Luận văn Thạc sĩ Giáo dục học: Dạy học phân tích đa thức thành nhân tử ở trung học cơ sở
lượt xem 23
download
Mời các bạn tham khảo luận văn Thạc sĩ Giáo dục học: Dạy học phân tích đa thức thành nhân tử ở trung học cơ sở sau đây để nắm bắt những nội dung về một số yếu tố của trường sinh thái xoay quanh bài toán phân tích đa thức thành nhân tử; bài toán phân tích đa thức thành nhân tử - một phân tích thể chế.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn Thạc sĩ Giáo dục học: Dạy học phân tích đa thức thành nhân tử ở trung học cơ sở
- BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Thị Thùy Linh DẠY HỌC PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ Ở TRUNG HỌC CƠ SỞ LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC Thành phố Hồ Chí Minh – 2013
- BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Thị Thùy Linh DẠY HỌC PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ Ở TRUNG HỌC CƠ SỞ Chuyên ngành : Lý luận và phương pháp dạy học môn Toán Mã số : 60 14 01 11 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN ÁI QUỐC Thành phố Hồ Chí Minh – 2013
- LỜI CẢM ƠN Lời tri ân đầu tiên tôi muốn gửi đến gia đình-những người thân yêu, đặc biệt là bố mẹ tôi, người luôn yêu thương, khích lệ và tạo cơ hội để tôi có thể hoàn thiện công việc học tập của mình. Con xin cảm ơn bố mẹ rất nhiều! Học tập, hoàn thiện bản thân là điều tôi luôn ấp ủ. Đặc biệt khi được học tập ở Đại học Sư phạm TP.HCM, một ngôi trường có bề dày về lịch sử với nhiều thầy cô giỏi giang và tâm huyết với sự nghiệp trồng người, tôi cảm thấy tự hào về điều đó. Lời tri ân tiếp đến tôi muốn gửi đến những thầy cô trong chuyên ngành Didactic, thầy cô không những truyền đạt cho chúng tôi kiến thức mà còn chỉ bảo những điều cần thiết, quý báu trong cuộc sống và nghề nghiệp dạy học này. Xin trân trọng cảm ơn thầy Trung, cô Châu, cô Hương, cô Nga, thầy Tiến, thầy Khanh... Và hơn hết, tôi dành những dòng tri ân sâu sắc đến thầy Nguyễn Ái Quốc, người đã chia sẻ, động viên, giúp đỡ một cách chân tình những lúc tưởng chừng tôi không thể tiếp tục hoàn thiện luận văn. Xin cảm ơn thầy! Tôi cũng muốn dành lời cảm ơn đến TS. Alain Birebent, PGS-TS. Chaachoua đã nhiệt tình chỉ dẫn và gợi mở, giúp tôi có thêm hướng tiếp cận đối với đề tài nghiên cứu. Và những dòng cuối này, tôi muốn nhắc lại những kỉ niệm, những tình cảm yêu thương, những giây phút thảo luận-chia sẻ giúp đỡ nhau trong học tập, trong cuộc sống của các anh-chị-bạn học viên lớp LL&PP dạy học Toán khóa 22 dành cho tôi. Đặc biệt, cảm ơn bạn Lê Hữu Phước cùng nhiều thầy cô trường Nguyễn Du-quận 1, trường Tân Thới Hòa- quận Tân Phú nhiệt tình giúp đỡ tôi hoàn thiện thực nghiệm. Tất cả những tình cảm và sự biết ơn này đọng lại trong tôi những yêu thương và kỉ niệm khó phai. Một lần nữa, tôi trân trọng cảm ơn tất cả những người đã yêu quí tôi, đồng hành cùng tôi trong những chặng đường đã qua. Trân trọng và thân ái, Nguyễn Thị Thùy Linh. 1
- MỤC LỤC LỜI CẢM ƠN .............................................................................................................. 1 MỤC LỤC .................................................................................................................... 2 DANH MỤC CÁC TỪ VIẾT TẮT ............................................................................ 4 MỞ ĐẦU....................................................................................................................... 5 1. Những ghi nhận ban đầu và câu hỏi xuất phát ............................................................ 5 2. Khung lý thuyết tham chiếu........................................................................................... 6 3. Phương pháp nghiên cứu ............................................................................................... 6 4. Cấu trúc luận văn ........................................................................................................... 7 CHƯƠNG 1: MỘT SỐ YẾU TỐ CỦA TRƯỜNG SINH THÁI XOAY QUANH BÀI TOÁN PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ .................................... 8 1.1. Chuyển đổi didactic liên quan đến đối tượng đa thức ............................................. 8 1.1.1. Khái niệm đa thức ở tri thức khoa học .................................................................... 8 1.1.2. Khái niệm đa thức ở chương trình Toán THCS ...................................................... 9 1.1.3. Sự chênh lệch về đối tượng đa thức từ cấp độ Đại học đến cấp độ phổ thông ..... 10 1.2. Bài toán “phân tích đa thức thành nhân tử” (PTĐTTNT) trong kết cấu chương trình toán trung học cơ sở (THCS) ................................................................................. 12 1.2.1. Chương trình toán 8............................................................................................... 13 1.2.2. Chương trình toán 9............................................................................................... 15 1.3. Vành nhân tử hóa là “mặt bằng” so sánh kết quả của bài toán phân tích đa thức thành nhân tử ở THCS? ................................................................................................... 17 1.4. Kết luận ....................................................................................................................... 19 CHƯƠNG 2: BÀI TOÁN PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ - MỘT PHÂN TÍCH THỂ CHẾ ........................................................................................... 21 2.1. Phân tích đa thức thành nhân tử bằng cách đặt nhân tử chung ........................... 22 2.1.1. Xác định các hợp đồng didactic ............................................................................ 25 2.1.2. Vai trò công cụ của kỹ thuật PTĐTTNT bằng cách đặt nhân tử chung ................ 27 2.2. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức ....... 29 2.2.1. Sự tiến triển của quy tắc hợp đồng didactic QT-HS 1 .......................................... 29 2.2.2. Phân tích đa thức thành nhân tử với vai trò công cụ trong kiểu nhiệm vụ T-tìm x33 2.3. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử ................... 34 2.3.1. Sự tiến triển quy tắc hợp đồng didactic QT- HS 1 ................................................ 34 2.3.2. Phân tích đa thức thành nhân tử với vai trò công cụ trong kiểu nhiệm vụ T-tìm x38 2.4. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp ........ 38 2.4.1. Sự tiến triển của quy tắc hợp đồng QT-HS 2 ........................................................ 38 2
- 2.4.2. Phân tích đa thức thành nhân tử với vai trò công cụ trong kiểu nhiệm vụ T-tìm x40 2.5. Kết luận ....................................................................................................................... 41 CHƯƠNG 3: NGHIÊN CỨU THỰC NGHIỆM .................................................... 43 3.1. Thực nghiệm ............................................................................................................... 43 3.1.1. Giới thiệu thực nghiệm.......................................................................................... 43 3.1.2. Phân tích tiên nghiệm ............................................................................................ 44 3.1.3. Phân tích hậu nghiệm ........................................................................................... 56 3.2. Kết luận thực nghiệm ................................................................................................ 67 KẾT LUẬN CHUNG ................................................................................................ 69 TÀI LIỆU THAM KHẢO ........................................................................................ 71 PHỤ LỤC ................................................................................................................... 73 3
- DANH MỤC CÁC TỪ VIẾT TẮT BT8.1 : Bài tập toán 8 tập 1 BT8.2 : Bài tập toán 8 tập 2 BT9.1 : Bài tập toán 9 tập 1 CT : Chương trình dạy học Toán phổ thông Việt Nam hiện hành ĐT-Z : Đa thức hệ số nguyên ĐT-Q : Đa thức hệ số hữu tỉ ĐT-R : Đa thức hệ số thực GK7.2 : Toán 7 tập 2 GV7.2 : Toán 7 tập 2 (Sách giáo viên) GK8.1 : Toán 8 tập 1 GK8.2 : Toán 8 tập 2 GK9.1 : Toán 9 tập 1 GV8.1 : Toán 8 tập 1 (Sách giáo viên) GV8.2 : Toán 8 tập 2 (Sách giáo viên) GV9.1 : Toán 9 tập 1 (Sách giáo viên) HS : Học sinh HĐT : Hằng đẳng thức MTBT : Máy tính bỏ túi NTC : Nhân tử chung PTĐTTNT : Phân tích đa thức thành nhân tử SGK : Sách giáo khoa SBT : Sách bài tập SGV : Sách giáo viên ƯCLN : Ước chung lớn nhất 4
- MỞ ĐẦU 1. Những ghi nhận ban đầu và câu hỏi xuất phát Trong quá trình ôn tập đầu lớp 9, chúng tôi bắt gặp một hiện tượng liên quan đến nội dung phân tích đa thức thành nhân tử (PTĐTTNT) như sau: “Đứng trước yêu cầu phân tích đa thức 6 x 2 − 8 xy thành nhân tử, hầu hết học sinh đều đưa ra kết quả 6 x 2 − 8 xy = 2 x(3x − 4 y ) , đa thức ban đầu được tách thành tích của hai đa thức nhân tử hệ số nguyên là 2 x và 3x − 4 y ”. Chúng tôi tiến hành một cuộc khảo sát trên một nhóm học sinh lớp 9 khác, hầu hết học sinh đều ghi nhận kết quả trên, bài làm điển hình của một học sinh như sau: Với yêu cầu phân tích đa thức thành nhân tử tổng quát như trên, nghĩa là không chỉ định rõ đa thức nhân tử xác định trên vành đa thức nào, vành đa thức hệ số nguyên-hữu tỉ hay thực, 4 dẫn đến một số kết quả phân tích khác như 6 x 2 − 8 xy = 6 x( x − y) , 3 6 x 2 − 8 xy = 2 x(3 2 x − 4 2 y ) vẫn đúng nhưng không có cơ hội xuất hiện hoặc bị loại trừ. Bên cgạnh đó, trong “Những yếu tố cơ bản của Didactic toán”, hiện tượng dạy học phân tích đa thức thành nhân tử bậc THCS (học sinh từ 11 đến 16 tuổi) ở Pháp, chúng tôi nhận thấy có điểm tương đồng với hiện tượng ghi nhận trên: Giáo viên yêu cầu một học sinh THCS: “Em hãy phân tích thành nhân tử biểu thức 16x2 – 4” và chờ đợi học sinh đó thấy được dịp vận dụng quy tắc phân tích thành nhân tử a2 - b2=(a - b)(a + b) và sẽ trả lời 16x2 - 4= (4x-2)(4x+2). Cũng như vậy, đối với câu “Phân tích thành nhân tử 4x2 - 36x “, giáo viên chờ đợi học sinh trả lời đơn giản là 4x2 - 36x= 4x(x-9). Có những cách giải khác vẫn đúng, nhưng đều bị loại trừ, hoặc không có cơ hội xuất hiện, không phải vì chúng không đáp ứng được điều kiện toán học đặt ra trước, mà vì chúng không phù hợp với quy tắc ứng xử. Đó là: 16 2 4 1 16x2 - 4= 2(8x2 - 2) hoặc 16x 2 − 4 = 3( x − ) hoặc 16 x 2 − 4 = 16 x 2 (1 − 2 ) với x≠0. 