Luận án phó tiến sỹ " Bài toán biến tự do trong cơ học môi trường liên tục "
lượt xem 14
download
Tham khảo luận văn - đề án 'luận án phó tiến sỹ " bài toán biến tự do trong cơ học môi trường liên tục "', luận văn - báo cáo phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận án phó tiến sỹ " Bài toán biến tự do trong cơ học môi trường liên tục "
- BO GIAODue v A oAo TAO TRUONG 8AT I-IQC TONG HOP THANH FHO HO CHI MINH TR~NH ANH NGQC BAI TOAN BI:B:N TIJ DO TRaNG CO HQC Mor TRUONG LIEN TUC Chuyen nganh: cO HQC V~T R..\N BIE'N D~NG Mil so': 1.02.21 T6MTATLU~N AN Ph6 Tie'nSi Toan Ly -.: Thanh Ph6 If() Chi wUnh - 1996 -
- Lu~n an duqe heaD thanh l~i Moa Toan - Tin hge Tru'CJng. H9C T6ng Hqp Thanh pho' H6 Cbi I\Hnh B~i Ngu'oi hu'dng din: Giao suTie'n sl B4ng Blnh Ang B~i Hqc T6ng Hqp Thanh pho' H6 Cbi Minh Ngu'oi nh4n xet 1: Ngu'Oinh4n xet 2: Cel quan nh~n xet: .- Lu4n an nay se duqc bao v~ ~i HQi dong cham lu4n an NhB.nude h9P ~i Tru'CJngB~i H9C T6ng Hqp Thanh pho' H6 Chi IvIinh vao hie gi
- BAI TO~{N BrENn;' 00 TRONG co HQC MOl TRUONG LIEN T1)C :'vIa DA U Bat todn bien t,! do la bai toan bien, trong do bien hoac mot pilau bien cua mien khao sat khong dUCfC cho truck (goi la hien tt' do hay bien di dong). Tuy tUng twang hqp cu th~, bien tl1 do co thJ lit m~t pilau cilia moi twCtng thana cac thana phan (pha.) co cae dac trung tr~ng thai va chuy~n dong khac nhau; aoae la. mat gian dean cila cae dac tnmg nay. Mot dac di~rn cila loai bai toan nay la. bien t1J do phai du
- - Phucrng phap tinh gAll dung cUe:bai toaD bien tl,r do. Mo hinh tO8.n hQc. Chung toi dung mo hlnh Bingham. hi~n ducre coj Iii.mo hlnh mo ph6ng kha tot cae qua trinh va cham, xam nh~p clla v~t r3-n bi~n d~g. Di~u ki~n tren bien tv do duqc xay d\!IIg dt,la tren tinh eMt v~t If eua hi~n tuqng. Vi~e dua vao cae di~u kien nay thuitng d~n d~n mqt 80 kh6 kh
- C'hlwng 0: M,j ddu. Cic1i thieu bai toa.n bien tH do d6i tIWH'~ cung nhu plnwng phiLp nghien uru cua. luau a.n) va lbng quail tmh hlnh nghien clm trong va ngoai mrcie ve loill bai toan nay Chuang 1: PhuO'ng trinh tn,mg thdl CO' yco Gll1leu each ngan gOft h d,c t{nh chat ((1 hoc cua vat th~ chiu bli:in dang Qua. do. gial rhieu mot ma hlnh cct hoc (Bingham) eho phep dinh ltwng cae dae tnrng ca hoc, cling nhu dinh t{nh nhiing hieu Lhtg ca hoc quail trong duae quail tam trong cae biLitoan se duac de cap (r chuang 2, 3 eua luan an. Noi dung cua chuang na.y se