intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Giáo dục học: Tìm nghiệm phương trình lượng giác có điều kiện trong dạy học Toán 11

Chia sẻ: Lavie Lavie | Ngày: | Loại File: PDF | Số trang:106

305
lượt xem
42
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn Thạc sĩ Giáo dục học: Tìm nghiệm phương trình lượng giác có điều kiện trong dạy học Toán 11 bao gồm những nội dung về mối quan hệ thể chế đối với các dạng phương trình lượng giác, phương trình lượng giác có điều kiện; môi trường sinh thái lượng giác của việc chọn nghiệm phương trình lượng giác có điều kiện trong dạy học Toán 11 và một số nội dung khác.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Giáo dục học: Tìm nghiệm phương trình lượng giác có điều kiện trong dạy học Toán 11

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Đoàn Thị Diễm Ly TÌM NGHIỆM PHƯƠNG TRÌNH LƯỢNG GIÁC CÓ ĐIỀU KIỆN TRONG DẠY HỌC TOÁN 11 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC Thành phố Hồ Chí Minh – 2013
  2. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Đoàn Thị Diễm Ly TÌM NGHIỆM PHƯƠNG TRÌNH LƯỢNG GIÁC CÓ ĐIỀU KIỆN TRONG DẠY HỌC TOÁN 11 Chuyên ngành: Lý luận và phương pháp dạy học môn Toán Mã số: 60 14 01 14 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS NGUYỄN ÁI QUỐC Thành phố Hồ Chí Minh – 2013
  3. LỜI CAM ĐOAN Tôi cam đoan nội dung luận văn là công trình nghiên cứu của chính bản thân tôi. Tất cả những tham khảo từ các nghiên cứu có liên quan đều được ghi rõ nguồn gốc từ danh mục các tài liệu tham khảo trong luận văn. Các số liệu, kết quả nêu trong luận văn là trung thực và chính xác. TP. Hồ Chí Minh, ngày 26 tháng 09 năm 2013 Tác giả luận văn Đoàn Thị Diễm Ly 1
  4. LỜI CẢM ƠN Trước hết tôi xin bày tỏ lòng biết ơn sâu sắc đến TS. Nguyễn Ái Quốc, giảng viên khoa Toán trường ĐH Sài Gòn, người đã bỏ nhiều công sức, thời gian giúp đỡ tôi làm quen với công việc nghiên cứu và tận tình hướng dẫn, động viên tôi hoàn thành luận văn này. Tôi xin trân trọng cảm ơn quý thầy cô: PGS.TS Lê Thị Hoài Châu, PGS.TS. Lê Văn Tiến, TS. Trần Lương Công Khanh, TS. Lê Thái Bảo Thiên Trung, TS. Nguyễn Thị Nga và các quý thầy cô đã tận tình giảng dạy, truyền thụ tri thức quý báu trong suốt thời gian tham gia lớp cao học chuyên ngành didactic Toán. Xin chân thành cảm ơn TS. Hamid Chaachoua, TS. Alain Birebent đã có những ý kiến đóng góp quý báu cho đề cương luận văn. Xin chân thành cảm ơn: • Phòng Sau đại học trường ĐHSP Tp.Hồ Chí Minh đã tạo thuận lợi cho chúng tôi trong suốt khóa học. • Ban giám hiệu cùng các thầy cô trong tổ Toán trường THPT Thường Tân (Bình Dương), bạn Nguyễn Thị Tuyết Lan và HS 11A1 trường THPT Tân Phước (Tiền Giang), bạn Nguyễn Thị Thùy Liên và HS 11H trường THPT chuyên Lê Quý Đôn (Vũng Tàu), các anh chị cao học viên đã giúp đỡ và hỗ trợ cho chúng tôi thực nghiệm, tạo điều kiện cho tôi hoàn thành luận văn này. Lời cảm ơn chân thành xin gửi đến các bạn học viên cùng lớp didactic Toán khóa 22, những người đã chia sẻ khó khăn, vui buồn với tôi trong suốt những năm tháng cao học. Cuối cùng, tôi muốn gửi lời cảm ơn những người thân yêu trong gia đình đã luôn động viên, khích lệ, quan tâm và giúp đỡ tôi trong suốt thời gian thực hiện luận văn này. Đoàn Thị Diễm Ly 2
  5. MỤC LỤC LỜI CAM ĐOAN ........................................................................................................ 1 LỜI CẢM ƠN .............................................................................................................. 2 MỤC LỤC .................................................................................................................... 3 DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT............................................ 5 MỞ ĐẦU....................................................................................................................... 6 1. Những ghi nhận ban đầu và câu hỏi xuất phát ............................................................ 6 2. Phạm vi lý thuyết tham chiếu: ....................................................................................... 8 3. Mục đích nghiên cứu và phương pháp nghiên cứu ................................................... 12 CHƯƠNG 1: MỐI QUAN HỆ THỂ CHẾ ĐỐI VỚI CÁC DẠNG PHƯƠNG TRÌNH LƯỢNG GIÁC, PHƯƠNG TRÌNH LƯỢNG GIÁC CÓ ĐIỀU KIỆN . 