3 3 4x [Những yếu tố cơ bản của Didactic toán, tr.353] Tình huống này, cũng không xác định rõ việc phân tích đa thức thành nhân tử được tiến hành trên vành đa thức nào. Các kết quả phân tích được giáo viên hợp thức là kết quả được chấp nhận. Theo đó, các kết quả còn lại có thể bị loại trừ hoặc không có cơ hội xuất hiện. 5
- Câu hỏi đặt ra là: việc dạy học nội dung phân tích đa thức thành nhân tử được diễn ra như thế nào trong chương trình toán Việt Nam? Tại sao kết quả phân tích này được đa số chấp nhận mà không là kết quả phân tích khác? Câu hỏi đặt ra nảy sinh trong chúng tôi nhu cầu cần thiết, nghiên cứu việc dạy học phân tích đa thức thành nhân tử ở Trung học cơ sở Việt Nam, với những quan tâm sau: - Thể chế mong đợi những gì đối với kết quả trong yêu cầu phân tích đa thức thành nhân tử. - Có hay không những tiêu chí rõ ràng để xác định tính hợp thức của các kết quả phân tích đa thức thành nhân tử. 2. Khung lý thuyết tham chiếu Mục đích của luận văn là tìm lời giải thích đối với hiện tượng quan sát được. Đồng nghĩa với việc tìm hiểu mối quan hệ giữa tri thức- bài toán PTĐTTNT với giáo viên và học sinh xét trong thể chế dạy học toán THCS được diễn ra như thế nào? Để làm được điều đó chúng tôi sử dụng các công cụ sau: lí thuyết nhân chủng học (quan hệ thể chế, quan hệ cá nhân, tổ chức toán học), lý thuyết tình huống, hợp đồng didactic. Chúng tôi trình bày lại các câu hỏi nghiên cứu như sau: Q1: Bài toán phân tích đa thức thành nhân tử xuất hiện và tiến triển như thế nào trong chương trình toán Việt Nam? Q2: Xét ở góc độ tri thức cần giảng dạy trong nội tại chương trình toán trung học cơ sở Việt Nam hiện hành, kiểu nhiệm vụ phân tích đa thức thành nhân tử có những đặc trưng gì? Thể chế đề cập đến những kỹ thuật nào giải quyết kiểu nhiệm vụ này? Những ràng buộc nào của thể chế dạy học trên tổ chức toán học liên quan đến kiểu nhiệm vụ phân tích đa thức thành nhân tử? Q3: Các kỹ thuật giải quyết kiểu nhiệm vụ phân tích đa thức thành nhân tử từ chương trình dạy học có là tiêu chí đánh giá tính hợp thức của kết quả phân tích nhân tử được mong đợi hay không? Q4: Những quy tắc hợp đồng nào được hình thành trong quá trình dạy học phân tích thành nhân tử? 3. Phương pháp nghiên cứu Đầu tiên, chúng tôi tiến hành nghiên cứu tri thức khoa học về vành đa thức và vành nhân tử hóa ở bậc đại học. Đồng thời tham khảo và tổng hợp các kết quả của các hai nghiên cứu liên quan nhằm tìm câu trả lời cho câu hỏi Q1. 6
- Dựa trên kết quả đó, chúng tôi tiến hành phân tích những tri thức về PTĐTTNT được đưa vào chương trình, SGK Toán phổ thông hiện hành trả lời câu hỏi Q2, Q3. Những kết quả nghiên cứu trên cho phép chúng tôi đặt ra giả thuyết nghiên cứu dưới dạng quy tắc hợp đồng didactic. Tính thích đáng của hợp đồng được kiểm chứng trong phần thực nghiệm. Đồng thời qua thực nghiệm làm sáng tỏ quan hệ cá nhân của học sinh với tri thức PTĐTTNT. Từ đó cho phép chúng tôi khẳng định sự tồn tại của câu hỏi Q4. 4. Cấu trúc luận văn Luận văn gồm 5 phần: Mở đầu, 3 chương và Kết luận chung. Trong phần Mở đầu, chúng tôi trình bày ghi nhận ban đầu và câu hỏi xuất phát; lý thuyết tham chiếu; phương pháp nghiên cứu và cấu trúc luận văn. Chương 1. Một số yếu tố của trường sinh thái xoay quanh bài toán phân tích đa thức thành nhân tử. Chương 2. Bài toán phân tích đa thức thành nhân tử - một phân tích thể chế. Chương 3. Nghiên cứu thực nghiệm. Trong phần Kết luận chung, chúng tôi tóm tắt các kết quả ở chương 1, 2, 3 và nêu một số hướng nghiên cứu mở ra từ luận văn. Ngoài ra, chúng tôi còn giới thiệu Tài liệu tham khảo và Phụ lục. 7
- CHƯƠNG 1: MỘT SỐ YẾU TỐ CỦA TRƯỜNG SINH THÁI XOAY QUANH BÀI TOÁN PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ Mục tiêu của chương Tìm hiểu vấn đề liên quan đến phân tích đa thức thành nhân tử (PTĐTTNT), trước hết cần có cái nhìn ban đầu về đa thức. Đối tượng đóng vai trò như một cơ sở hạ tầng của trường sinh thái xoay quanh bài toán PTĐTTNT. Việc tìm hiểu sự xuất hiện và đặc trưng của tập các đa thức trong chương trình dự đoán xác định những đặc trưng nổi bật của bài toán PTĐTTNT. Với quan tâm đầu tiên tập trung vào sự xuất hiện và tiến triển của bài toán PTĐTTNT trong chương trình toán Việt Nam. Điều đó giúp tìm câu trả lời cho câu hỏi Q1, đồng thời làm sáng tỏ vùng chiếm giữ của bài toán PTĐTTNT xác định hướng đi trọng tâm trong phân tích ở chương 2. 1.1. Chuyển đổi didactic liên quan đến đối tượng đa thức Chúng tôi sẽ phân tích đối tượng đa thức, chủ yếu tập trung vào đa thức một biến trong thể chế được tạo thành bởi các giáo trình đại học và thể chế THCS và cố gắng làm rõ sự chênh lệch liên quan đến đối tượng này. 1.1.1. Khái niệm đa thức ở tri thức khoa học • Khái niệm đa thức ở tri thức phổ thông Để thuận tiện, chúng tôi ký hiệu cuốn “Từ điển toán học thông dụng, Ngô Thúc Lanh-Đoàn Quỳnh-Nguyễn Đình Trí, 2001” là [TĐ]. Chúng tôi tìm thấy một nhận xét trong [TĐ]: Trong toán học sơ cấp, từ “đa thức” được dùng đồng nghĩa với “hàm đa thức”. Một đa thức (hay hàm đa thức) là một biểu thức tạo thành từ các đối số chỉ bằng một số hữu hạn các phép toán cộng và nhân (phép nâng lũy thừa là một trường hợp đặc biệt của phép nhân: x n = x x ...x (n > 1), x 1 = x, x 0 = 1 . Phép chia cho một số khác 0 có thể xem là phép nhân với số nghịch đảo của số chia. Đa thức một ẩn trên vành giao hoán có đơn vị A. Đó chính là một dãy (ai)i€N những phần tử của A trong đó tập hợp các phần tử khác 0 là hữu hạn. Phép cộng và phép nhân hai đa thức P=(ai)i€N và Q=(bi)i€N được định nghĩa như sau: P+Q= (ai + bi)i€N, PQ= (cn)n€N với cn = ∑a p + q =n b p q Nếu ta đặt 1=(1,0,0, …) và x= (0,1,0, …) thì x2=(0,0,1,0, …), x3=(0,0,0,1,0 …) v.v, và một đa thức P=(a0, a1, …,an, 0, 0, …) sẽ được viết một cách duy nhất dạng: 8
- P = a0 + a1x + a2x2 + … + anxn . Được trang bị phép cộng và phép nhân trên đây, tập hợp các đa thức là một vành giao hoán có đơn vị, kí hiệu là A[x]. Nếu thay A bởi một trường K thì A[x] là một vành chính. [TĐ, tr.144-145] • Vành đa thức ở chương trình đại học Ở bậc đại học đa thức được hiểu theo cấu trúc đại số-vành đa thức. Một trong những giáo trình đề cập đến vành đa thức chúng tôi chọn lựa: Đại số đại cương của Hoàng Xuân Sính, xuất bản năm 2006, chúng tôi ký hiệu là [S]. Theo tác giả: Ở đây ta định nghĩa đa thức một cách tổng quát hơn và chính xác hơn. Giả sử A là một vành giao hoán, có đơn vị kí hiệu là 1. Gọi P là tập hợp các dãy (a0, a1, …, an, …) … Ta định nghĩa phép cộng và phép nhân trong P như sau (1) (a0, a1, …, an, …) + (b0, b1, …, bn, …) = (a0 + b0, a1 + b1, …, an+bn, …) (2) (a0, a1, …, an, …).(b0, b1, …, bn, …) = (c0, c1, …, cn, …) Với ck= a0.bk + a1.bk-1 … +akb0 = ∑ a b , k = 0,1, 2, ... i + j =k i j Định nghĩa 1. Vành P gọi là vành đa thức của ẩn x lấy hệ tử trong A, hay vắn tắt vành đa thức của ẩn x trên A, và kí hiệu là A[x]. Các phần tử của vành đó gọi là đa thức của ẩn x lấy hệ tử trong A. Trong một đa thức f(x)= a0x0+ a1x + … + anxn . các ai, i=0, 1, … , n gọi là hệ tử của vành đa thức. Các aixi gọi là hạng tử của đa thức, đặc biệt a0x0=a0 gọi là hạng tử tự do . [S, tr.99-100] Trong quá trình đề cập vành đa thức, tác giả cũng chỉ rõ việc kế thừa cách xây dựng vành đa thức một ẩn hoàn toàn có thể xây dựng vành đa thức nhiều ẩn. Tìm hiểu thêm về cách xây dựng này có thể tham khảo ở [S, tr.110-113]. 1.1.2. Khái niệm đa thức ở chương trình Toán THCS Nội dung “Đa thức” được trình bày trong chương IV- Biểu thức đại số, bài 5. ĐA THỨC, Toán 7 tập 2 như sau: Xét các biểu thức: a) … 1 x 2 + y 2 + xy 2 5 b) 3x 2 − y 2 + xy − 7 x 3 1 1 c) x 2 y − 3xy + 3x 2 y − 3 + xy − xy − x + 5 2 2 9
- Các biểu thức trên là những ví dụ về đa thức. Đa thức là tổng của những đơn thức. Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức thức đó. [GK7.2, tr.37] Tiếp đến, đa thức một biến được GK7.2 đề cập ở nội dung bài học 7: Đa thức một biến là tổng của những đơn thức một biến. 1 Chẳng hạn: A = 7 y 2 − 3y + là đa thức của biến y ; 2 1 B = 2 x 5 − 3x + 7 x 3 + 4 x 5 + là đa thức của biến x. 2 [GK7.2, tr.41] GK7.2 đưa ra sự định nghĩa “đa thức” dựa trên khái niệm “đơn thức”, như một dây chuyền đơn thức lại là một biểu thức đại số. Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến. [GK7.2, tr.30] 1.1.3. Sự chênh lệch về đối tượng đa thức từ cấp độ Đại học đến cấp độ phổ thông [S] đã xây dựng một cách rõ ràng về vành đa thức một ẩn (biến). Với cách xây dựng của mình, [S] chỉ rõ tập các đa thức là vành giao hoán có đơn vị, xác định hai phép toán cộng và nhân. Trong đó phép cộng có tính chất giao hoán, phép nhân có tính chất kết hợp, phân phối đối với phép cộng. [TĐ] và [S] có cùng quan điểm về đa thức “đa thức được đồng nhất với hàm đa thức”. Theo đó, các hàm đa thức được phân biệt dựa trên vành hệ tử của nó. Vành hệ tử được đề cập trong [S] là Z-vành số nguyên, Q-trường số hữu tỉ, R-trường số thực, C-trường số phức. Một sự khác biệt được tìm thấy khi so sánh với GK7.2-định nghĩa đa thức dựa trên biểu thức đại số, các đơn vị trong nó là đơn thức. Ở đây, tác giả không đưa ra bất kỳ ràng buộc nào về các hệ số của đơn thức. Theo như [TĐ] và [S] cách xây dựng vành đa thức thì hệ số phải được lấy trên vành giao hoán có đơn vị. Tuy nhiên, một chú ý đặc biệt, các đa thức trong ví dụ GK7.2 đưa ra đều thuộc tập đa thức với hệ số hữu tỉ. Tức là hệ số của chúng được lấy trong trường số hữu tỉ Q. Phải chăng, để tránh cách định nghĩa phức tạp, mang nặng lý thuyết, GK7.2 đã chọn cách định nghĩa nhẹ nhàng, dựa trên các yếu tố gần gũi với HS vì “biểu thức đại số” HS đã từng bước làm quen ở cấp tiểu học với biểu thức số và biểu thức chứa chữ. Cụ thể, bài toán 10
- PTĐTTNT đã xuất hiện ở lớp 4 dưới hình thức áp dụng ngược lại tính chất phân phối của phép nhân đối với phép cộng-bài toán đặt thừa số chung: 2) bước đầu biết sử dụng tính chất giáo hoán, tính kết hợp của phép nhân và tính chất nhân của một tổng với một số trong thực hành tính. Ví dụ. Tính bằng cách thuận tiện nhất: a) 36x25x4 b) 215x86+215x14 [Chương trình giáo dục phổ thông, tr.60] Câu hỏi đặt ra: Có một quy định rõ ràng hay ngầm ẩn nào về vành hệ số của các đa thức được nghiên cứu trong chương trình THCS hay không? • Vành hệ số của các đa thức trong chương trình toán THCS Chúng tôi dự đoán câu trả lời trong việc tìm hiểu đặc trưng về hệ số, phép toán cộng và nhân trên tập các đa thức trong những nội dung bài học sau định nghĩa đa thức. Theo cấu trúc chương trình Toán THCS, những nội dung này tập trung chủ yếu ở học kỳ hai lớp 7 và học kỳ một lớp 8. Tính đến thời điểm định nghĩa đa thức xuất hiện trong GK7.2, các tập hợp số nguyên Z-hữu tỉ Q-số thực R cùng với hai phép toán cộng và nhân thỏa yêu cầu-vành giao hoán có đơn vị đã được xây dựng hoàn chỉnh trong chương trình toán THCS. Bảng 1.1: Chương trình giáo dục phổ thông môn Toán, trang 8. Mạch nội dung Chủ đề Lớp 1 2 3 4 5 6 7 8 9 10 11 12 Số học 1.1. Số tự nhiên * * * * * * 1.2. Số nguyên * 1.3. Số hữu tỉ + + * * * - Phân số - Số thập phân * * * - Số hữu tỉ * 1.4. Số thực * * 1.5. Số phức * Ghi chú. +: Các yếu tố, kiến thức chuẩn bị *: Học chính thức Nói cách khác, việc thống kê dự tính sẽ trả lời câu hỏi: Những đa thức trong chương trình toán THCS được xét trên vành đa thức hệ số nguyên-hữu tỉ-thực? Để thuận lợi trong trình bày, từ đây chúng tôi sử dụng ĐT-Z, ĐT-Q, ĐT-R để chỉ đa thức có hệ số nguyên-hữu tỉ-thực tương ứng một biến hoặc nhiều hơn một biến. Bảng 1.2: Thống kê các đa thứctrong nội dung liên quan đến 11
- đa thức trong chương toán lớp 7-8. GK7.2, chương IV. BIỂU THỨC ĐẠI SỐ Nội dung ĐT-Z ĐT-Q ĐT-R Bài 5. Đa thức 5 8 Bài 6. Cộng, trừ đa thức 16 4 Bài 7. Đa thức một biến 13 3 Bài 8. Cộng, trừ đa thức một biến 18 4 Bài 9. Nghiệm của đa thức một biến 9 2 Ôn tập chương IV 7 6 GK8.1, chương I. PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC Bài 1. Nhân đơn thức với đa thức 7 5 Bài 2. Nhân đa thức với đa thức 14 5 Bài 3, 4, 5. Những hằng đẳng thức đáng nhớ 60 4 Tổng 149 41 Nhận xét: Trong phần ghi chú về nội dung bài học-bài tập, thể chế đã không chỉ rõ đa thức lấy hệ số trên vành số nguyên Z, trường hữu tỉ Q hay trường số thực R. Như vậy, các hệ số của một đa thức là tùy ý. Tuy nhiên với những gì đang diễn ra ở nội dung liên quan đến đa thức, GK7.2-chương IV và GK8.1-chương I đã cho thấy sự lựa chọn của thể chế tập trung vào ĐT-Z và ĐT-Q. Trong đó ĐT-Q có tính chất bao quát hơn. Theo thống kê tỉ lệ ĐT-Z so với ĐT-Q là 149:41 trong tổng số 190 đa thức xuất hiện Bảng 1.2. Đa thức với hệ số vô tỉ, nghĩa là thuộc ĐT-R chưa có dấu hiệu hiện diện. Mặc dù theo hệ thống kiến thức, số thực được trình bày ở chương trình học kỳ 1 lớp 7 và lớp 9. Thông qua một vài nhiệm vụ đề xuất ví dụ về đa thức theo yêu cầu trong nội dung bài tập của GK7.2, mặc dù thể chế khẳng định có nhiều kết quả thỏa yêu cầu, nhưng các đề xuất đều rơi vào ĐT-Z và ĐT-Q. Qua thống kê, vành ĐT-Z và vành ĐT-Q chính là sự lựa chọn của thể chế trong thực hành giải toán liên quan đến đa thức trong chương trình toán 7 và 8. Vậy khi đó, những bài toán liên quan đến ĐT-R tập trung chủ yếu ở chương trình toán 9? 1.2. Bài toán “phân tích đa thức thành nhân tử” (PTĐTTNT) trong kết cấu chương trình toán trung học cơ sở (THCS) Trong nghiên cứu của mình-Nguyễn Ái Quốc (2006) khẳng định: “Việc sử dụng các kỹ 12
- thuật nhân tử hóa (của một đa thức) chỉ được học ở lớp 8 phổ thông cơ sở. Ở lớp 9, việc sử dụng này chỉ được lập lại như một kỹ thuật cần thiết cho việc chuyển sang kỹ thuật dùng biệt số.” Nhận định trên dẫn chúng tôi đến việc tập trung vào phân tích chương trình toán 8, trọng tâm ở nội dung liên quan đến kĩ thuật giải bài toán PTĐTTNT, tức bài toán PTĐTTNT được xem như một đối tượng toán học. Và một phần của chương trình toán 9, nơi mà phân tích đa thức thành nhân tử đã trở thành công cụ toán học. Phạm vi phân tích này giúp chúng tôi xem xét kỹ hơn trong từng giai đoạn bài toán PTĐTTNT có những đặc trưng gì nổi bật. 1.2.1. Chương trình toán 8 • Phân tích đa thức thành nhân tử với vai trò đối tượng Theo chương trình Toán 8, nội dung “Phân tích đa thức thành nhân tử” (PTĐTTNT) được trình bày ở phần đầu GK8.1-chương I. Phép nhân và phép chia các đa thức, sau nội dung “Phép nhân đa thức” và “Hằng đẳng thức đáng nhớ”. Với thời lượng năm tiết, dàn trải trong bốn bài học: 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Dựa vào cấu trúc bài học, có thể thấy rằng bài toán PTĐTTNT không được đề cập một cách độc lập, tương ứng với một bài học là một phương pháp phân tích. Vậy cái nhìn ban đầu về “phân tích đa thức thành nhân tử” là như thế nào? Ở nội dung bài học đầu tiên, chúng tôi tìm thấy định nghĩa sau: Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức thành một tích của những đa thức. [GK8.1, tr.18] Định nghĩa này có thể được hiểu là thao tác biến đổi đa thức ở dạng tổng về tích các đa thức. Từ định nghĩa dẫn đến thắc mắc sau: Có tồn tại hay không mối quan hệ của nó với hai nội dung trước đó “Phép nhân đa thức” và “Hằng đẳng thức đáng nhớ”? Đặc trưng của mối quan hệ này là gì? Qua tìm hiểu chương I. Phép nhân và phép chia đa thức trong GK8.1, chúng tôi thấy rằng “Hằng đẳng thức đáng nhớ” chính là một kênh dinh dưỡng cho bài toán PTĐTTNT. 13
- Và nội dung “phép nhân đa thức”, với mức độ cần đạt: Về kỹ năng: Vận dụng tính chất phân phối của phép nhân đối với phép cộng: A(B + C)= AB + AC (A + B)(C+D)=AC + AD + BC + BD Trong đó A, B, C, D là các số hoặc các biểu thức đại số. [Chương trình giáo dục phổ thông, tr.106] cho thấy bài toán PTĐTTNT có thể hiểu là bài toán ngược của phép nhân đa thức. Khi đó, các kỹ thuật đưa đa thức ở dạng tổng về tích của những đa thức được vận hành như thế nào? Chúng có còn tuân thủ tính chất này nữa hay không, hay nó có thêm đặc trưng nào khác nữa? Trở lại mục 1.1, kết quả thống kê các đa thức trong chương trình toán 7-8 tập trung chủ yếu ở vành đa thức hệ số nguyên và hữu tỉ. Vậy liệu rằng, kết quả phân tích các đa thức thành nhân tử có tập trung vào hai vành đa thức này hay không? Hay nói cách khác, các đa thức nhân tử có được trong kết quả phân tích có phải chỉ rơi vào hai trường hợp hoặc ĐT-Z hoặc ĐT-Q? Chúng tôi sẽ làm rõ các câu hỏi này trong chương 2. • Phân tích đa thức thành nhân tử với vai trò công cụ Qua tìm hiểu chương trình toán 8, bài toán PTĐTTNT không chỉ giữ vai trò đối tượng, nó còn là công cụ trong bài toán giải phương trình (phương trình tích). Từ Chương trình giáo dục phổ thông môn toán (gọi tắt là CT), vai trò công cụ bài toán PTĐTTNT đảm nhận như sau: - Trong phần “1. Định nghĩa. Tính chất cơ bản của phân thức. Rút gọn phân thức. Quy đồng mẫu thức của nhiều phân thức” thể chế đã có một vài ghi chú sau: Rút gọn các phân thức mà tử và mẫu có dạng tích chứa nhân tử chung. Nếu phải biến đổi thì việc biến đổi thành nhân tử không mấy khó khăn. Ví dụ. Rút gọn các phân thức sau: ... x 2 + 2x + 1 x 2 − 2x + 1 ; . x +1 x2 −1 [chương II. Phân thức đại số, CT, tr.109] - Trong “3. Nhân và chia các phân thức đại số. Biến đổi biểu thức hữu tỉ”, bài toán PTĐTTNT xuất hiện ở mức độ: Không đưa ra các bài tập mà trong đó phần biến đổi thành nhân tử (để rút gọn) quá khó khăn. Nên chủ yếu là hằng đẳng thức đáng nhớ. [chương II. Phân thức đại số, CT, tr.111] 14
- Như vậy, sau khi được tiếp cận như một đối tượng của toán học, bài toán PTĐTTNT đã phát huy vai trò công cụ trong một số phép biến đổi đại số liên quan đến phân thức đại số, giải phương trình trong chương trình đại số 8. 1.2.2. Chương trình toán 9 Ở nội dung này, chúng tôi có ý định mượn lại các kết quả nghiên cứu của Nguyễn Ái Quốc(2006) được Nguyễn Thị Thanh Thanh (2009) tổng hợp và tóm tắt trong luận văn thạc sĩ “Nghiên cứu thực hành của giáo viên trong dạy học giải phương trình bậc hai 1 ẩn” của mình, với hy vọng tìm hiểu về sự tiến triển của bài toán PTĐTTNT trong chương trình toán phổ thông Việt Nam thông qua việc giải phương trình bậc hai một ẩn: “ ... Việc giải phương trình bậc hai được đưa vào từ lớp 7 và được học chủ yếu ở hai lớp 8 và 9. Ở lớp 10 xuất hiện dưới dạng các phương trình có chứa tham số. … Về kỹ thuật, việc giải phương trình bậc hai bằng kỹ thuật phân tích thành nhân tử CarN và ProdN được bắt đầu ở lớp 7 với một số lượng rất ít các bài tập (xuất hiện trong SBT). Sau đó, nó được học và giải quyết ở lớp 8 chủ yếu bằng cách sử dụng các kỹ thuật CarN, ProdN, Fact_ProdN, IdR_ProdN, EgaCar dựa trên tính chất phân phối của phép nhân đối với phép cộng các đa thức. Các kỹ thuật khác như Dec_Fact_ProdN, Aj_IdR_ EgaCar và Aj_IdR_ProdN được giới thiệu ở cả lớp 8 và 9 (trong phần bài tập ở lớp 8 và bài học lý thuyết ở lớp 9) để giải các phương trình chuẩn tắc (dạng C4). Ở lớp 9, các phương trình bậc hai được giải chủ yếu bằng kỹ thuật biệt số delta, Discr. Ở lớp 10, mục đích quan trọng là việc nghiên cứu phương trình bậc hai (hay đưa về phương trình bậc hai) chứa tham số và biện luận theo các giá trị của tham số Sự tiến triển của các kỹ thuật cũng như các khối công nghệ - lý thuyết đối với kiểu nhiệm vụ “giải một phương trình bậc hai” được làm rõ hơn qua bảng sau: Bảng 28 : Tổng kết các TCTH [33] Lớp 8 8 và 9 9 CarN, ProdN, Dec_Fact_ProdN, Kỹ thuật Fact_ProdN, Aj_IdR_ EgaCar, Discr IdR_ProdN Aj_IdR_ProdN Khối (θ/ Θ) (θv1, Θv) vắng mặt (θv2, Θv) Đặc biệt, việc giải phương trình bậc hai bằng đồ thị có một vị trí hẹp ở THCS và đầu THPT, với sự hiện diện của một số rất ít bài tập được giải bằng kỹ thuật này. Kỹ thuật đồ thị thường được gắn liền với bài toán biện luận số nghiệm và dấu các nghiệm của một phương trình bậc hai ở lớp 10. Như vậy, có thể nói rằng các kỹ thuật đại số giải phương trình bậc hai thống lĩnh trong thể chế phổ thông. 15
- Đây chính là những gì giải thích cho việc kỹ thuật sử dụng biệt số được xem như kỹ thuật chủ yếu khi nghiên cứu việc giải các phương trình bậc hai. Việc sử dụng các kỹ thuật nhân tử hóa (một đa thức) chỉ được học ở lớp 8 phổ thông cơ sở. Ở lớp 9, việc sử dụng này chỉ được lặp lại như một kỹ thuật cần thiết cho việc chuyển sang kỹ thuật dùng biệt số.” Qua những kết quả liên quan đến nội dung giải phương trình, rõ ràng kĩ thuật nhân tử hóa là sự hiện một phần của các nhiệm vụ liên quan đến kiểu nhiệm vụ PTĐTTNT đã nhen nhóm ở lớp 7, đề cập chính thức ở lớp 8 với vai trò kép “đối tượng-công cụ”. Đến lớp 9, nó giữ vai trò như bước đệm cho kĩ thuật biệt số thống lĩnh, cho thấy vai trò của nó trở nên mờ nhạt dần. Lý do cho sự mờ nhạt ấy được tìm thấy khi xem xét việc lựa chọn nội dung dạy học của thể chế. Chương trình Đại số 9 hướng trọng tâm vào: “Chương I. Căn bậc hai. Căn bậc ba; Chương II. Hàm số bậc nhất ; Chương III. Hệ phương trình bậc nhất hai ẩn; Chương IV. Hàm số y=ax2 (a≠0) - Phương trình bậc hai một ẩn”. Sự lựa chọn này không tạo điều kiện cho bài toán PTĐTTNT sinh sống rộng rãi. Bên cạnh những xuất hiện trong “Phương trình bậc hai 1 ẩn”, bài toán PTĐTTNT còn được tìm thấy ở đầu chương trình Đại số 9 học kì I. Trong nội dung bài học “Căn thức bậc hai và hằng đẳng thức A 2 = A ” với 8 nhiệm vụ liên quan được tổng hợp ở GK9.1 và BT9.1. Trong đó, có 4 ĐT-Z và 4 ĐT- R, và hầu như các kết quả phân tích đều quy về tích của những ĐT-R là sự hiện diện của hằng đẳng thức hiệu hai bình phương (HĐT số 3). Từ đây nổi bật dụng ý của thể chế trong việc rèn luyện căn bậc hai của một số bất kỳ. Nhưng qua đó đã sáng tỏ các kết quả phân tích đó định vị rõ môi trường sống của bài toán PTĐTTNT ở vành đa thức hệ số thực. Nếu ở chương trình Toán 8, vai trò công cụ của bài toán PTĐTTNT phát huy mạnh mẽ, đặc biệt trong việc giải phương tích; thì ở chương trình Đại số 9, nó nhanh chóng bị lu mờ vì sự xuất hiện của biệt số delta và công thức nghiệm hỗ trợ đắc lực cho việc tìm nghiệm của phương trình bậc hai. Tìm hiểu trong GK9.2, vẫn có một số nhiệm vụ phải giải quyết bằng phân tích đưa về phương trình tích nhưng số lượng này không nhiều, lồng ghép trong bài toán PTĐTTNT luôn có sự hiện diện của nhân tử bậc hai chuẩn tắc ax 2 + bx + c , mà biệt số và công thức nghiệm là công cụ giải quyết được ưu tiên. Bên cạnh đó, chúng tôi ghi nhận nội dung liên quan “Hệ thức Vi-ét và ứng dụng”, bài tập 33, GK9.2 trang 54 trình bày: 16
- Chứng tỏ rằng nếu phương trình ax 2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax 2 + bx + c phân tích được thành nhân tử như sau: ax 2 + bx + c = a( x − x1 )( x − x2 ) Áp dụng. Phân tích thành nhân tử. a) 2 x 2 − 5 x + 3 ; b) 3 x 2 + 8 x + 2 [GK9.2, tr.54] Nội dung bài tập này hình thành một kỹ thuật phân tích đa thức bậc hai một ẩn theo nghiệm của nó. Như vậy, sau khi trở thành bước đệm của kĩ thuật giải phương trình bằng biệt số thì công thức nghiệm quay lại tương tác bài toán PTĐTTNT với đa thức ở dạng tam thức bậc hai chuẩn tắc. Lúc này, việc PTĐTTNT tỏ ra nhẹ nhàng hơn khi kết hợp công thức được chỉ định và MTBT để tìm nghiệm (MTBT được cho phép sử dụng trong chương trình sau nội dung “Công thức nghiệm của phương trình bậc hai”). Nhưng kỹ thuật này cũng chỉ giới hạn đối với tam thức bậc hai một biến và khá mờ nhạt khi số lượng bài tập ít (2 nhiệm vụ). 1.3. Vành nhân tử hóa là “mặt bằng” so sánh kết quả của bài toán phân tích đa thức thành nhân tử ở THCS? Bài toán PTĐTTNT ở một số giáo trình đại học có tên gọi tổng quát là “nhân tử hóa”. Liệu rằng xem xét sự nhân tử hóa của đa thức trên vành ở cấp độ tri thức khoa học dự đoán có thể xác định “mặt bằng” trong việc đánh giá tính hợp thức các kết quả phân tích thành nhân tử được thể chế chọn lựa không. Câu hỏi đặt ra: việc nhân tử hóa được trình bày như thế nào ở cấp độ đại học? • Vành nhân tử hóa ở chương trình đại học Tìm hiểu ở [S], chúng tôi ghi nhận một số kết quả sau: Định lí 1. Giả sử x là một phần tử khác không và không khả nghịch. Thế thì x có thể viết dưới dạng (2) x=p1.p2 … pn Với các pi , i=1, … , n, là những phần tử bất khả quy. Định lí 2. Giả sử x=p1.p2 … pn = q1.q2 … qn với p1, p2 … pn , q1, q2 … qn là những phần tử bất khả quy. Thế thì m=n, và với một sự đánh số thích hợp qi=ui.pi , i=1, … , m. [S, tr.136] Định lí 1-2 được phát biểu trên vành chính K[x], với K là trường. Trong đó phần tử bất khả 17
- quy được định nghĩa trước đó liên quan đến một số khái niệm khác. Chúng tôi trích dẫn những khái niệm liên quan trong mối quan hệ này để làm rõ nghĩa thế nào là đa thức bất khả quy trong vành đa thức hệ số nguyên-hữu tỉ-thực. Bổ đề 1. … (v) Quan hệ S xác định như sau: xSx’ khi x’=ux với u khả nghịch, là một quan hệ tương đương; x và x’ gọi là liên kết. Ví dụ. 1) … 2) Trong vành các số nguyên Z hai số nguyên a và –a là liên kết. 3) Trong vành đa thức K[x] với K là một trường, hai đa thức f(x) và af(x), a 𝜖 K và a≠0, là liên kết. Định nghĩa 1. Các phần tử liên kết với x và các phần tử khả nghịch là các ước không thực sự của x, còn các ước khác là ước thực sự của x. Định nghĩa 2. Giả sử x là phân tử khác không và không khả nghịch của A; x gọi là phần tử bất khả quy của A nếu x không có x ước thực sự. Ví dụ: 1) Các số nguyên tố và các số đối của chúng là các phần tử bất khả quy trong vành Z. 2) Đa thức x 2 + 1 là đa thức bất khả quy trong vành R[x], R là trường số thực. Nhưng trong vành C[x] với C là trường số phức thì x 2 + 1 không phải là bất khả quy vì nó có ước thật sự chẳng hạn x + i và x − i . [S, tr.130-131] Từ những mối quan hệ của các định nghĩa được nêu ở trên, chúng tôi xây dựng định nghĩa về đa thức bất khả quy một cách cụ thể trên vành đa thức Z[x]như sau: Đa thức p(x) khác đa thức không và thuộc vào Z[x], p(x) bất khả quy nếu: - p(x) ≠ ±1 - Nếu q(x) là ước của p(x) thì q(x) = ±1. Cách xây dựng này dự đoán là cơ sở so sánh các kết quả phân tích về tích ĐT-Z trong chương trình vì nhân tử hóa chỉ được phát biểu trên vành đa thức K[x] với K là một trường số. Các kết quả ghi nhận sự nhân tử hóa trên vành đa thức phát biểu ở định lí 1-2 cho thấy rằng sự phân tích có thể không là duy nhất, tuy nhiên số lượng các phần tử bất khả quy là tương thích. Xét trên mối quan hệ tương ứng, phần tử bất khả quy trong những phân tích là liên kết với nhau. Một điều quan trọng là tính bất khả quy của một phần tử được quyết định bởi vành đa thức chứa nó như [S] đã nói trong ví dụ. 18
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn thạc sĩ giáo dục: Bồ dưỡng phương pháp thực nghiệm Vật lý cho học sinh khi dạy học một số kiến thức chương "chất khí" Vật lý 10, chương trình chuẩn
134 p | 593 | 134
-
Luận văn Thạc sĩ Giáo dục học: Biện pháp giáo dục kỹ năng tự bảo vệ cho trẻ mẫu giáo 5 - 6 tuổi
134 p | 1072 | 132
-
Luận văn Thạc sĩ Giáo dục học: Thực trạng quản lý công tác xã hội hóa giáo dục ở các trường trung học cơ sở huyện Vũng Liêm, tỉnh Vĩnh Long
97 p | 794 | 131
-
Tóm tắt luận văn thạc sĩ giáo dục học: Biện pháp quản lý công tác bồi dưỡng tổ trưởng chuyên môn trường tiểu học trên địa bàn quận Sơn Trà, thành phố Đà Nẵng
26 p | 461 | 115
-
Luận văn Thạc sĩ Giáo dục học: Thực trạng quản lý giáo dục đạo đức cho học sinh ở các trường trung học phổ thông tỉnh Bà Rịa - Vũng Tàu
170 p | 552 | 105
-
Luận văn Thạc sĩ Giáo dục học: Biện pháp giáo dục kỹ năng hợp tác cho trẻ 5 - 6 tuổi trong trò chơi dân gian
123 p | 704 | 96
-
Luận văn thạc sĩ Giáo dục học: Khảo sát các kỹ thuật dạy môn biên dịch tại khoa tiếng Anh trường Đại học Tây Nguyên
70 p | 850 | 94
-
Luận văn Thạc sĩ Giáo dục học: Thực trạng quản lý hoạt động giáo dục hướng nghiệp của hiệu trưởng ở các trường trung học phổ thông huyện Bình Chánh, thành phố Hồ Chí Minh
157 p | 491 | 90
-
Tóm tắt luận văn thạc sĩ giáo dục học: Biện pháp phát triển đội ngũ giáo viên trường trung học văn hóa nghệ thuật Đà Nẵng trong giai đoạn hiện nay
26 p | 457 | 66
-
Luận văn Thạc sĩ Giáo dục học: Phối hợp quản lý giáo dục đạo đức của Đoàn Thanh niên Cộng sản Hồ Chí Minh và nhà trường đối với học sinh trung học phổ thông thành phố Hồ Chí Minh
72 p | 248 | 56
-
Luận văn Thạc sĩ Giáo dục học: Biện pháp giáo dục tính sáng tạo cho trẻ mẫu giáo 5 – 6 tuổi tại góc tạo hình
122 p | 303 | 56
-
Tóm tắt luận văn thạc sĩ giáo dục học: Biện pháp quản lý bồi dưỡng chuyên môn cho giáo viên trung học phổ thông các huyện miền núi tỉnh Quảng Ngãi trong giai đoạn hiện nay
13 p | 340 | 55
-
Tóm tắt Luận văn Thạc sĩ Giáo dục: Quản lý công tác giáo dục hòa nhập học sinh khuyết tật tại các trường tiểu học trên địa bàn quận Ngũ Hành Sơn thành phố Đà Nẵng
26 p | 419 | 49
-
Luận văn Thạc sĩ Giáo dục học: Phát triển năng lực dạy trẻ làm quen biểu tượng toán học cho sinh viên ngành Giáo dục Mầm non
116 p | 260 | 47
-
Tóm tắt Luận văn Thạc sĩ Giáo dục: Biện pháp quản lý hoạt động giáo dục phòng ngừa tệ nạn xã hội cho học sinh tại các trường trung học cơ sở quận Ngũ Hành Sơn, thành phố Đà Nẵng
26 p | 186 | 23
-
Luận văn Thạc sĩ Giáo dục học: Xây dựng kế hoạch phát triển quy mô giáo dục Trung học phổ thông tỉnh Sóc Trăng đến năm 2020
142 p | 169 | 23
-
Luận văn Thạc sĩ Giáo dục học: Sử dụng phương pháp kỷ luật tích cực trong giáo dục học sinh trường trung học phổ thông Huyện Thanh Ba - Tỉnh Phú Thọ
107 p | 49 | 17
-
Luân văn Thạc sĩ Giáo dục học: Thực trạng quản lí đội ngũ giáo viên của Trường Trung cấp Kinh tế - Kỹ thuật Cà Mau
115 p | 115 | 12
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn