http://www.math.vn<br />
<br />
Câu I. 1) (1 điểm) ———————————————————————————————— Cho hàm số y = x3 − 3x2 + (m − 6)x + m − 2 (m là tham số). Khảo sát và vẽ đồ thị khi m = 9 Lời giải: Đồ thị<br />
10<br />
<br />
Hàm số y = x3 − 3x2 + 3x + 7 = (x − 1)3 + 8 Bảng biến thiên<br />
<br />
Câu I. 2) (1 điểm) ———————————————————————————————— 3 11 ; đến đường thẳng đi qua hai Tìm m để đồ thị hàm số có hai điểm cực trị và khoảng cách từ điểm A 2 4 điểm cực trị lớn nhất. Lời giải: Hàm số có đạo hàm: y = 3x2 − 6x + m − 6 Đồ thị hàm số đa thức bậc 3 có 2 cực trị khi: y = 0 phải có 2 nghiệm phân biệt: ⇔ ∆ = 32 − 3(m − 6) > 0 ⇔ m < 9 1 2 1 4m Ta có : y = y + x− m−6 x+ −4 3 3 3 3 vì điểm cực trị có hoàng độ là nghiệm của y = 0 nên đường thẳng (d) qua 2 cực trị có pt là: 4m 2 m−6 x+ − 4 ⇔ (2m − 18)x − 3y + 4m − 12 = 0 ⇔ 2kx − 3y + 4k + 24 = 0 với k = m − 9 < 0 y= 3 3 11 3 2k − 3 + 4k + 24 7 |4k + 9| 2 4 √ = √ > 0 nên 4k + 9 = 0 Khoảng cách từ A đến d là : l = 4 4k2 + 9 4k2 + 9 (4k + 9)2 72(4k + 9)(k − 4) Xét f (k) = ⇒ f (k) = 2+9 4k 4k2 + 9 Suy ra không tồn tại k để f (k) đạt giá trị lớn nhất. Do đó không tồn tại m để khoảng cách từ A đến d lớn nhất. Câu II. 1) (1 điểm) ———————————————————————————————— √ Giải phương trình 4 sin2 x + tan x + 2(1 + tan x) sin 3x = 1 Lời giải: √ PT ⇔ 4 sin2 x − 2 + 1 + tan x + 2 sin√ + tan x) = 0 3x(1 ⇔ 2 sin2 x − 2 cos2 x + (1 + tan x)(1 + √ sin 3x) = 0 2 2 x − sin2 x) + (1 + tan x)(1 + 2 sin 3x) = 0 ⇔ −2(cos √ 1 + 2 sin 3x =0 ⇔ −2(cos x − sin x)(cos x + sin x) + (cos x + sin x) cos x √ 1 + 2 sin 3x =0 ⇔ (cos x + sin x) −2 cos x + 2 sin x + cos x TH 1. cos x + sin x = 0 ⇔ tan x = −1 ⇔ x = −π + kπ 4 1<br />
<br />
htt p:/ /w w<br />
<br />
w. ma th. vn<br />
8 6 4 2 −2 2<br />
<br />
DIỄN ĐÀN MATH.VN<br />
<br />
LỜI GIẢI ĐỀ THI THỬ ĐẠI HỌC 2011 Môn thi : Toán Đề số: 07<br />
<br />
htt p:/ /w w<br />
2<br />
<br />
Câu IV. (1 điểm) ———————————————————————————————— Cho hình chóp S.ABC có SA = SB =√ ASB = ASC = BSC = α nội tiếp trong mặt cầu bán kính bằng R, SC, 8 3 3 R . Tính α biết thể tích khối chóp S.ABC bằng 27 Lời giải: Gọi M là trung điểm của SA; O là tâm đường tròn ngoại tiếp tam giác ABC; I là tâm mặt cầu ngoại tiếp tứ diện SABC. Đặt x = SA, a = AB, r = OA. Ta có tam √ ABC đều. giác √ √ α 3 α 3 2 √ 2 2α 2 2 3 1 a = 2x sin , r = · a= x sin , SABC = a = 3x sin , SI · SO = SM · SA = x2 , 2 3 2 3 2 4 2 2 4 2α x2 , SO2 = SA2 − OA2 , ⇒ x2 = 4R2 1 − sin ; ⇒ SO = 2R 3 2 √ 1 8 3 3 4 α 2 2α VSABC = SO · SABC = R 1 − sin2 sin 3 3 3 2 2 √ 2 α α 1 α α 1 8 3 3 4 4 Vậy VSABC = R ⇔ 1 − sin2 sin2 = ⇔ 1 − sin2 · sin = 27 3 2 2 9 3 2 2 3 3α π π 4π ⇔ sin = 1 ⇔ α = + k . Vậy α = . 2 3 3 3 Câu V. (1 điểm) ———————————————————————————————— a2 − 1 b2 − 1 c2 − 1 + + = 0. Cho các số thức a, b, c thỏa mãn 0 < a ≤ b ≤ c và a b c Tìm giá trị nhỏ nhất của biểu thức P = a + b2011 + c2012 Lời giải: Từ giả thiết ta có a ≤1 và c ≥ 1 a2 − 1 1 b2 − 1 c2 − 1 + =− ≥ 0 ⇔ (b + c)(1 − ) ≥ 0 ⇒ bc ≥ 1. (1) khi đó b c a bc √ 1 c2 − 1 1 1 a2 − 1 b2 − 1 1 Lại có =− + − 1 ≥ 2 ab( − 1) = = + − (a + b)= (a + b) c a b a b ab ab √ √ √ 1 1 1 1 ab 1+ ≥ 0 ⇒ c ≥ √ ⇒ abc2 ≥ 1. (2) = 2 √ − ab ≥ √ − ab ⇒ c − √ c ab ab ab ab √ 3 2011 c2010 = 3 3 abc2 (bc)2010 ≥ 3. Kết hợp (1), (2) và Theo BĐT AM-GM ta có P ≥ 3 ab Đẳng thức xảy ra khi a = b = c = 1. Vậy min P = 3. Câu VIa. 1) (1 điểm) ———————————————————————————————— Trong hệ tọa độ Oxy cho đường tròn (C) : (x − 1)2 + (y − 2)2 = 4 và hai đường thẳng d1 : mx + y − m − 1 = 0, d2 : x − my + m − 1 = 0. Tìm m để mỗi đường thẳng d1 , d2 cắt (C) tại hai điểm phân biệt sao cho bốn giao điểm đó tạo thành một tứ giác có diện tích lớn nhất. Lời giải:<br />
<br />
w. ma th. vn<br />
<br />
√ √ 1 + 2 sin 3x = 0 ⇔ −2 cos2 x + sin 2x + 1 + 2 sin 3x = 0 TH 2. −2 cos x + 2 sin x + cos x √ π π ⇔ cos 2x − sin 2x = 2 sin 3x ⇔ sin( π − 2x) = sin 3x ⇔ x = 20 + k2π hay x = 34 + k2π 4 5 Câu II. 2) (1 điểm) ———————————————————————————————— √ √ 2 x + y2 + y + 3 − 3 y = x + 2 √ Giải hệ phương trình y3 + y2 − 3y − 5 = 3x − 3 3 x + 2 Lời giải: √ √ Ta có: 2 x + y2 + y + 3 ≥ (1 + 3)(x + 2 + 3y) ≥ x + 2 + 3 y Đẳng thức xảy ra khi x = −1; y = 1. Thay vào phương trình dưới, thấy thỏa mãn. Đáp số: (x; y) = (−1; 1). Câu III. (1 điểm) ———————————————————————————————— 3 ln(3 + x2 ) dx Tính tích phân I= 1 x(4 − x) − 2 Lời giải:<br />
<br />
htt p:/ /w w<br />
3<br />
<br />
(4m2 + 3)(3m2 + 4) (4m2 + 3) + (3m2 + 4) 1 ≤ =7 Nên SABCD = AB ·CD = 2 R2 − h2 · R2 − h2 = 2 1 2 2 m2 + 1 m2 + 1 Dấu bằng xảy ra khi và chỉ khi m = ±1. Cách 2: Rõ ràng d1 và d2 đi qua P(1; 1) nằm trong đường tròn với mọi m nên mỗi đường thẳng cắt đường tròn tại hai điểm phân biệt. − − −− Vectơ pháp tuyến của d1 và d2 lần lượt là → = (m; 1) và → = (1; −m) ⇒ →→ = 0 ⇒ d1 ⊥ d2 . n1 n2 n1 n2 Gọi A,C và B, D lần lượt là các giao điểm của d1 , d2 với đường tròn (C), H, K lần lượt là hình chiếu của tâm I(1; 2) trên d1 và d2 thì √ 1 1√ 2 AC .BD2 = 2 (R2 − IH 2 )(R2 − IK 2 ) = 2 R4 − R2 .IP2 + IH 2 .IK 2 ≤ SABCD = AC.BD = 2 2 2 IH 2 + IK 2 2 ≤ 2 R4 − R2 .IP2 + = (2R2 − IP2 ) = 2R2 − IP2 = 7 (Do IH 2 + IK 2 = IP2 ) 2 √ √ 2 = 1 ⇔ m = ±1 Đẳng thức xảy ra khi IH = IK ⇒ IHPK là hình vuông ⇔ IP = IH 2 ⇔ √ m2 + 1 Câu VIa. 2) (1 điểm) ———————————————————————————————— 16 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : (x + 1)2 + (y − 1)2 + (z + 1)2 = và điểm 9 1 . Viết phương trình đường thẳng ∆ đi qua A vuông góc với đường thẳng chứa trục Oz và tiếp xúc A 0; 0; 3 với mặt cầu (S) Lời giải: Câu VIIa. (1 điểm) ———————————————————————————————— Cho số phức z thỏa mãn |z|2 − 2(z + z) − 2(z − z)i − 9 = 0. Tìm giá trị lớn nhất và giá trị nhỏ nhất của |z| Lời giải: Đặt: z = a + bi |z|2 − 2(z + z) − 2(z − z)i − 9 = 0 ⇔ a2 + b2 − 4a + 4b = 9 ⇔ a2 + b2 − 4(a − b) = 9 2− 2− theo BĐT: a − b ≤ 2(a2 + b2 ) ⇒ 9 = a2 + b√ 4(a − b) ≥ a2 + b√ 4 √2(a2 + b2 ) √ √ 2+ 2) ⇔ a√ b2 √ 4 2(a2 + b√ − 9√ 0 ⇔ 2 2 + 17 ≥ a2 + b2 ≥ 2 2 − 17 − ≤ ⇔ 2 2 + 17 ≥ |z| ≥ 2 2 − 17 √ √ Vậy max |z| = 2 2 + 17, min |z| = 0 Câu VIb. 1) (1 điểm) ———————————————————————————————— Trong hệ tọa độ Oxy cho hai đường tròn (C1 ) : x2 + y2 − 2x − 4y + 3 = 0, (C2 ) : x2 + y2 − 6x − 8y + 20 = 0 và A(2; 2). Viết phương trình đường thẳng ∆ đi qua A và cắt mỗi đường tròn (C1 ), (C2 ) tại hai điểm phân √ 2 2 biệt và 2 − d1 + 5 − d2 = 13 (d1 , d2 là khoảng cách từ tâm của các đường tròn (C1 ), (C2 )đến ∆ ) Lời giải: Câu VIb. 2) (1 điểm) ———————————————————————————————— Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : (x − 1)2 + (y − 1)2 + z2 = 1. Gọi A là một điểm tùy x−1 y−1 z−1 = = . Từ A vẽ các tiếp tuyến AT1 , AT2 , AT3 đến mặt cầu (S). Tìm tọa ý trên đường thẳng ∆ : 1 −2 1 độ điểm A biết mp(T1 T2 T3 ) tạo với ∆ một góc 30o . Lời giải:<br />
<br />
w. ma th. vn<br />
<br />
Cách 1: Đường tròn (C) có tâm I(1; 2) và có bán kính R = 2. Gọi A, B là giao điểm của d1 với (C); C, D là giao điểm của d2 với (C)(A, B, C, D theo thứ tự trên đường tròn); h1 , h2 lần lượt là khoảng các từ I đến d1 , d2 . 1 |m| < R nên d1 , d2 luôn cắt (C) tại 2 điểm phân biệt. Ta có h1 = √ < R, h2 = √ 2+1 m m2 + 1 Ta có AB = 2 R2 − h2 , CD = 2 R2 − h2 . Rõ ràng d1 ⊥ d2 nên AB ⊥ CD . 1 2<br />
<br />
Câu VIIb. (1 điểm) ———————————————————————————————— Cho số phức z = 0 thỏa z z<br />
3<br />
<br />
z + z<br />
<br />
3<br />
<br />
+ |z| +<br />
<br />
Lời giải: z = r(cos θ + i. sin θ ) đẳng thức trở thành 1 1 1 2 cos 6θ + r6 + 6 = 2 = z3 + 3 = z + . z z r ⇔ (P + 1)2 (P − 2) ≤ 0 ⇔ P ≤ 2 ⇒ max P = 2<br />
<br />
htt p:/ /w w<br />
4<br />
<br />
w. ma th. vn<br />
3<br />
<br />
1<br />
<br />
2<br />
<br />
|z|3<br />
<br />
=6<br />
<br />
1 z+ z<br />
<br />
2<br />
<br />
− 3 ≥ P3 − 3P<br />
<br />