14 1.1. Phân tích chương trình.............................................................................................. 14 1.2. Các dạng PTLG trong thể chế I ............................................................................... 15 1.2.1. PTLG cơ bản ......................................................................................................... 15 1.2.2. Phương trình bậc nhất và bậc hai đối với một hàm số lượng giác ........................ 18 1.2.3. Dạng phương trình bậc nhất đối với sinx và cosx ................................................ 19 1.2.4. Dạng phương trình thuần nhất bậc hai đối với sinx và cosx ................................. 20 1.2.5. Một số dạng PTLG không mẫu mực ..................................................................... 20 1.2.6. Các tổ chức toán học liên quan đến PTLG............................................................ 20 1.3. PTLG có điều kiện ..................................................................................................... 28 1.3.1. Một số phân tích về PTLG có điều kiện trong thể chế.......................................... 28 1.3.2. Một số kỹ thuật chọn nghiệm PTLG có điều kiện ................................................ 30 1.4. Kết luận chương ......................................................................................................... 40 CHƯƠNG 2: MÔI TRƯỜNG SINH THÁI LƯỢNG GIÁC CỦA VIỆC CHỌN NGHIỆM PHƯƠNG TRÌNH LƯỢNG GIÁC CÓ ĐIỀU KIỆN TRONG DẠY HỌC TOÁN 11 .......................................................................................................... 42 2.1. Lý thuyết về góc cung lượng giác ............................................................................. 43 2.2. Đường tròn lượng giác .............................................................................................. 44 2.3. Biểu diễn một cung lượng giác, một góc lượng giác trên ĐTLG........................... 46 2.4. Một số công thức, tính chất đặc biệt của góc lượng giác........................................ 47 2.5. Nghiệm của phương trình lượng giác ...................................................................... 48 2.6. Tính chất của hàm số lượng giác .............................................................................. 49 2.7. Kết luận chương ......................................................................................................... 51 3
  6. CHƯƠNG 3: THỰC NGHIỆM ............................................................................... 53 3.1. Bài toán thực nghiệm HS .......................................................................................... 53 3.1.1. Bài toán thực nghiệm HS và mục đích xây dựng .................................................. 53 3.1.2. Phân tích tiên nghiệm các bài toán thực nghiệm................................................... 56 3.1.3. Phân tích hậu nghiệm ............................................................................................ 75 3.2. Kết luận về thực nghiệm ........................................................................................... 95 KẾT LUẬN VÀ KIẾN NGHỊ................................................................................... 96 TÀI LIỆU THAM KHẢO ........................................................................................ 98 PHỤ LỤC ................................................................................................................. 100 4
  7. DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT CÁC CHỮ VIẾT TẮT: HS: học sinh THPT: trung học phổ thông SGK: sách giáo khoa GV: giáo viên SGKNC10: sách giáo khoa Đại số và Giải tích nâng cao 10 SGVNC10: sách giáo viên Đại số và Giải tích nâng cao 10 SBTNC10: sách bài tập Đại số và Giải tích nâng cao 10 SGKNC11: sách giáo khoa Đại số và Giải tích nâng cao 11 SGVNC11: sách giáo viên Đại số và Giải tích nâng cao 11 SBTNC11: sách bài tập Đại số và Giải tích nâng cao 11 LG : Lượng giác ĐTLG: Đường tròn lượng giác PTLG: phương trình lượng giác ĐKXĐ: Điều kiện xác định ĐK : Điều kiện Tr. : trang 5
