![](images/graphics/blank.gif)
MỘT SỐ BÀI TOÁN GIẢI PT, HỆ PT MŨ VÀ LOGARIT
lượt xem 24
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
Tham khảo tài liệu 'một số bài toán giải pt, hệ pt mũ và logarit', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: MỘT SỐ BÀI TOÁN GIẢI PT, HỆ PT MŨ VÀ LOGARIT
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 ************************************************************ MỘT SỐ BÀI TOÁN GIẢI PT, HỆ PT MŨ VÀ LOGARIT Bài số 1 : a/ Giải hệ phương trình Lời giải : Điều kiện Hệ phƣơng trình tƣơng đƣơ ng với hệ : Đặt: Ta có (I) Nhân hai phƣơng trình của hệ ( I ) vế theo vế , đƣợc: 3(3x+2y)(3x-2y) = (*) Kết hợp (1) với (*) Ta có 15 = Do đó t = 1Thế vào hệ ( I ) đƣợc hpt : Thỏa mãn điều kiện đã nêu . Nên đây là nghiệm của hệ phƣơng trình Lời giải 2: Điều kiện Hệ phƣơng trình tƣơng đƣơng với hệ : Nhân hai vế phƣơng trình (2) với và áp dụng (Với mọi a,b,c = dƣơng a ) Ta đƣợc : và b ( Vì từ pt (1) suy ra 3x-2y = ) 3x+2y = 5 (2’) Kết hợp với phƣơng trình (1) Ta đƣợc hệ phƣơng trình : Thỏa mãn điều kiện đã nêu Nên đây là nghiệm của hệ phƣơng trình đã cho b/ Giải hệ phương trình : Lời giải : Điều kiện Hệ phƣơng trình tƣơng đƣơng với : 1
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 Thỏa mãn điều kiện là nghiệm của hệ phƣơng trình đã cho. Nên Bài số 2 : Giải hệ phương trình Lời giải : Điều kiện xy . = Suy ra: = Ta có t2 – t – 2 = Phƣơng trình (1) trở thành : - 2 = 0 Đặt t = - t = 2 ( Loại t = - 1 ) 0 Nhƣ vậy: Do đó (1’) . =2 =1 Hệ phƣơng trình đã cho tƣơng đƣơng với hệ phƣơng trình -Hệ (II) có hai nghiệm : Cả hai nghiệm này đều thỏa mãn và điều kiện xy Nên đây là hai nghiệm của hệ phƣơng trình đã cho. Bài số 3 : Tìm giá trị của tham số m để phương trình sau đây có 3 nghiệm phân biệt : - 2mx + m2 = 2 – x2 - Lời giải : Viết phƣơng trình thành : - (x – m)2 4. = 2. = = (x – m)2 (*) 2. (Chú ý : = ) Bài toán trở thành :Tìm giá trị của m để phƣơng trình (*) có 3 nghiệm phân biệt. -Viết phƣơng trình (*) thành : 2. = 2
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 (Đặt t = x – 1) Nhận thấy : Phƣơng trình ( 1 ) và phƣơng trình ( 1’) đều không thể có hai nghiệm trái dấu (Do các hệ số a , c cùng dấu ) Để phƣơng trình (*) có 3 nghiệm phâ n biệt thì : Không thể xẩy ra các trường hợp : *- Trong hai pt (1) và (1’) : một phương trình có hai nghiệm cùng dấu – cả 2 nghiệm thỏa mãn điều kiện ; Phương trình kia có hai nghiệm trái dấu – một nghiệm thỏa mãn điều kiện và một nghiệm bị loại **- Hai phương trình (1) và (1’) đều có hai nghiệm phân biệt , đồng thời chúng có một nghiệm chung Do vậy mà phƣơng trình (*) có 3 nghiệm phân biệt chỉ khi một trong 2 trƣờng hợp sau xẩy ra : -Trường hợp 1: pt (1) có hai nghiệm dƣơng phân biệt ,đồng thời pt ( 1’) có nghiệm kép t0 Điều này xẩy ra m= -Trường hợp 2: pt (1) có nghiệm kép dƣơng , đồng thời phƣơng trình (1’) có 2 nghiệm âm phân biệt Điều này xẩy ra m= Trả lời :Có hai giá trị của m để phƣơng trình đã cho có 3 nghiệm phân biệt là m1 = và m2 = (Bài kiểm tra Học Kỳ I năm học 2009-2010 Lớp 12 CB Trƣờng THPT Tân kỳ I Tỉnh Nghệ an – Thầy Đặng Hữu Trung ra đề ) Bài số 4 : Giải và biện luận theo tham số m phƣơng trình sau : (1) Lời giải :Viết phƣơng trình thành dạng mới Lời giải : (Cùng dạng với Bài số 3 ở trên).Ta có : = x2 + 2mx + m = 0 (2) 3
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 -Giải và biện luận phƣơng trình (1) Đƣa về giải và biện luận phƣơng trình (2). *Nếu ’= m2-m < 0 Tức là 0 < m < 1 Thì phƣơng trình vô nghiệm *Nếu ’= m2- m = 0 Tức là m1 = 1 m2 = 0 Thì phƣơng trình có nghiệm Kép (m = 1nghiệm kép x = - 1 ; m = 0 nghiệm kép là x = 0 ) *Nếu ’= m2- m > 0 Tức là : m < 0 hoặc m > 1 thì phƣơng trình có hai nghiệm phân biệt x1 = - m - và x1 = - m + ./. Bài số 5 : Giải phương trình : - Lời giải : Điều kiện x = Ta có = và = = . ( x2 – 1 ).Chia 2 vế cho Do đó Phƣơng trình trở thành : = = x2 – 1 đƣợc phƣơng trình: (*) 2 Điều kiện x – 1 , kết hợp điều kiện x .Ta suy ra điều kiện x . Với điều kiện x Lấy lôgarit cơ số 3 hai vế phƣơng trình (*),đƣợc phƣơng trình tƣơng đƣơng : =t (Đặt = t ) Thì có hpt: = x = 2 thỏa mãn điều kiện x . Trả lời : Phƣơng trình có nghiệm x = 2 Bài số 6 : Giải phương trình : Lời giải : Lấy lôgarit cơ số 2 hai vế ,đƣợc = (x – 2) (x – 2) =0 Bài số 7 : Giải phương trình : 2. Lời giải : Điều kiện Đặt t = 2. Thì : (*) : Thế (2) vào (1) suy ra Chia hai vế phƣơng trình cho đƣợc : Phƣơng trình này có nghiệm duy nhất t = - 1 (Nhẩm nghiệm ,Chứng minh duy nhất – Dựa vào tính chất các hàm số liên tục ).Thế t = -1 vào hpt (*) 4
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 Nhƣ vậy ta có : , k z là nghiệm của pt x= Bài số 8 : Giải phương trình : = 1 (*) Lời giải : Điều kiện - 3 và x Chú ý : = 2. =- và lại có = =- = Nên Do đó ta có : (*) - =1 = x2-7x -18 = 0 x=9 ( Loại x = -2 ) 6 = (4-x)(3+x) Trả lời : Phƣơng trình có nghiệm x = 9 . Bài số 9 : Giải phƣơng trình : - = 2. Lời giải : Điều kiện x > 0 , x 1 Phƣơng trình viết thành : 4.4t – 6t - 18.9t = 0 .với t = - = 2. .Chia hai vế phƣơng trình cho 4t rồi đặt > 0 đƣợc pt : ( Loại X = - ) Vậy = , t = -2 X= Nhƣ vậy ta có: (Thỏa mãn 0 < x =-2 x= ). Trả lời : Phƣơng trình có nghiệm x = Bài số 10 : Giaỉ hệ phƣơng trình với điều kiện theo thứ tự đó lập thành cấp số nhân (3) , Lời giải : Điều kiện x , y , z đều dƣơng và khác 1 Theo giả thiết theo thứ tự đó lập thành cấp số nhân suy ra: = =1 = 1 suy ra y = z Do đó ,ta có hệ phƣơng trình : là nghiệm hpt Bài số 11 : Với giá trị nào của tham số m thì phƣơng trình sau đây có 4 nghiệm phân biệt : = + 1 (*) 5
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 Lời giải : + 1 = (m2 - )2 + > 0 với mọi m , Do đó lấy lôgarit Ta có cơ số hai vế của (*) thì ta có :(*) = + 1) =- + 1) -Gọi t (1) (Gọi cho gọn.) Ta tìm giá trị của t để phƣơng trình = t Có 4 nghiệm phân biệt . Sau đó, tìm đƣợc m , từ đẳng thức (1) Dùng phƣơng pháp đồ thị,(chỉ cần lập bảng biến thiên,không cần vẽ đồ thị )Ta có: phƣơng = t có 4 nghiệm phân biệt khi 0 < t < 1 trình Suy ra :phƣơng trình có 4 nghiệm phân biệt khi 0 < > -1 1> > Giải hệ bpt này ta đƣợc những giá trị cần tìm của m. Bài số 12 : Giải hệ phƣơng trình Lời giải : Viết hệ phƣơng trình thành: Là nghiệm của hệ phƣơng trình đã cho Bài số 13 : Cho phƣơng trình =0 (1) -Tìm tích các nghiệm số của phƣơng trình Lời giải : Điều kiện x > 0 và x .Chuyển vế rồi lấy lôgarit cơ số 6 hai vế, đƣợc phƣơng trình tƣơng đƣơng : . Đặt t = =2+ ta có phƣơng trình bậc hai : t2 – t .( - . )–2 = 0 (2) -Với mỗi giá trị của x > 0 , x tƣơng ứng với một giá trị t = .Và ngƣợc lại,mỗi giá trị của t tƣơng ứng một giá trị x = ( Do t = ) -Phƣơng trình (2) có tối đa là 2 nghiệm .Do đó phƣơng trình (1) có tối đa 2 nghiệm. -Gọi : là hai nghiệm của phƣơng trình (1)thì ta có Mà t1 và t2 là hai nghiệm của phƣơng trình (2) nên theo Vi-et : t1 + t2 = -. Do đó : = . 6
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 Bài số 14 : Giải và biện luận theo tham số a hệ phƣơng trình: Lời giải : Viết hệ phƣơng trình thành : Theo Vi-et ta có: x , y là hai nghiệm của phƣơng trình : t2 – (1-a).t + (1-a)2 = 0 (*) Phƣơng trình (*) có nghiệm khi = -(1-a)2 0 tức là khi a = 1.Với a = 0 ta có x = y = 0. Trả lời :-Nếu a thì hệ phƣơng trình vô nghiệm . - Nếu a = 1 hệ phƣơng trình có nghiệm duy nhất Bài số 15 : Giải hệ phƣơng trình: Lời giải :Điều kiện Với điều kiện đã nêu hệ phƣơng trình tƣơng đƣơng với với hệ phƣơng trình: (Do điều kiện đã nêu: nên x-2 0) x=y Vậy hệ phƣơng trình có vô số nghiệm ,công thức tổng quá t của nghiệm Tức là : Bài số 16 : Cho hệ phƣơng trình: 1/ Giải hệ phƣơng trình khi m = 3 2/ Tìm giá trị của m sao cho hệ phƣơng trình đã cho có nghiệm duy nhất ? Hãy xác định nghiệm duy nhất đó ? Lời giải : Điều kiện xy 0 .Hệ phƣơng trình tƣơng đƣơng với hệ : 7
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 1/Với m =3 : Hệ phƣơng trình trở thành -Phƣơng trình (2) có 2 nghiệm t1 = và t2 = 3 *Với t = - Ta có : *Với t = 3 Ta có : Nhƣ vậy với m = 3 hệ phƣơng trình có hai nghiệm và 2/Xác định m để hệ phƣơng trình có nghiệm duy nhất : Hệ phƣơng trình đã cho có nghiệm duy nhất khi và chỉ khi hệ phƣơng trình : có nghiệm duy nhất . Khi và chỉ khi phƣơng trình (*) có nghiệm duy nhất .Khi và chỉ khi = 8m +25 = 0. Vậy m = - thì hệ phƣơng trình có nghiệm duy nhất thì phƣơng trình (*) có nghiệm kép t = . -Khi m = - Hệ phƣơng trình trở thành: Trả lời : m = - thì hệ phƣơng trình có nghiệm duy nhất, Bài số 17 : Cho hệ phƣơng trình Với a >0 và a .Xác định giá trị của a để hệ phƣơng trình có nghiệm duy nhất và giải hệ phƣơng trình trong trƣờng hợp đó. Lời giải : Điều kiện : Ta có : 8
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 . -Thấy :hệ phƣơng trình (1a),(2) không thỏa mãn yêu cầu có nghiệm duy nhất .Mọi cặp (x;y) thỏa mãn x+y > 0 và x2-y2 = 2 đều là nghiệm .Chẳng hạn ( là hai nghiệm của hệ phƣơng trình. ) và ( -Xét a ,(a > 0 ,a ): -Hệ phƣơng trình (1b) ,(2) : có nghiệm duy nhất là : Đây là nghiệm duy nhất của hệ phƣơng trình (với 0 < a ,a và a ) Trả lời : Với 0 < a , a Hệ phƣơng trình có nghiệm duy nhất: : và a MỘT SỐ BÀI TOÁN BĐT MŨ,LÔGARIT Bài số 18 : (TRẦN ĐỨC NGỌC RA ĐỀ VÀ GIẢI) Cho n là số tự nhiên lớn hơn 1. Hãy so sánh hai số : A= và B = Lời giải : Với mọi số tự nhiên n , ta có : n(n+2) (*) Lấy lôgarit cơ số n hai vế bđt (*) đƣợc bđt tƣơng đƣơng : 1+ 2. 1+ - (**) nên bđt (**) có vp Do đó từ (**) suy ra : Vì Vậy với mọi số tự nhiên lớn hơn 1 , ta có: 9
- TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 Lời giải 2 : Áp dụng bđt côsi ,có : + 2 (1) 2 -Với mọi số tự nhiên n(n+2) Lấy lôgarit cơ số (n+1) hai vế đƣợc bđt ta có (n+1) Cùng chiều: 2 + (2) -Từ (1) và (2) suy ra : đúng với mọi n là số tự nhiên lớn hơn 1. Bài số 19 : (TRẦN ĐỨC NGỌC RA ĐỀ VÀ GIẢI - Tổng quát hóa Bài số 18) Cho ba số thực a , b , k với k > 0 , b > a > 1. Hãy so sánh hai số : A= B= Lời giải : Vì b > a > 1 , k > 0 Nên : b(a+k) > a(b+k) Lấy lôgarit cơ số b hai vế, đƣợc bđt cùng chiều : > 1+ > + > - 1 .( Chú ý: 0 < < 1) –1 > > Trả lời :Nếu a , b , k là 3 số thực với k > 0 , b > a > 1 Thì > Bài số 20 : Chứng minh với a ,b thì : + Lời giải : Với a >1 , b >1 ta có > 0 . Do đó áp dụng bđt côsy : >0, loga+logb > 2(loga+logb) > loga+logb+ )2 4log >( > (1) Ta lại có: > 2. (2) Từ (1) và (2) suy ra điều phải chứng minh : > ***************************************************************************** ***************************************************************************** 10
![](images/graphics/blank.gif)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
MỘT SỐ KĨ NĂNG GIẢI HỆ PHƯƠNG TRÌNH
5 p |
2560 |
973
-
MỘT SỐ LƯU Ý KHI GIẢI PHƯƠNG TRÌNH CÓ CHỨA THAM SỐ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ
9 p |
1506 |
363
-
Một Số Chú Ý Khi Giải Phương Trình Có Chứa Tham Số Bằng Phương Pháp Đặt Ẩn Phụ - Thầy Phan
9 p |
823 |
331
-
Giải PT Nghiệm Nguyên
7 p |
718 |
264
-
MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH
11 p |
224 |
56
-
MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP(TT)
10 p |
319 |
47
-
LUYỆN TẬP GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH
5 p |
1004 |
34
-
Sử dụng tính đơn điệu của hàm số để giải PT, BPT-THPT Số 1 Bố Trạch
7 p |
243 |
31
-
Một số phương pháp giải PT Vô tỉ và BPT Vô tỉ - Ng.Trường Sơn
8 p |
162 |
30
-
Các bài toán PT-HPT liên quan đến tham số
32 p |
142 |
27
-
LUYỆN TẬP GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH (TT)
5 p |
826 |
23
-
GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH (TT)
5 p |
816 |
18
-
Một số bài toán giải theo PP ion và hệ pt có số mol-khối lượng không đồng nhất
7 p |
154 |
15
-
MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIC THƯỜNG GẶP(TT)
7 p |
114 |
9
-
Sáng kiến kinh nghiệm THCS: Ứng dụng hệ thức Vi-ét để giải quyết một số dạng toán về PT bậc hai một ẩn cho HS lớp 9
24 p |
76 |
5
-
SKKN: Hướng dẫn học sinh khá giỏi giải một số dạng toán điển hình về PT – BPT – HPT chứa tham số
19 p |
64 |
2
-
SKKN: Phương pháp chọn hệ trục tọa độ trong giải một số bài toán hình học không gian bằng phương pháp tọa độ hóa
25 p |
54 |
2
![](images/icons/closefanbox.gif)
![](images/icons/closefanbox.gif)
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
![](https://tailieu.vn/static/b2013az/templates/version1/default/js/fancybox2/source/ajax_loader.gif)