IiLcct sa phuang phap luau eno cae bien giai ve sail. Chuang 2: Eai tocin bien tf! do trong CO'hQc xdm nhtip. Trinh ba.y mQt so ki:it qua ve su t6n tai va. cluy nMt nghi~m toa.n cue cua. mot ba.i toan thuQc lanh vuc CC1oc xam nMp. Cac ki:itqua dltCfcde h c~p Mn d day co th~ xem nhu tii:ip n6i bai baa: Penetration mechanics: Predicting the location of a viscoplastic bound- ary and its effect on the stresses, J. Solids and Structure 28115 (1991) cua D.D. Ang et al. Trong phb cu6i cu.a chuang, chUng toi trinh bay thu~t toan tinh gb dung va. xet mQt s6 vi d~ minD hQa dOng thai cling ca:p bue tranh v~t If cua hi~n tU
- tich pha-n chung t6i dua, ra thuat toa.n giai gim dung bai toan toan hoc. Mot VIdu s6 duqc xet M kiem dinh me hinh toan hoc va danh gia thuat toan, Pha-n Ktt lugn tOng ket cac ket qua dat duqc trong iua-n an va I ! de xuat m9t s6 nhan xet co tinh phucrngpilip iua-ntrong vi~c dii,tva gia.iqu~et cae bai toan bien t1,tdo. \ 4
- C IIl(O'Ug 1 PHUONG TRlNH TRf~NG THAI CO HQC lJien Dl1c1i ide dl,lng cua J\!C ngoaj (hlC khc5i, Jut mat) '-"at ~n~ dang. :.Jg\1Ctita pha.n biet d.c qua trinh bien cla.ng . Qua irlnh bien dang can bang va. thuq.n flgh~ch. L.:i Tftuyet. dan h6i t.uy~n t{nh khao sat cae qua trinh dua tren gia ~hiet bien dang 1,1, thuan nghich . Qua trlnh bien d
- ~:Jein x~t . .EhJ lIng suat khOng doi va vucrt. qua. ung suat gicri han as th\ a- a, Hong vat the, bitin dang tang theo thai gian ti le veri =:.. Il . 5
- CIutl1ng 2 B;\1 TO/\N BI:E~ TT" DO TRaNG co HQC X..\1\1 'iHAP Bai toaD cd hQc Vat th~ B veri chien f 0, tim u(x, i), s(t) sao cho . .. ---- ~(t) lien t~c Lipschitz tIen (0, Tm=]j :: ~x~ ~ t ~ Tm=; . u va. lien tl,1Cvai 0 (t), 0 8 ,J211 au . -&;2 va.at lien t~c trong 0 ~ x ~ 8(t) khi 0 < t < Tm=, . u thoa phuangtrlnh dao ha.mrieng au - 1 fpu 5 . f (2) - at + Rg(t) R 8x2 (I, t) trong 0 < x < 5(t), 0 < t ~ Tmax ;
- . Tren bien tV do set), u thoa. cae dieu kierl au S 5 = - R(1-s(t))' m(s(t), t) Rg(t) au = -(set), t) 0, ax &u 5 (3) = -I-s(t)' ox2(s(t),t) vm 0< t::; Tmax; . u va s thOa.cae di~u ki~n bien va.dieu ki~n da.usau: = b, 0 < b < 1, seD) = - tp(x), u(:c,O) - ---- ------- = (4) jet), u(O,t) vm d.c di~u kien tucrng thlch = 'P(O) /(0), r,o'(b) = 0, = -~ (5) 'P"(b) 1- b' trong do u la v~ toe, set) la di~m phan each giila mien cleonh&t va = pH2 / I-!T la so Reynold (ti so giila h,lc qUail tinh va mien tUng, R = : 11;tcnh&t), 5 ToT/I-! la ti 86 giilal1;tc ngoai va 11;te nh&t. Dua vao:in ham mm u(x,t) = (x,t), u(x,t) thoa au 1 &u S , , (6) = 8t(x,t) RO:r2(x,t)+R9(t), -, S. 5 (7) = R~ft) - H(I - s(t)) t) v(s(1), av 'sfi) , (8) = ,,(stiLt) 5 aT I-s(t) -,' (9) = tjJ(x), v(,r,O) (10) v(O,t) = f(t), (11 j = f(O) 11'(0), S S ( 12) -g(O) '- ~- 1/,(b) = R- R(1 - b) 8
- = R12 Ph11crng trinh tich phAn. Ky hieu k uung cae ham Green. -T k i k"(x -02 = exp! ~"\.(I,t;~,1") ) \... -,), it-1' 2..)7r(t-1') G(x,t;f;,1') := K(x,t;E"r)-K(x,t:-~,i), .V(x,t;f;,r) := K(x,t;E;,1')+I((x,t:-f;,i), (13) vcii 0 < x < set), 0 < f; < s(t), 0 < T < t. (14) Sa.n mot so bi~n d6i xuat phat tu dong nhat thuc Green eila. he (6)-(12), ta. thu dw;rc phucrng trinh ti'ch pha.n sail: .) = ~(l-s(t»B(r(t», (15) rei) trong do = B(1"(t» 1& r//(~)N(s(t), t;f;,O)d{ S (t r( 1") - R Jo (1 - s(1"»2N(.(t),t; SeT),r)d1" S l +R t r(r) 8G 0'1-31" ( ) a-,;- ($(t),t;s(r}~1")dT' t S I u (16) - - Rg(1")N(s(t),t;O,1")dT, [ fer) ] 0 va set) duqc Lie dinh nllet -. . --{In ._. s(t)=b+fo~r(T)dr.--- trong do fIO(t)=v(s(t),t). Giai (15) - (17) ta. thn duc;rcset); tit do ta.co th~ unh toan gia.tri cua. trnetng v~ t6c va.trtldng Ung snat. 511 tOn t~ va duy nhat nghi~m tOM Cl,le-TiI cae bi~u di~n tich pha.n.eua. nghi~m chung-tOi rut fa. ill
- D~t Tmax = sup{T> 0: (2.17) - (2.20) co nghi~m tIeD [0, T] va.0 < s(t) < 1 vm miE [0,T]}. t (18) Tir Dinh Ii 2.1 va.D~n~Iy 2.2 ta co ngay Bo & 2.1 Dttlii cae dieu ki~n cuo Dinh ly 2.1 (ho~e Dinh ly 2.£), ~t trong cae kef lu~n sou dung (i) Tmax=+oo. < +00 = 1, lim sup 18(t)1 < +00. (ii) Tmax va Jim s(t) t-+Tm"" t-+Tm"" (ill) 'Tmax
- =1 - s , Hem nila lim s(t) R g,. t-++oo Dinh If 2.4 Dtteli cae dieu "i~n erla [)~nh 111 va cae dieu ki~n 2.2 sau: 1. let) - ig(t) ~ 0 velim9i t 2:0 va M < S/8R ironydo M nhtt trong D~nh 1112.3. 5 is , 2. tEfoo'LRg(t) - J(t)] = g,. < R' 3. -! < Ipll/(x)~ 0 veli m9i 0 ~ x ~ b. ta co T~ax -
- . Btfdc l 2). Them va.o diem t",< vm gia. tri lap ban dkll duae di
- 1 - , ," - Tnroll" : (ii) IIT'70 < (CjnL1{!/-' + C:d17l- IjL1xj)- l -Q ~- (iii) IIT"ro - rUn < o:n}vi + (C1nL1t3/Z + '-:"-'z(m 1).::1x3) - 1 0 do r la nghi~m cMnh xcic; f(= Tr'ro) IiI nghi~m gan dung d irony bttdc I(lp thtf n; ro la gici try igp ban dati; s(t), s(t) dttqc :uic dinh tti(17)vdiFl.,t), r(t) tttetngting;C1,CzlG ccichdngst{cMphtj thuQc vao dil "i~n cho trtJdc cua bai loan va gici tri I(lp ban dttu; m Ia s6' diem nut !.hong gian ph4n ho(,lch [0, bJ. B~ qua' Co\d;nh tn, dieu kil]n oond,nh cua set do tinh xiip xi: .::1tlj2 t1/Z n > " - (22) &2 bZ---- ThuM toau duQc ap d1,lugcho ba. VI dl,l 86. K~t qua phil hqp vai cae daub gia If thuy~t, d~c bi~t phU hqp vai k~t qua ciia cae tic gici trucrc day. JC
- Chuo'ng 3 Va Ch9ffi cua thanh deo nhdt v~w v
- " (ftl.. H {: phl1ctng tnnh tlch ph:m. D~t u == &t' u thoa au 1 fj2u . (31 ) at (x, t) R ax2lx, t), == 5 (32) - s(t»' v(s(t), t) == R(I - (33) au (s(t), t) == Ss(t) , 1 - sri) ax (34) ~ v(x,O) .== ~'P"(x) t/J(x), t , au (35) ax (0, t) == SQ [ Jo ti(O,r)dr + !p(0) , ] S . ,pCb) = (36) - R(I b)' = SQ!P(O). t/J'(O) (37) Cho k ==RI/2. Dinh nghia cac ham Green nhu san: k ex - P(X-O2 R, x t. r == ( , ,f, ) 2"hr(t - 1') P [ 4(t - r) ] , G(x,t;f,1') == K(x,t;L1')-K(x,t;-f,r), N(x,t;(,1') == K(x,t;(,r) +K(x,t;-(,1'), (38) vm 0 < x < set), 0 < ( < 5(1'), 0 < l' < t. Ta nh~n dl1qc M phuC1ng trlnh tlch phan che r (t) va VI(t) r(t) == - 2(1 ~s(t)) [lb ~"(OG(s(t),t;(,O)df t aN 1 -k2 Jo UI(r) ax (s(t),t;O,1')dr --5 t r(1') aN. . 1 R 0 1 - s(1') aX (s(t), t; sir), T)dT t S r(r) . . (39) 1 + R Jo (1- s(r)pG(s(tJ,t;s(T),r)drj' VI(t) == [l fob t/J«()N(O,t';~,O)d
- ,) ,( - -r; I k v'< Jo vd1')lf=Tdr t s aN (' 1 -Rio Jo l=-s(1') 19f.(O,tl;S'(T),T)dTdtl+'P(OJ] (40) trong do ta da. d.lt = u(s(t),t), (41 ) uo(t) au . (42) vtit) = ax (s(t),i), r(t) = Ht). (43) va set) duqc xa.c dinh b6i (44) = b+ It r(r)dr. set) V~y, nghi~m c1ia.bai toan co tM tlm duqc bAng each giai M phuC1ng trlnh tich pha.n (36)-(37), trong d6 set) duqe xae dinh b6i (41). Troung v~n tOe va. l1ng snat pha.n bo trong tha.nh du
- au < -;:-(0, t) - S O. Vci, maIO::; t < T+. dx au . = o. ox (0,T") - 5 . 2R(1 - b) r .! Sa a day To = l-tp(Oi + '111'(0)2 - R(l- b)] . S K~t qua s6. Tuang W nhu trong chuang 2, thu~t toa.n xa:p xi duqc thiEitl~p nhu .sau: Bien t duqc phan ho~ch den bm cae di~m nut il! i = 0,1,2, ... vc1i Hoang each dEmd. . BtJa/J(J.p thti nhcft. Cho truac r(to), r(il) va VI(to), Vl(tl) each tuy y. Tinh S(tl) nha cOngthUc (41). . BtJac It;ip thti n+l. Gii. sir da. biEit cae gia tri ciia r(td, vl(ii), = S(ti) vGi i 0,1,2,...,n, (n> 2). Them vaa di~m nut in+! vc1i gia tri l~p ban da.u duqc eh(;mla rein+!) = 2r(tn) - r(tn-l), (45) Vl(tn+l) = 2Vl(tn) - Vl(tn-l)' (46) Dung phep co xac dinh bm (36) va. (37), tinh dp xi r(tn+!), vl(in+!), roi s(tn+!) (nher(41)). Dinh ly 2.6 va.n dung vai sa do t{nh gall dung (; day. N6i khac di thu~t toaD h(>itv va. On dinh vai sai s6 duqc danh gia theo Dinh ly 2.6. Thu~t tOaD duac ap dung cho mot vi du s6. 17
- K~t lu~n Tom l
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận án phó tiến sỹ " Kinh tế nông hộ và kinh tế hợp tác xã trong sự phát triển sản xuất nông nghiệp hàng hóa "
28 p | 393 | 100
-
Luận án phó tiến sỹ " Hiệu quả kinh tế xã hội và lợi ích kinh tế của cá nhân người lao động trong lâm nghiệp "
45 p | 306 | 90
-
Luận án phó tiến sỹ " Về các nhóm đối xứng không thời gian mở rộng của lý thuyết trường lượng tử "
28 p | 209 | 65
-
Luận án phó tiến sỹ " Những giải pháp để nâng cao hiệu quả sử dụng vốn của doanh nghiệp công nghiệp nhà nước tại Tp HCM hiện nay "
27 p | 203 | 63
-
Luận án phó tiến sỹ " Về một số bài toán ngược trong phương pháp trọn lực "
28 p | 207 | 40
-
Luận án phó tiến sỹ " Nghiên cứu phản ứng giảm cấp cao su latex trong tự nhiên bằng hệ phenilhidrazin - FeCl2 và một số phản ứng biền hình tính cao su giảm cấp "
29 p | 157 | 39
-
Luận án phó tiến sỹ " Góp phần nghiên cứu hệ sinh thái vườn nhà đồng bằng sông Cửu Long vầ thành phố Hồ Chí Minh "
28 p | 194 | 34
-
Luận án phó tiến sỹ " Chỉnh hóa một số bài toán ngược trong khoa học ứng dụng "
28 p | 135 | 27
-
Luận án phó tiến sỹ " Sử dụng phương pháp số vào một số bài toán cơ học "
24 p | 127 | 25
-
Luận án phó tiến sỹ " Điều kiện tối ưu và thông số đồng dạng của một loại laser hỗn hợp 2 khí "
17 p | 109 | 23
-
Luận án phó tiến sỹ " Nghiên cứu di truyền và lai các đột biến chín sớm giống lúa 8A ( IR 2070 -199.3.6.6 ) tạo giống mới "
28 p | 124 | 23
-
Luận án phó tiến sỹ " Phản ứng trime hóa vòng arylizoxianat bằng phương pháp xúc tác chyển pha & thăm dò và ứng dụng izoxianurat của 2,4 - TDI "
32 p | 161 | 21
-
Luận án phó tiến sỹ " Một số đặc điểm sinh thái học rừng tre lồ ô "
25 p | 111 | 21
-
Luận án phó tiến sỹ " Địa mạo trầm tích ứng dụng rừng sác Gia Định "
29 p | 189 | 14
-
Luận án phó tiến sỹ " Phát triển phương pháp giải bài toán thuận hai chiều và ba chiều nhằm phục vụ cho việc phân tích số liệu đo sâu điện trên môi trường địa chất phức tạp "
26 p | 117 | 14
-
Luận án Phó Tiến sỹ khoa học Lịch sử: Loại hình công xã của người Khmer ở đồng bằng sông Cửu Long
200 p | 97 | 14
-
Tóm tắt Luận án Tiến sỹ Kinh tế: Đánh giá tác động kinh tế của biến đổi khí hậu đến khai thác thuỷ sản và giải pháp ứng phó của Việt Nam
27 p | 63 | 8
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn