intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Lý thuyết đánh giá tín dụng thể nhân (P.2)

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:4

251
lượt xem
126
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

2. Các phương pháp đánh giá tín dụng thể nhân Ban đầu, cách tiếp cận cơ bản chỉ đơn thuần dựa trên phương pháp đánh giá cá nhân. Các chuyên viên tín dụng dựa trên thông tin khách hàng cung cấp (qua một mẫu đơn bao gồm các câu hỏi thống nhất) để đưa ra các quyết định chấp nhận hoặc từ chối cấp tín dụng. Do vậy, các quyết định của họ thường bị mang tính chất chủ quan và dựa vào các nguyên lý phân loại tổng quát. Các chỉ tiêu thường được xem xét để đưa ra...

Chủ đề:
Lưu

Nội dung Text: Lý thuyết đánh giá tín dụng thể nhân (P.2)

  1. Lý thuyết đánh giá tín dụng thể nhân (P.2) 2. Các phương pháp đánh giá tín dụng thể nhân Ban đầu, cách tiếp cận cơ bản chỉ đơn thuần dựa trên phương pháp đánh giá cá nhân. Các chuyên viên tín dụng dựa trên thông tin khách hàng cung cấp (qua một mẫu đơn bao gồm các câu hỏi thống nhất) để đưa ra các quyết định chấp nhận hoặc từ chối cấp tín dụng. Do vậy, các quyết định của họ thường bị mang tính chất chủ quan và dựa vào các nguyên lý phân loại tổng quát. Các chỉ tiêu thường được xem xét để đưa ra quyết định bao gồm:  Đặc điểm của khách hàng (tình trạng hôn nhân, gia đình, nghề nghiệp, tuổ tác...);  Số lượng tín dụng xin được vay;  Thế chấp (khách hàng sẽ sẵn sàng trả nợ bằng những nguồn tài sản gì trong trường hợp phá sản);  Năng lực trả nợ (Nguồn thu nhập khả dụng mà khách hàng có thể sử dụng để trả nợi); và  Các điều kiện thị trường khác. Ngày nay, định mức tín nhiệm được dựa trên phương pháp nghiên cứu thống kê hoặc phương pháp vận trù học (là phương pháp khoa học chủ yếu dựa trên toán học để giải quyết các bài toán công nghiệp, tài chính và thương nghiệp, đặc biệt để giúp nhà kinh doanh có được các quyết định hợp lý cho các hành động trong hiện tại và tương lai). Các công cụ thống kê bao gồm phân tích phân biệt, về bản chất dựa trên sự hồi quy loga và cây phân loại, đôi khi còn được gọi là thuật toán đệ quy phân định. Các phương pháp vận trù học bao gồm một loạt các biến thể của
  2. quy hoạch tuyến tính. Hầu hết các phương pháp ghi điểm sử dụng một trong những phương pháp này hay có thể kết hợp nhiều phương pháp lại với nhau để đáp ứng được những đặc điểm ngày một phức tạp của thị trường tín dụng. Bên cạnh đó, định mức tín nhiệm cũng rất thích hợp với các cách tiếp cận thống kê phi thông số hay các mô hình AI, trong số đó nổi bật lên các phương pháp mạng lưới trung hòa đồng thời, hệ thống chuyên gia, các thuật toán dựa trên phép phân loại gen sinh học, hay phương pháp khoảng cách gần nhất. Tuy nhiên, đặc điểm hết sức thuận lợi ở đây là các phương pháp tiếp cận khác nhau có thể được sử dụng đồng thời để giải quyết cùng một bài toán phân loại. Lý do là định mức tín nhiệm luôn dựa trên mục đích thực tế là để dự đoán những khách hàng có khả năng rủi ro cao, chứ không nhằm tìm ra lý giải tại sao họ phá sản hay tìm câu trả lời cho các giả thuyết về mối quan hệ giữa khả năng phá sản và các biến số kinh tế xã hội. Vậy những mô hình này được sử dụng như thế nào? Một mẫu các khách hàng sẽ được thu thập, quy mô mẫu có thể từ một vài nghìn lên đến hàng trăm nghìn khách hàng. Đối với mỗi đơn vị mẫu, các thông tin cá nhân và lịch sử tín dụng sẽ được thu thập trong khoảng thời gian 12,18 hay 24 tháng. Khi đó, các chuyên viên tín dụng có thể xác định xem một hồ sơ như vậy có thể chấp nhận được với mức độ rủi ro như thế nào, và cuối cùng tiến hành loại bỏ những khách hàng "xấu" (ví dụ khách hàng xấu là những người thanh toán chậm các khoản nợ trong 3 tháng liên tiếp). Đương nhiên một thực tế cần được xem xét đến là không thể tiến hành phân loại được một số các khách hàng vì lịch sử tín dụng của họ chưa đủ dài, hay các thông tin cá nhân của họ chưa đủ rõ ràng để đưa ra các kết luận chính xác. Do vậy, các trường hợp này sẽ bị loại ra ngoài mẫu xem xét. Ở đây, nảy sinh câu hỏi đâu là giới hạn thời gian thích hợp cho dự báo định mức tín nhiệm - thời gian từ lúc nhận đơn xin vay tín dụng cho đến khi phân loại được các khách hàng. Khoảng thời gian từ 12 đến 18 tháng được coi cho là thích hợp hơn cả. Các phân tích đã chỉ ra rằng tỷ lệ phả sản như là một hàm thời gian của
  3. khách hàng tính từ lúc khởi điểm kinh doanh, và thường phải sau ít nhất 12 tháng hoặc lâu hơn thì nó mới có thể đi vào ổn định. Vì vậy, bất cứ một phạm vi thời gian nào nhỏ hơn 12 tháng sẽ bị xem là đánh giá không đúng về khả năng phá sản, cũng như không phản ánh được những đặc điểm của khả năng phá sản được dự báo. Mặt khác, một phạm vi thời gian nhiều hơn 2 năm lại có thể gây ra những biến đổi trong phân phối các đặc tính của tổng thể, và do đó tập hợp được rút ra từ tổng thể sẽ không còn giữ được những thuộc tính đặc trưng cho tổng thể nữa. Người ta thường vận dụng các mô hình phân tích chéo (cross - section) để liên kết các sự kiện của cùng một cá thể ở những khoảng thời gian khác nhau, sau đó xây dựng một mô hình ổn định khi xem xét dọc theo thời gian của cùng một cá thể đó. Phạm vi thời gian, hay còn được hiểu là khoảng thời gian giữa 2 sự kiện, cũng cần phải được xác định ngay từ ban đầu để kết quả đạt được mức độ ổn định qua thời gian. Câu hỏi còn để ngỏ là tỷ lệ của các khoản nợ tốt hay xấu được xác định như thế nào ở trong tập hợp mẫu. Nó cần phản ánh đúng tỷ lệ thực tế của tổng thể, hay nên để tỷ lệ đạt được sự cân bằng giữa các khoản nợ tốt và xấu này. Trong luận án tiến sỹ về các vấn đề thống kê trong tính điểm tín dụng, Henley dù có đề cập tới một số điểm nhưng vẫn chưa giải quyết được câu hỏi này. Định mức tín nhiệm đã thực sự trở thành một bài toán xếp loại, khi các dữ liệu đầu vào chính là các thông tin do khách hàng cung cấp và kết quả kiểm tra đối chiếu với các cơ sở kinh tế khác cũng lưu giữ hồ sơ của khách hàng (ví dụ các nhà cung cấp điện thoại), và đầu ra chính là sự phân loại thành các khoản nợ tốt hay xấu. Một tập hợp các câu trả lời A được phân chia thành 2 tập hợp con - Tập hợp x Î AB đại diện cho nhóm khách hàng được dự báo là sẽ cho những khoản nợ xấu, tập hợp x Î AG đại diện cho nhóm khách hàng được dự báo là sẽ cho những khoản nợ tốt. Quy tắc ra quyết định với các khách hàng mới khi đó sẽ là: chấp nhận đơn xin cấp tín dụng nếu các câu trả lời của khách hàng thuộc tập hợp AG và ngược lại bác
  4. bỏ đơn nếu câu trả lời thuộc tập hợp AB.Cũng cần phải đề cập đến một thực tế xuyên suốt ở đây là chúng ta không thể tiến hành phân định mọi trường hợp trong mẫu một cách chính xác. Tuy nhiên, mục đính mà chúng ta đang muốn tìm kiếm là giảm thiểu sự phân loại sai xuống mức thấp nhất có thể nhưng vẫn thỏa mãn được những yêu cầu đặt ra một cách hợp lý. Rất nhiều các phương pháp tiếp cận khác nhau đã được nghiên cứu và phát triển nhằm giả quyết bài toán này. Dưới đây chúng tôi sẽ trình bày những phương pháp cơ bản nhất đã và đang được ứng dụng phổ biến ở các tổ chức tài chính và các công ty tư vấn trên thế giới. Các phương pháp được đưa ra đều nhằm trả lời vào 2 câu hỏi quan trọng nhất trong xây dựng mô hình định mức tín nhiệm là: a. Những đặc điểm nào cần được sử dụng trong mô hình tính điểm như là các biến độc lập và có thể giúp phân biệt được các khách hàng tiềm năng "xấu" và "tốt"; b. Làm thế nào để xác định được điểm số cho mỗi đặc điểm.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2