụng lên vật bằng không, mô men động lượng của vật không đổi: (15) Lz  I   const Nếu mô men quán tính I của vật không đổi( vật tuyệt đối rắn) thì Lz  const suy ra:   const (16) Nếu vật không tuyệt đối rắn( bị biến dạng) hay vật cấu tạo từ nhiều phần khác nhau mà các phần này có thể thay đổi vị trí dưới tác dụng của nội lực thì mô men quán tính I sẽ biến đổi. Trong trường hợp này nếu mô men động lượng không đổi thì  sẽ biến đổi. 4.3. Định luật biến thiên mô men động lượng của vật rắn Phương trình (14) chính là phương trình của định luật biến thiên mô men động lượng. Nội dung định luật được phát biểu như sau: Tốc độ biến thiên mô men động lượng của vật rắn bằng mô men của lực tác dụng lên vật. 10
  16. Biến thiên của mô men động lượng Lz của vật có thể còn xảy ra do mô men quán tính của nó biến đổi:  L z  I 2 2  I11 (17) Do vậy,(14) là phương trình chuyển động quay dạng tổng quát, tương tự như phương trình: dp F dt 5. Động năng của vật rắn 5.1. Động năng của vật rắn chuyển động Chúng ta xem vật rắn như là một hệ chất điểm, vì vậy động năng của nó chính bằng động năng của hệ chất điểm ấy. Một cơ hệ mà mỗi chất điểm của cơ hệ có khối lượng và vận tốc tương ứng là mi và vi thì động năng của cơ hệ là : 1 T   mi vi2 (19) 2 Đối với vật rắn, khối lượng của vật phân bố liên tục trong toàn thể tích của vật do vậy tổng trên được thay bằng tổng tích phân. 1 2 1 T  2v v dm    v 2dV 2v (20) Trong đó, v là tốc độ của nguyên tố thể tích dV của vật, tích phân được lấy theo toàn bộ thể tích V của vật. Sử dụng công thức (20), ta tính động năng của vật rắn chuyển động. 5.2. Động năng của vật rắn chuyển động tịnh tiến Trong chuyển động tịnh tiến thì mọi điểm của vật đều có vận tốc như   nhau và bằng vật tốc khối tâm của vật v  v0 , do vậy : 11
  17. 1 2 1 2 1 2 2 v 2 2 v Ttt  v dm  v0 dm  v0 dm 1 Ttt  mv02 (21) 2 Với m   dm : khối lượng của vật rắn. v Vậy : Động năng của vật rắn chuyển động tịnh tiến bằng động năng của khối tâm mang toàn bộ khối lượng của vật. 5.3. Động năng của vật rắn quay quanh một trục cố định Khi vật rắn quay xung quanh một trục cố định với vận tốc góc  thì vận tốc dài v của mỗi chất điểm cách trục một khoảng r là v    r  . Theo (20) thì động năng của vật rắn trong chuyển động quay sẽ là : 1 2 1  2 1 2 2 2 v 2 v  2 v Tq  v dm    r  dm   r dm.  Ở đây,  r 2 dm  I : mô men quán tính của vật đối với trục quay. v 1 (22) Vậy: Tq  I 2 2 5.4. Động năng toàn phần của vật rắn chuyển động Khi vật rắn tham gia chuyển động bất kỳ, ta xem chuyển động đó là tổng hợp của hai chuyển động thành phần: chuyển động tịnh tiến của khối tâm với vận tốc v0 và chuyển động quay quanh trục tức thời đi qua khối tâm với vận tốc góc  . Theo định lý cộng vận tốc ta có : v  v0  v,  v0    r  (23) 12
  18. , Trong đó : v là vận tốc của điểm ta xét đối với khối tâm của vật; r là bán kính vectơ của điểm ta xét đối với khối tâm của vật. Thay vào công thức (20) ta có động năng của vật rắn chuyển động bất kỳ là: 1 2 1   1 2   1  2 2 2 v 2 v 2 v v 0   2 v   dm T v dm  v    r  dm  v dm  v   r     r  0   0 Ta thấy: 1 2 1 1  2v v0 dm  v02  dm  mv02 ; 2 v 2    v v 0    r  dm  v0   rdm   0    v  Vì trong quy chiếu gắn với khối tâm  rdm  mr0  0 v 1  1 1 2 2 2 1   2               2 r dm r dm r dm I 2 , trong đó rn là điểm ta 2v  n n 0 2v 2 v v 2 xét tới trục quay đi qua khối tâm, I 0 mômen quán tính của vật đối với trục quay đi qua khối tâm. Do vậy: 1 1 Ttp  m02  I 0 2  Ttt  Tq (24) 2 2 Vì động năng của vật rắn chuyển động bất kì bằng tổng động năng của chuyển động tịnh tiến và động năng quay, do vậy người ta còn gọi nó là động năng toàn phần của vật rắn. Tóm lại: Động năng của toàn phần của vật rắn chuyển động bằng tổng động năng chuyển động tịnh tiến và động năng quay quanh trục đi qua khối tâm. 13
  19. CHƢƠNG 2: PHÂN DẠNG BÀI TẬP CƠ HỌC VẬT RẮN 2.1. The problem of finding the center of the solid Exercise 2.1.1: Determine the center of mass for the region bounded   by y  sin(2 x), y  0 on the interval 0,  .  2 Solution Center of Mass Coordinates b My  x  f  x   g  x   dx b   x  f  x   g  x  dx 1 x  a b M Aa  f  x   g  x  dx a   b 1 a 2      2 2 f x g x dx   b M 1 1 y x    f  x   g  x  dx 2 2 b M Aa2  f  x   g  x  dx a Where b A   f  x   g  x  dx a Note that the density, ρ, of the plate cancels out and so isn’t really needed. Here is a sketch of the region with the center of mass denoted with a dot. 14
  20. (Fig 2.1.1) Let’s first get the area of the region.  A   2 2sin(2 x)dx  2 0 Now, the moments (without density since it will just drop out) are:  2 M x   2sin 2 (2 x)dx 0   2 2 M y   2 x sin(2 x)dx M x   1  cos(4 x)dx  0 0   My  Mx  2 2 The coordinates of the center of mass are:   x 2  2 4   y 2  2 4 Again, note that we didn’t put in the density since it will cancel out. 15
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
9=>0