LUYỆN TẬP GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ
lượt xem 47
download
Luyện tập cho học sinh thành thạo giải hệ phương trình bằng phương pháp thế và một số bài toán có liên quan đến giải hệ phương trình bậc nhất hai ẩn. - Rèn luyện kĩ năng vận dụng lí thuyết vào giải các bài tập nhanh, chính xác và trình bày lời giải khoa học. B. Chuẩn bị: GV: Bảng tóm tắt qui tắc thế, qui tắc cộng đại số. HS: Ôn tập về qui tắc thế, và cách giải hệ phương trình bằng phương pháp thế....
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: LUYỆN TẬP GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ
- LUYỆN TẬP GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ A. Mục tiêu: - Luyện tập cho học sinh thành thạo giải hệ phương trình bằng phương pháp thế và một số bài toán có liên quan đến giải hệ phương trình bậc nhất hai ẩn. - Rèn luyện kĩ năng vận dụng lí thuyết vào giải các bài tập nhanh, chính xác và trình bày lời giải khoa học. B. Chuẩn bị: GV: Bảng tóm tắt qui tắc thế, qui tắc cộng đại số. HS: Ôn tập về qui tắc thế, và cách giải hệ phương trình bằng phương pháp thế. C. Tiến trình dạy - học: 1. Tổ chức lớp: 9A1 GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP 2. Nội dung: THẾ A. Lí thuyết: 1. Qui tắc thế: 2. Cách giải hệ phương trình bằng phương pháp thế:
- GV yêu cầu học sinh nêu qui tắc thế và treo bảng phụ ghi nội dung qui tắc thế và cách giải hệ phương trình bằng phương pháp thế để khắc sâu qui tắc cho học sinh. B. Bài tập: 1. Bài 1: Giải hệ phương trình sau bằng phương pháp thế 4 x 5 y 3 2 x y 3 a) b) x 3y 5 2 x 3 y 17 5 2 .x y 3 5 5 x 2 y 3x 1 d) c) 2 x 4 3 x 5 y 12 x 2 y 6 2 5 Giải: 4 5 3 y 5 y 3 4 x 5 y 3 20 12 y 5 y 3 a) x 3y 5 x 5 3y x 5 3y y 1 17 y 17 y 1 x 5 3. 1 x 5 3y x 2 Vậy hệ phương trình có 1 nghiệm duy nhất (x; y) = ( 2; -1) y 2 x 3 2 x y 3 y 2 x 3 b) 2 x 3. 2 x 3 17 2 x 3 y 17 2 x 6 x 9 17 y 2 x 3 y 2.1 3 y 5 8 x 8 x 1 x 1 Vậy hệ phương trình có 1 nghiệm duy nhất (x; y) = ( 1; -5)
- 5 2 .x y 3 5 c) x 2 y 6 2 5 y 3 5 5 2 .x x 2. 3 5 5 2 .x 6 2 5 y 5 2 .x 3 5 y 5 2 .x 3 5 x 2. 5 2 . x 6 2 5 6 2 5 2 5 4 1 .x 0 y 5 2 .0 3 5 y 3 5 x 0 x 0 Vậy hệ phương trình có 1 nghiệm duy nhất (x; y) = 0; 3 5 5 x 2 y 3x 1 5 x 10 y 3 x 1 2 x 10 y 1 d) 2 x 4 3 x 5 y 12 2 x 4 3 x 15 y 12 x 15 y 16 2.16 15 y 10 y 1 32 30 y 10 y 1 20 y 33 x 16 15 y x 16 15 y x 16 15 y 33 33 33 y 20 y 20 y 20 x 16 15. 33 x 16 99 x 35 20 4 4 35 33 Vậy hệ phương trình có 1 nghiệm duy nhất x ; y 4 20 2. Bài 2: 3ax b 1 y 93 a) Tìm giá trị của a và b để hệ phương trình bx 4ay 3
- có nghiệm là ( x; y ) = ( 1; -5) b) Tìm các giá trị của a; b để hai đường thẳng ( d1) : 3a 1 x 2by 56 1 ax 3b 2 y 3 cắt nhau tại 1 điểm M ( 2; -5) và (d2) : 2 Giải: 3ax b 1 y 93 a) Vì hệ phương trình có nghiệm là ( x; y ) = ( 1; -5) bx 4ay 3 3a.1 b 1 . 5 93 3a 5b 5 93 3a 5b 88 ta có hpt b.1 4a. 5 3 b 20a 3 20a b 3 3a 5. 3 20a 88 3a 15 100a 88 b 3 20a b 3 20a 103a 103 a 1 a 1 Vậy với a =1 và b =17 b 3 20a b 3 20.1 b 17 3ax b 1 y 93 thì hệ phương trình có nghiệm là (x; y ) =(1; -5) bx 4ay 3 1 ax 3b 2 y 3 b) Để hai đường thẳng (d1) : 3a 1 x 2by 56 và (d2) : 2 cắt nhau tại điểm M ( 2; -5) ta có hệ phương trình 3a 1 .2 2b. 5 56 1 a.2 3b 2 . 5 3 2