  8. MỞ ĐẦU 1. Những ghi nhận ban đầu và câu hỏi xuất phát Trong thể chế dạy học Toán Việt Nam và nhất là chương trình đại số của toán học phổ thông, các loại phương trình xuất hiện đa dạng và chiếm một vị trí quan trọng, trong đó PTLG và đặc biệt là PTLG có điều kiện là loại phương trình khó, gây cho học sinh nhiều khó khăn trong việc tiếp cận và thực hành giải toán. HS được học loại phương trình này ở chương trình lớp 11 và thực tế chúng cũng luôn xuất hiện trong các đề thi đại học hàng năm. Ở đây, chúng tôi dùng cụm từ “PTLG có ĐK” để nói đến PTLG có ẩn trong hàm số LG ở trong căn thức và mẫu thức của phương trình (hay PTLG có ĐKXĐ). Đặc biệt hơn, PTLG có những nét đặc trưng riêng so với những phương trình đại số thông thường khác. Việc so sánh nghiệm với ĐK khi giải những phương trình đại số thông thường là tương đối đơn giản, nó thuần tuý chỉ là so sánh giữa các số hoặc chỉ thay hữu hạn các nghiệm của phương trình nhận được vào điều kiện để kiểm tra. Tuy nhiên việc làm đó đối với PTLG có điều kiện là tương đối khó khăn bởi nghiệm của PTLG không phải là hữu hạn nghiệm mà vô số nghiệm ( họ nghiệm), cùng một họ nghiệm nhưng lại có những giá trị thoả mãn, có những giá trị không nên thường làm cho học sinh lúng túng. Dạng phương trình PTLG có ĐK còn được xem là khó, vì HS phải vận dụng khá nhiều kiến thức liên quan đến lượng giác để so sánh nghiệm và ĐK bằng nhiều phương pháp có thể như: phương pháp hình vẽ - biểu diễn nghiệm lên ĐKXĐ, phương pháp đại số, biến đổi góc cung sao cho phù hợp với góc cung trong điều kiện hay không giải ĐK và sau khi tìm nghiệm thì thay trực tiếp vào điều kiện để kiểm tra nhận loại… Với những lý do thực tế trên, chúng tôi quyết định tìm hiểu thêm sách giáo khoa cũng như có một thực nghiệm nhỏ là yêu cầu học sinh giải một bài toán liên quan đến PTLG có điều kiện thì thu được kết quả ban đầu như sau: + Về dạng PTLG có điều kiện xuất hiện rất nhiều trong sách giáo khoa và cả sách bài tập. + Về bài toán thực nghiệm, chúng tôi thu được kết quả làm bài tiêu biểu của 2 HS lớp 11 (2 HS này có điểm trung bình môn Toán trên 7 của trường THPT Thường Tân, huyện Tân Uyên, tỉnh Bình Dương) như sau: 6
  9. sin x + cos x Giải phương trình: = 2 cos 2 x π π HS1: Điều kiện: cos 2 x ≠ 0 ⇔ x ≠ +k 4 2 sin x + cos x  π = 2 ⇔ 2 cos  x −  = 2 cos 2 x cos 2 x  4  π x =− + k 2π (1)  π 4 ⇔ cos  x − =  cos 2 x ⇔   4 = π 2π x +k (2)  12 3 π π 2π Vậy nghiệm của phương trình là x =− + k 2π và x = +k (k ∈ Z ) 4 12 3 π π HS2: ĐK: cos 2 x ≠ 0 ⇔ x ≠ +k 4 2 sin x + cos x 1 1 =2⇔ sin x + cos x = cos 2 x cos 2 x 2 2  π ⇔ 2 cos  x −  =2 cos 2 x  4  π  x=− + k 2π (1)  π 4 ⇔ cos  x − =  cos 2 x ⇔   4 = π 2π x +k (2)  12 3 π 2π So sánh với điều kiện, nghiệm của phương trình là x = +k (k ∈ Z ) 12 3 Dựa vào kết quả này, chúng tôi nhận thấy rằng 2 HS thực hiện các phép biến đổi và các bước giải phương trình rất tốt, nhưng đều kết luận nghiệm sai do HS 1 không so sánh nghiệm với ĐK, HS 2 loại được họ nghiệm (1) trong khi họ nghiệm (2) lại có một số giá trị vi phạm điều kiện đã cho. Vì vậy ở cả hai HS này đều không thực hiện tốt việc chọn nghiệm PTLG có ĐK, và kỹ thuật chọn-loại nghiệm không được thể hiện rõ ràng. Từ ghi nhận này, chúng tôi tự hỏi yếu tố nào chi phối đến quá trình chọn nghiệm của 2 HS trong bài toán trên? Việc HS giải PTLG có ĐK gặp những khó khăn gì và việc hình thành kỹ thuật chọn nghiệm của loại phương trình này có được thể chế đề cập một cách tường minh hay bằng cách nào khác mà HS có thể hình thành kỹ thuật chọn nghiệm? Và liệu rằng HS vận dụng các kiến thức đã học để giải quyết các kiểu nhiệm vụ giải các PTLG có điều kiện như thế nào? 7
  10. Muốn trả lời rõ ràng những câu hỏi này, đã dẫn chúng tôi tới việc có nhu cầu tìm hiểu và nghiên cứu về đề tài "Tìm nghiệm PTLG có điều kiện trong dạy học toán 11", đồng thời đặt ra các câu hỏi xuất phát sau cụ thể sau: Q’1: Các dạng PTLG và PTLG có điều kiện được trình bày như thế nào trong thể chế dạy học Việt Nam hiện nay? Việc so sánh nghiệm với ĐK của loại phương trình này được trình bày như thế nào trong SGK? Những điều đó có ảnh hưởng gì đến cách chọn nghiệm của PTLG có điều kiện của HS khi thực hành giải các bài toán liên quan đến PTLG có điều kiện? Q’2: Những kiến thức toán học nào chi phối trực tiếp đến kĩ năng chọn nghiệm PTLG có điều kiện của HS THPT, và các kiến thức đó ảnh hưởng như thế nào lên quá trình giải các bài toán PTLG có ĐK? Q’3: HS được hình thành kỹ năng chọn nghiệm PTLG có điều kiện chủ yếu qua con đường nào,và với kỹ năng đó, HS có thể giải quyết các bài toán lượng giác trong các đề thi Đại học như thế nào? Giáo viên có những phương án dạy học nào giúp HS vượt qua những khó khăn khi chọn nghiệm PTLG có ĐK? 2. Phạm vi lý thuyết tham chiếu: Chúng tôi đặt nghiên cứu của mình trong phạm vi của Didactic toán, cụ thể là “Lý thuyết nhân chủng học” và khái niệm “Hợp đồng didactic”. Về các khái niệm của Thuyết nhân học và hợp đồng didactic, do trong cuốn sách song ngữ Những yếu tố cơ bản của didactic toán (2009) đã trình bày đầy đủ, nên dưới đây chúng tôi chỉ trình bày tóm tắt những khái niệm đó. Những khái niệm này được chúng tôi lược trích từ cuốn sách song ngữ nêu trên. Đồng thời, chúng tôi cố gắng làm rõ tính thỏa đáng cho sự lựa chọn phạm vi lý thuyết tham chiếu của mình. 2.1. Lý thuyết nhân chủng học Theo Chevallard: “Một tri thức không tồn tại “lơ lửng” trong một khoảng rỗng: mỗi tri thức đều xuất hiện ở một thời điểm nhất định, trong một xã hội nhất định, như là cắm sâu vào một hoặc nhiều thể chế” (Chevallard, 1989) Hay nói cụ thể hơn, mỗi tri thức đều là tri thức của một thể chế, cùng một tri thức nhưng có thể sống trong những thể chế khác nhau. Mỗi tri thức muốn tồn tại trong một thể chế thì cần phải tuân thủ theo một số ràng buộc. Do đó nó phải biến đổi để phù hợp với thể 8
  11. chế mà nó đang đứng. Hay nói cách khác, mỗi đối tượng tri thức O đều chịu những sự ràng buộc với các cá nhân X và các thể chế I. • Quan hệ cá nhân Một đối tượng O là một cái gì đó tồn tại ít nhất đối với một cá nhân X. Quan hệ cá nhân của một cá nhân X với đối tượng O, R(X, O), là tập hợp những tác động qua lại mà X có thể có với O: thao tác nó, sử dụng nó, nói về nó, nghĩ về nó, … R(X, O) chỉ rõ cách thức mà X biết O. Mỗi con người là một cá nhân, ở một thời điểm xác định của lịch sử của nó, và một tập hợp các mối quan hệ cá nhân với những đối tượng mà nó biết. Dưới quan điểm này, học tập là sự điều chỉnh mối quan hệ của một cá nhân X với O. Hoặc quan hệ này bắt đầu được thiết lập (nếu nó chưa từng tồn tại), hoặc quan hệ này bị biến đổi (nếu nó đã tồn tại). Sự học tập này làm thay đổi con người. • Quan hệ thể chế Một cá nhân X không thể tồn tại lơ lửng ở đâu đó mà luôn luôn phải ở trong ít nhất một thể chế I. Từ đó suy ra việc thiết lập hay biến đổi quan hệ R(X, O) phải được đặt trong một thể chế I nào đó có sự tồn tại của X. Hơn thế, giữa I và O cũng phải có một quan hệ xác định. Đối tượng O cũng không thể tồn tại độc lập trong bất cứ thể chế nào. Nói cách khác, O sống trong mối quan hệ chằng chịt với những đối tượng khác. O sinh ra, tồn tại và phát triển trong mối quan hệ ấy. Theo cách tiếp cận sinh thái (écologie) thì O chỉ có thể phát triển nếu nó có một lý do tồn tại (raison d’être), nếu nó được nuôi dưỡng trong những quan hệ, những ràng buộc ấy. Chevallard đã dùng thuật ngữ quan hệ thể chế I với tri thức O, ký hiệu R(I, O), để chỉ tập hợp các mối ràng buộc mà thể chế I có với tri thức O. R(I, O) cho biết O xuất hiện ở đâu, bằng cách nào, tồn tại ra sao, đóng vai trò gì trong I, … Phân tích sinh thái là một phân tích nhằm làm rõ quan hệ R(I, O) ấy. Hiển nhiên, trong một thể chế I, quan hệ R(X, O) hình thành hay thay đổi dưới các ràng buộc của R (I, O). Việc học tập của cá nhân X về đối tượng tri thức O chính là quá trình thiết lập hay điều chỉnh mối quan hệ R(X,O). Hiển nhiên, một tri thức O tồn tại trong các thể chể I khác nhau (chẳng hạn thể chế dạy học Việt Nam, Pháp) sẽ có mối quan hệ khác nhau với các cá 9
  12. nhân X (chẳng hạn giáo viên, học sinh). Do đó muốn nghiên cứu quan hệ của cá nhân X với đối tượng tri thức O, cần phải đặt nó trong mối quan hệ của thể chế I mà cá nhân X đang đứng với tri thức O. Một câu hỏi được đặt ra là làm thế nào để vạch rõ quan hệ thể chế R(I, O) và quan hệ cá nhân R(X, O)? Lý thuyết nhân chủng học sẽ cung cấp cho chúng ta công cụ để thực hiện công việc đó. • Tổ chức toán học Hoạt động toán học là một bộ phận của hoạt động xã hội. Do đó, cũng cần thiết xây dựng một mô hình cho phép mô tả và nghiên cứu thực tế đó. Xuất phát từ quan điểm này mà Chevallard (1998) đã đưa vào khái niệm praxeologie. Theo Chavallard, mỗi praxeologie là một bộ gồm 4 thành phần [T, τ , θ , Θ ], trong đó: T là một kiểu nhiệm vụ, τ là kỹ thuật cho phép giải quyết T, θ là công nghệ giải thích cho kỹ thuật τ , Θ là lí thuyết giải thích cho θ , nghĩa là công nghệ của công nghệ θ . Một praxeologie mà các thành phần đều mang bản chất toán học được gọi là một tổ chức toán học (organisation mathématique). Theo Bosch.M và Chevallard.Y, việc nghiên cứu mối quan hệ thể chế I với một đối tượng tri thức O có thể được tiến hành thông qua việc nghiên cứu các tổ chức toán học gắn liền với O: “Mối quan hệ thể chế với một đối tượng […] được định hình và biến đổi bởi một tập hợp những nhiệm vụ mà cá nhân [chiếm một vị trí nào đó trong thể chế này] phải thực hiện, nhờ vào những kỹ thuật xác định” Hơn thế, cũng theo Bosch. M và Chevallard Y, việc nghiên cứu các tổ chức toán học gắn liền với O còn cho phép ta hình dung được một số yếu tố của quan hệ cá nhân của một chủ thể X (tồn tại trong I) với O, bởi vì: “Chính việc thực hiện những nhiệm vụ khác nhau mà cá nhân phải làm trong suốt cuộc đời mình trong những thể chế khác nhau, ở đó nó là một chủ thể (lần lượt hay đồng thời), dẫn tới làm nảy sinh mối quan hệ cá nhân của nó với đối tượng nói trên”. Như vậy, với những công cụ của Lý thuyết nhân chủng học chúng tôi có thể phân tích và làm rõ mối quan hệ thể chế dạy học Toán ở Việt Nam với đối tượng tính toán đại số, đối tượng hàm số và hai đối tượng này có những quan hệ, ràng buộc nào; đồng thời, tìm hiểu rõ 10
  13. mối quan hệ cá nhân của học sinh với các đối tượng nêu trên. Điều này sẽ cho phép trả lời những câu hỏi ban đầu mà chúng tôi đã đặt ra. 2.2. Hợp đồng didactic Để làm rõ mối quan hệ của thể chế I với đối tượng O, một trong những công cụ quan trọng là khái niệm hợp đồng didactic. Theo G. Brousseau (1980), Hợp đồng didactic liên quan đến một đối tượng dạy- học là một sự mô hình hóa các quyền lợi và nghĩa vụ ngầm ẩn của giáo viên và học sinh đối với đối tượng đó. “Hợp đồng là một tập hợp những quy tắc (thường không được phát biểu tường minh) phân chia và hạn chế trách nhiệm của mỗi thành viên, học sinh và giáo viên, về một tri thức được giảng dạy” (Bessot và các tác giả). Hợp đồng chi phối quan hệ giữa thầy và trò về các kế hoạch, các mục tiêu, các quyết định, các hoạt động và đánh giá sư phạm. Chính hợp đồng chỉ ra ở từng lúc vị trí tương hỗ của các đối tác đối với nhiệm vụ phải hoàn thành và chỉ rõ ý nghĩa sâu sắc của hoạt động đang được tiến hành, của các phát biểu hoặc những lời giải thích. Nó là quy tắc giải mã cho hoạt động sư phạm mà mọi sự học tập trong nhà trường phải trải qua. Để thấy được hiệu ứng của các hợp đồng didactic, người ta có thể tiến hành như sau: • Tạo ra một sự biến loạn trong hệ thống giảng dạy, sao cho có thể đặt những thành viên chủ chốt (giáo viên, học sinh) trong một tình huống khác lạ được gọi là tình huống phá vỡ hợp đồng bằng cách: – Thay đổi các ĐK sử dụng tri thức. – Lợi dụng việc HS chưa biết vận dụng một số tri thức nào đó. – Tự đặt mình ra ngoài lĩnh vực tri thức đang xét hoặc sử dụng những tình huống mà tri thức đang xét không thể giải quyết được. – Làm cho GV đối mặt với những ứng xử không phù hợp với điều mà họ mong đợi ở học sinh. • Phân tích các thành phần của hệ thống giảng dạy đang tồn tại bằng cách: – Nghiên cứu câu trả lời của HS trong khi học. – Phân tích các đánh giá của HS trong việc sử dụng tri thức. – Phân tích các bài tập được giải hoặc được ưu tiên hơn trong SGK. 11
  14. Như vậy, việc nghiên cứu các quy tắc của hợp đồng diadactic liên quan đến việc sử dụng các tính toán đại số trong nghiên cứu các vấn đề về hàm số sẽ cho phép chúng tôi “giải mã” các ứng xử của học sinh và tìm ra ý nghĩa của các hoạt động mà họ tiến hành. Tóm lại, việc đặt nghiên cứu của mình trong phạm vi của “Lý thuyết nhân chủng học” và khái niệm “Hợp đồng didactic” theo chúng tôi là thỏa đáng. Trong phạm vi lí thuyết tham chiếu đã lựa chọn, chúng tôi trình bày lại những câu hỏi nghiên cứu như sau: Q1: Các dạng PTLG và PTLG có điều kiện được trình bày như thế nào trong chương trình và SGK lớp 11 hiện hành? Có những quy tắc ngầm ẩn nào của hợp đồng didactic gắn liền với việc tìm nghiệm của PTLG có điều kiện? Q2: Trong hệ thống dạy học toán ở THPT, những kiến thức toán học lượng giác nào ảnh hưởng đến quá trình chọn nghiệm PTLG có điều kiện của HS? Cách trình bày các kiến thức này trong SGK? Có những quy tắc ngầm ẩn nào của hợp đồng didactic gắn liền với các kiến thức trên trong việc chọn nghiệm của PTLG có điều kiện? Q3: Những ràng buộc của thể chế dạy học ảnh hưởng như thế nào đến mối quan hệ cá nhân của GV và HS với việc thực hành giải PTLG có điều kiện? 3. Mục đích nghiên cứu và phương pháp nghiên cứu 3.1. Mục đích nghiên cứu Mục đích nghiên cứu của chúng tôi là tìm câu trả lời cho những câu hỏi đã đặt ra ở trên, cụ thể là những mục đích sau: • Làm rõ những ảnh hưởng của thể chế đối với việc dạy học các dạng PTLG và chú trọng vào PTLG có ĐK, đặc biệt là việc so sánh, loại-nhận nghiệm PTLG có ĐK. Những lựa chọn sư phạm của PTLG có ĐK và ảnh hưởng của các yếu tố toán học lượng giác khác lên nó. • Xây dựng thực nghiệm kiểm chứng sự ảnh hưởng của những lựa chọn trên đối với HS . 3.2. Phương pháp nghiên cứu Đối với câu hỏi Q1: chúng tôi sẽ tiến hành phân tích chương trình và sách giáo khoa toán phổ thông (cụ thể, sách giáo khoa Đại số và giải tích lớp 11, ban nâng cao). Thông qua việc phân tích lý thuyết và các tổ chức toán học liên quan đến hàm số và PTLG ở lớp 11, 12
  15. chúng tôi sẽ làm rõ đặc trưng của mối quan hệ thể chế với các loại PTLG. Toàn bộ phần phân tích này được trình bày trong chương 1. Thông qua việc phân tích chương trình, SGK, SGV và các tổ chức toán học, chúng tôi sẽ đưa ra các quy tắc hợp đồng và giả thuyết nghiên cứu liên quan đến việc so sánh nghiệm của PTLG có ĐK, cũng như những sai lầm mà học sinh hay gặp phải khi gặp dạng toán này. Nghiên cứu ở chương 1 nhằm trả lời cho câu hỏi Q1 nêu trên. Từ đó, cho phép chúng tôi đưa ra được những quy tắc hợp đồng cũng như giả thuyết liên quan đến câu hỏi Q3, đó là: sự lựa chọn của thể chế ảnh hưởng thế nào lên mối quan hệ cá nhân của giáo viên và học sinh?. Chương 2: Phân tích, tổng hợp một số nghiên cứu khoa học luận, một số sách tham khảo về lượng giác và PTLG, đặc biệt là để làm rõ các kiến thức ảnh hưởng đến quá trình giải và tìm nghiệm PTLG có điều kiện của HS. Phân tích chương trình và sách giáo khoa toán phổ thông Việt Nam để làm rõ mối quan hệ thể chế của PTLG có điều kiện trả lời cho câu hỏi Q2, cụ thể là sẽ phân tích SGK, SGV, SBT toán lớp 10 và 11 ban nâng cao nhằm làm rõ các kiến thức lượng giác là môi trường sinh thái trong việc tìm nghiệm PTLG có điều kiện, ảnh hưởng của chúng như thế nào lên GV và HS thông qua các quy tắc hành động hoặc hợp đồng. Từ phân tích chương 1 và 2, chúng tôi tham chiếu và tiến hành xây dựng giả thuyết nghiên cứu và tiến hành xây dựng câu hỏi thực nghiệm. Chương 3: dành để kiểm chứng về tính thỏa đáng của những giả thuyết được hình thành ở chương 1; 2 qua một nghiên cứu thực nghiệm trên đối tượng là học sinh lớp 11, vừa học xong nội dung PTLG. Tìm hiểu và phân tích mối quan hệ cá nhân của giáo viên và HS đối với việc chọn nghiệm PTLG có điều kiện, cụ thể là: Thực nghiệm HS: chúng tôi tiến hành kiểm chứng những quy tắc hợp đồng nêu trên có đủ mạnh để chi phối suy nghĩ và kỹ thuật giải của HS như thế nào? Hình thức là xây dựng một vài bài toán thực nghiệm, trong đó yêu cầu HS giải như một bài kiểm tra. Sau đó, chúng tôi sẽ quan sát, thu thập và phân tích số liệu thực nghiệm để làm rõ sự ảnh hưởng của các quy tắc hợp đồng lên HS. 13
  16. CHƯƠNG 1: MỐI QUAN HỆ THỂ CHẾ ĐỐI VỚI CÁC DẠNG PHƯƠNG TRÌNH LƯỢNG GIÁC, PHƯƠNG TRÌNH LƯỢNG GIÁC CÓ ĐIỀU KIỆN Ở chương này, chúng tôi nghiên cứu về các dạng PTLG trong dạy học nội dung PTLG theo chương trình hiện hành ở lớp 11 ban nâng cao. Chúng tôi chọn SGK Đại số và Giải tích 11 ban nâng cao vì SGK này trình bày các vấn đề về hàm số và PTLG đầy đủ hơn quyển sách giáo khoa cùng lớp thuộc chương trình chuẩn, đối tượng HS của bộ sách này là những HS khá giỏi Toán của các trường THPT, có nhu cầu và thực tế tiếp cận với nhiều dạng toán nâng cao cùng loại so với ban cơ bản (dạng toán PTLG có điều kiện cũng là một dạng toán khó đối với HS ). Theo cách tiếp cận của Thuyết nhân học trong didactic toán thì đây là một nghiên cứu về quan hệ thể chế R(I, O), với O là các dạng PTLG, I là thể chế dạy học theo chương trình toán nâng cao lớp 11 hiện hành. 1.1. Phân tích chương trình Trước khi HS chính thức được học về lượng giác trong chương trình toán 10; 11, thì chương trình toán lớp 9 là giai đoạn giới thiệu làm quen với lượng giác thông qua bài: hệ thức lượng trong tam giác vuông, giá trị lượng giác của một số góc đặc biệt. Chương trình toán bậc trung học phổ thông hiện hành, lượng giác được đưa trực tiếp vào SGK 10, 11 và được chia làm hai phần sau: + Phần 1: Góc lượng giác và công thức lượng giác. Phần này được trình bày ở chương cuối của Đại số 10 nhằm phục vụ cho việc học Vật lí, Sinh học và bước đầu giới thiệu một số ứng dụng Toán học vào thực tiễn. Nội dung phần 1 bao gồm những vấn đề: xây dựng các khái niệm cơ bản về lượng giác như góc và cung lượng giác; giá trị lượng giác của góc (cung) lượng giác; giá trị lượng giác của các góc (cung) lượng giác có liên quan đặc biệt và các công thức lượng giác. + Phần 2: Hàm số lượng giác và PTLG. Phần này được đưa tiếp vào chương đầu tiên của Đại số và Giải tích 11 và chia làm 3 bài với những nội dung: hàm số lượng giác (trình bày khái niệm hàm số lượng giác biến số thực, khảo sát các tính chất và vẽ đồ thị hàm số); PTLG cơ bản; một số PTLG đơn giản. Như vậy, phần lớn kiến thức cơ bản về lượng giác, công cụ để tính toán và thực hiện các phép biến đổi lượng giác (chẳng hạn hệ thức lượng giác, công thức lượng giác) đều đã 14
  17. được nghiên cứu ở phần 1. Trên cơ sở đó, phần 2 đề cập đến hàm số lượng giác biến số thực (khái niệm, một số tính chất đặc trưng như sự biến thiên, tính chẵn lẻ, tính tuần hoàn, đồ thị) và giải PTLG. Về việc phân phối thời lượng cho hai nội dung hàm số lượng giác và PTLG: Trong cuốn Tài liệu phân phối chương trình THPT áp dụng từ năm học 2008-2009 đến nay, chương trình Đại số và Giải tích 11 nâng cao dành thời lượng 18 tiết cho chương này (ngoài ra còn có 2 tiết ôn tập, 1 tiết thực hành với máy tính bỏ túi và 1 tiết kiểm tra cuối chương). Trong đó, nội dung về hàm số lượng giác chiếm thời lượng 4 tiết (3 tiết lí thuyết và 1 tiết luyện tập); 2 tiết tiếp theo dành cho nội dung ôn tập công thức lượng giác để chuẩn bị cho phần PTLG học ngay sau đó. Phần PTLG chiếm thời lượng là 12 tiết. Như vậy, nếu kể cả nội dung ôn tập công thức lượng giác thì tổng thời lượng dành cho PTLG là 14/18 tiết. Rõ ràng, PTLG là nội dung trọng tâm của chương này. Bên cạnh đó, việc dành thời lượng 2 tiết để ôn tập công thức lượng giác chứng tỏ vai trò quan trọng của các phép biến đổi lượng giác đối với việc giải PTLG. Vấn đề này đặt ra cho chúng tôi câu hỏi: Với thời lượng dành cho PTLG chiếm tỉ lệ lớn thì mối quan hệ cá nhân của HS với thực hành giải các dạng PTLG như thế nào, đặc biệt là việc tìm nghiệm, so sánh nghiệm với ĐK trong PTLG có điều kiện? HS hình thành được phương pháp giải các dạng PTLG như thế nào, nhất là các kỹ thuật so sánh nghiệm với ĐK cho trước? 1.2. Các dạng PTLG trong thể chế I Chúng tôi nhắc lại, I là thể chế dạy học các nội dung về PTLG ở lớp 11 theo chương trình nâng cao và SGK hiện hành. 1.2.1. PTLG cơ bản Theo SGVNC11, chương trình SGK đổi mới hiện hành luôn cố gắng quán triệt chủ trương: “Giảm tính lý thuyết kinh viện, tăng tính thực hành, gắn với thực tiễn đời sống và góp phần đổi mới phương pháp dạy học, tránh áp đặt kiến thức cũng như tránh các suy luận logic chặt chẽ nhưng quá phức tạp. Hầu hết các khái niệm đều được đưa vào theo con đường từ trực quan sinh động đến tư duy trừu tượng, từ ví dụ cụ thể đến khái niệm tổng quát...” [SGKNC11, tr.10]. Do đó, trước khi bắt đầu vào bài 2, PTLG, [SGKNC11, tr.19] đã trình bày một bài toán mang tính thực tiễn. Con đường này nhằm đem đến cho HS cách trình trực quan, sinh 15
  18. động, và hiểu được khả năng ứng dụng vào thực tế một khái niệm, kiến thức toán học. Sau đó, SGK giới thiệu các dạng PTLG cơ bản sin x = m , cos x = m , tan x = m , cot x = m , trong đó x ( x ∈  ) là ẩn số và m là số cho trước.  Cách xây dựng “công thức nghiệm” của PTLG cơ bản “Công thức nghiệm” của bốn PTLG cơ bản sin x = m , cos x = m , tan x = m , cot x = m đều được xây dựng dựa trên ĐTLG. Quan điểm của SGVNC11 về vấn đề này là: “Tận dụng tối đa phương pháp sử dụng đường tròn lượng giác một cách trực quan để khảo sát sự biến thiên của các hàm số lượng giác, giải các phương trình lượng giác.” [SGKNC11, tr.10], và “Nhằm giúp học sinh có hình ảnh trực quan khi xây dựng “công thức nghiệm” của các PTLG cơ bản, SGK đã lựa chọn phương pháp dựa trên định nghĩa các giá trị lượng giác và ý nghĩa hình học của chúng mà học sinh đã được học ở lớp 10.” [SGVNC 11, tr.32] Với quan điểm trên, SGKNC11 đã tiến hành xây dựng “công thức nghiệm” các PTLG cơ bản theo 2 bước. Chẳng hạn đối với phương trình sin x = m (I) + Bước 1: Tìm các điểm M trên ĐTLG sao cho sin ( OA, OM ) = m (các điểm mà hình chiếu trên trục sin là điểm K thỏa mãn OK = m ), ta được 2 điểm M1, M2 đối xứng nhau qua trục sin (h1.19). Số đo (rađian) của các góc lượng giác (OA,OM1) và (OA,OM2) là tất cả các nghiệm của phương trình. (Để HS dễ hiểu, SGKNC11 cho ví dụ cụ thể là phương trình sin x = 1 vì đây là giá trị lượng giác của góc quen thuộc) 2 + Bước 2: Tìm α là số đo (rađian) của một góc tương ứng với một trong hai điểm M1 hoặc M2. Ta suy ra được một góc tương ứng với điểm còn lại là π − α . Do hàm số y = sin x là tuần hoàn chu kì 2π nên ta có họ các nghiệm phương trình là: x= α + k 2π hoặc x = π − α + k 2π ( k ∈  ) Sau đó SGKNC11 lưu ý rằng sin x ≤ 1 với mọi x nên phương trình vô nghiệm khi m > 1 và luôn có đúng một nghiệm trên  −π ; π  khi m ≤ 1 và đưa ra “công thức nghiệm”  2 2 tổng quát như sau: 16
  19. Phương trình sin x = m (I) Nếu α là một nghiệm của phương trình (I), nghĩa là sin α = m thì  x= α + k 2π (*) sin x = m⇔ ( k ∈ )  x = π − α + k 2π Trong trường hợp m không phải là sin của một góc đặc biệt, người ta đưa ra khái niệm “arcsinm”. Ở đây khái niệm hàm số ngược của các hàm số lượng giác không được đề  π π cập đến, khái niệm “arcsinm” chỉ được hiểu là cung thuộc đoạn  − ;  có sin bằng m.  2 2 Riêng chú ý 3, SGK còn mở rộng PTLG cơ bản thành sinP(x)=sinQ(x), trong đó P(x), Q(x) là hai biểu thức chứa x. Cách giải cũng tương tự như sinx=m, với m không phải là một số thực mà là một đa thức chứa x, như sau: ( x) Q( x) + k 2π  P= = sin P( x) sin Q( x) ⇔  π − Q( x) + k 2π  P( x) = Như vậy, SGKNC11 sử dụng ĐTLG kết hợp với tính chất tuần hoàn (tính chất giải tích) của hàm số để đưa ra “công thức nghiệm” PTLG cơ bản. Sau khi hình thành “công thức nghiệm” phương trình sin x = m , SGKNC11 đưa ra nhận xét và hoạt động như sau: “Trong mặt phẳng tọa độ, nếu vẽ đồ thị (G) của hàm số y = sin x và đường thẳng ( d ) : y = m thì hoành độ mỗi giao điểm của (d) và (G) (nếu có) là một nghiệm của phương trình sin x = m . H3 Trên đồ thị hàm số y = sin x (h. 1.20), hãy chỉ ra các điểm có hoành độ trong khoảng ( 0;5π ) là 2 nghiệm của phương trình sin x = .” [SGKNC11, tr.22] 2 SGVNC11 chỉ giải thích ngắn gọn mục đích đưa ra hoạt động H3 là: “Giúp học sinh hiểu được ý nghĩa hình học các nghiệm của một PTLG” [SGVNC11, tr.36]. Vậy bên cạnh công thức nghiệm, SGK còn dùng đồ thị để giải PTLG và trình bày rõ ràng. Các PTLG cơ bản còn lại cũng được xây dựng tương tự, tức là đều thông qua ĐTLG, 17
  20. nhưng đặc biệt hơn ở tan x = m (3) SGK còn nhấn mạnh cos x ≠ 0 và nhấn mạnh rằng : “ α + kπ là tất cả nghiệm của (3), với α là một nghiệm của (3) và hiển nhiên họ nghiệm này thỏa mãn điều kiện xác định mà không cần thử lại” [SGKNC11, tr.25] . Từ cách trình bày này, HS có thể hiểu rằng khi giải các bài toán như (3) thì HS không cần kiểm tra, so sánh họ nghiệm tìm được với ĐKXĐ. (tương tự cho phương trình cotx=m). Nhưng ở dạng tan P( x) = tan Q( x) thì : “Vấn đề không đơn giản như vậy, HS phải chú ý đến điều kiện cos P( x) ≠ 0,cos Q( x) ≠ 0 . Tương tự cho dạng cot P ( x) = cot Q ( x) ”[SGVNC11, tr.34]. Đây chính là hai dạng PTLG có điều kiện đầu tiên mà SGK đề cập tới, nhưng việc đặt ĐK do SGV chú ý cho GV, SGK không tường minh nhắc đến. Từ phân tích trên, chúng ta thấy được vai trò quan trọng của ĐTLG trong việc xây dựng và hình thành nên nghiệm của các PTLG cơ bản, cũng là bước đệm minh họa ý nghĩa hình học của nghiệm PTLG. Từ đó, chúng tôi đặt ra câu hỏi: Còn có các dạng PTLG nào khác trong SGK và được trình bày như thế nào? ĐTLG có vai trò như thế nào trong việc giải tìm nghiệm các dạng PTLG này ? Để hiểu rõ hơn những câu hỏi đã đưa ra, chúng tôi tiến hành phân tích thêm SGK, cũng như tìm thêm con đường đưa PTLG đến với HS cũng như các tổ chức toán học của thể chế I. 1.2.2. Phương trình bậc nhất và bậc hai đối với một hàm số lượng giác - Phương trình bậc nhất là các phương trình có dạng: a sin f ( x ) + b 0 ; = a cos f ( x ) + b 0 ; = a tan f ( x ) + b 0 ; = a cot f ( x ) + b 0. = ( a ≠ 0 , f (x) là một đa thức bậc nhất đối với x) - Phương trình bậc hai là các phương trình có dạng: a sin 2 x = + b sin x + c 0 ; a cos 2 x += b cos x + c 0 a tan 2 x += b tan x + c 0 ; a cot 2 x += b cot x + c 0 ( a ≠ 0 , f (x) là một đa thức bậc nhất đối với x) Hai- dạng PTLG này được SGK trình bày khá ngắn gọn, chủ yếu là hướng dẫn cách giải, thực hiện các phép biến đổi đơn giản như đặt ẩn phụ, chuyển vế, nhân chia, công thức lượng giác…về các dạng PTLG cơ bản đã học và giải theo công thức nghiệm của từng loại. Ở đây, SGK chú thích thêm, rằng: 18
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
6=>0