- 6. 13 15b 2 10b 56 6a 2 10b 56 a 15b 10 3 a 13 15b 78 90b 2 10b 56 a 13 15b 1 1 1 b 5 100b 20 b b 5 5 a 13 15. 1 a 13 15b a 13 3 a 10 5 1 thì 2 đường thẳng ( d1) : 3a 1 x 2by 56 và Vậy với a = 10 và b 5 1 ax 3b 2 y 3 cắt nhau tại điểm M ( 2; -5) (d2): 2 Tìm a; b để đường thẳng y = ax + b đi qua 2 điểm: 3. Bài 3: 3 a) A 5;3 và B ; 1 2 b) A 2;3 và B 2;1 Giải: 3 a) Để đường thẳng y = ax + b đi qua 2 điểm A 5;3 và B ; 1 ta có hệ 2 phương trình 3 a. 5 b 5a b 3 b 3 5a 3 3 3 2 .a b 1 2 .a 3 5a 1 1 a. b 2
- 8 1 b 3 5. 13 b 13 b 3 5a b 3 5a a 8 3a 6 10a 2 13a 8 a 8 13 13 8 1 ; b thì dường thẳng y = ax + b đi qua 2 điểm A 5;3 Vậy với a 13 13 3 và B ; 1 2 b) Để đường thẳng y = ax + b đi qua 2 điểm A 2;3 và B 2;1 ta có hệ phương trình 2a 1 2a 3 3 a.2 b 2a b 3 1 a. 2 b 2a b 1 b 1 2a 1 1 a 2 4a 2 a 2 b 1 2. 1 b 1 2a b 2 2 1 Vậy với a ; b = 2 thì dường thẳng y = ax + b đi qua 2 điểm A 2;3 và B 2 2;1 HDHT: +) Ôn tập về qui tắc thế và cách giải hệ phương trình bằng phương pháp thế, và một số bài toán có liên quan đến hệ phương trình bậc nhất hai ẩn đã chữa.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giải hệ phương trình bằng phương pháp thế - Luyện tập môn Toán
8 p | 1131 | 530
-
Một số kỹ thuật giải hệ phương trình
0 p | 1079 | 491
-
Các phương pháp giải hệ phương trình thường sử dụng giải đề tuyển sinh đại học
4 p | 760 | 154
-
Chuyên đề "Một số phương pháp giải hệ phương trình" - GV. Lê Đình Tần
0 p | 334 | 115
-
RÈN LUYỆN KỸ THUẬT GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ QUY VỀ HỆ CƠ BẢN
3 p | 435 | 79
-
Một số phương pháp giải hệ phương trình - luyện thi đại học
22 p | 308 | 63
-
Luyện thi Đại học môn Toán: Phương pháp thế giải hệ phương trình-P1 - thầy Đặng Việt Hùng
3 p | 176 | 51
-
Tài liệu ôn thi Toán học - 50 bài tập hệ phương trình
8 p | 383 | 45
-
Những điều cần biết luyện thi quốc gia: Kỹ thuật giải nhanh hệ phương trình
896 p | 148 | 33
-
LUYỆN TẬP GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ
4 p | 1144 | 28
-
Một số phương pháp giải hệ phương trình hai ẩn số
30 p | 194 | 27
-
BÀI 15: LUYỆN TẬP GIẢI HỆ PHƯƠNG TRÌNH VÀ MỘT SỐ BÀI TOÁN CÓ LIÊN QUAN
11 p | 280 | 26
-
BÀI 14: LUYỆN TẬP GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ
8 p | 343 | 19
-
Hệ phương trình tổng hợp - Phạm Thị Minh Ngọc
27 p | 115 | 18
-
LUYỆN TẬP LUYỆN TẬP GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ
4 p | 134 | 4
-
Bài tập Toán lớp 9: Luyện tập giải hệ phương trình, liên hệ giữa dây và cung
2 p | 65 | 4
-
Bài tập Toán lớp 9: Giải hệ phương trình bằng phương pháp cộng đại số, góc ở tâm, số đo cung
2 p | 50 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn