MỘT SỐ YÊU CẦU THƯỜNG GẶP VỚI BÀI TOÁN GIAO THOA ÁNH SÁNG ĐƠN SẮC
lượt xem 31
download
Đây là một bài tập cụ thể. Tuy vậy, các bạn học sinh hãy đọc nó một cách chậm dãi, không vội vàng. Có thể nó sẽ giúp ích được một chút gì đó cho những ai có tính kiên trì. Một khe sáng S phát ra ánh sáng đơn sắc có bước sóng 0,6m.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: MỘT SỐ YÊU CẦU THƯỜNG GẶP VỚI BÀI TOÁN GIAO THOA ÁNH SÁNG ĐƠN SẮC
- Giao thoa ánh sáng đơn sắc Nguyễn Văn Đạt, Lạng Giang 1, Bắc Giang. MỘT SỐ YÊU CẦU THƯỜNG GẶP VỚI BÀI TOÁN GIAO THOA ÁNH SÁNG ĐƠN SẮC. Thân tặng các bạn học sinh của thuvienvatly.com Đây là một bài tập cụ thể. Tuy vậy, các bạn học sinh hãy đọc nó một cách chậm dãi, không vội vàng. Có thể nó sẽ giúp ích được một chút gì đó cho những ai có tính kiên trì. Một khe sáng S phát ra ánh sáng đơn sắc có bước sóng 0,6m. Phía sau khe S một đoạn 20cm người ta đặt hai khe hẹp S1 và S2 song song với nhau và cùng song song với khe S, sao cho S cách S1 và S2 những đoạn như nhau. Khoảng cách giữa hai khe S1 và S2 là 2mm. Phía sau hai khe S1, S2, người ta đặt một màn hứng ảnh E song song và cách mặt phẳng chứa S1S2 đoạn 2m. a. Xác định khoảng vân giao thoa. λ.D Áp dụng công thức: i a Thay số: = 0,6.10-3mm, D = 2.103mm, a = 2mm. Ta có i = 0,6mm. b. Xác định vị trí của vân sáng bậc 5 và vân tối thứ 7. xS5 = 5.i = 3mm. Vân sáng bậc 5 cách vân sáng trung tâm 3mm. xT7 = 6,5i = 3,9mm. Vân tối thứ 7 cách vân sáng trung tâm 3,9mm. c. Xác định khoảng cách giữa vân sáng bậc 3 và vân tối thứ 8 ở cùng một bên vân sáng trung tâm. + Vân sáng bậc 3 cách vân trung tâm 3i. + Vân tối thứ 8 cách vân trung tâm 7,5i. Do hai vân này ở cùng một bên vân trung tâm, nên khoảng cách giữa chúng là: 7,5i – 3i = 4,5i = 2,7mm. d. Xác định khoảng cách giữa vân tối thứ 5 và vân sáng bậc 4 ở hai bên vân sáng trung tâm. Do hai vân này ở hai bên vân trung tâm, nên khoảng cách giữa chúng là 5i + 4i = 9i = 5,4mm. e. Xác định số vân sáng, số vân tối trên đoạn OM = 2 mm (không tính vân sáng trung tâm) OM 2 Lập tỉ số: n 3,3 ( Việc này giống như ta xuất phát từ ngay sát sau điểm O, đi về phía M và đếm i 0, 6 xem có bao nhiêu khoảng vân i ở trên đoạn OM). Kết quả đếm được trên đoạn OM có 3 khoảng vân chẵn và dư 1/3 khoảng vân nữa. Điểm cuối của mỗi khoảng vân là một vân sáng. Vây trên đoạn OM có 3 vân sáng. Ở chính giữa mỗi khoảng vân là một vân tối. Vậy trên đoạn OM có 3 vân tối.
- Giao thoa ánh sáng đơn sắc Nguyễn Văn Đạt, Lạng Giang 1, Bắc Giang. Ta lưu ý rằng: Nếu trong phép tính trên ta tính được n = 3,6 thì có nghĩa là điểm M đã được đẩy sang bên phải và vượt qua một vân tối nữa. Vậy trong trường hợp n = 3,6 thì số vân tối là 4. Vậy để tính số vân sáng, số vân tối trên đoạn OM thì ta làm như sau: OM + Tính n i + Số vân sáng trên đoạn OM (không kể vân trung tâm) là NS = [n] với [n] là phần nguyên của n. + Số vân tối trên đoạn OM có hai khả năng: NT = [n] nếu phần dư của n nhỏ hơn 0,5. NT = [n] + 1 nếu phần dư của n lớn hơn hoặc bằng 0,5. f. Xác định số vân sáng, số vân tối trên đoạn MN (M và N ở cùng một bên vân trung tâm, OM = 8,2mm và ON = 3,15mm) Áp dụng cách làm ở phần e. Tính được: + Trên đoạn OM có: 13 vân sáng, 14 vân tối. + Trên đoạn ON có: 5 vân sáng, 5 vân tối. Vậy tính được trên đoạn MN có: 13 – 5 = 8 vân sáng. 14 – 5 = 9 vân tối. g. Xác định số vân sáng, số vân tối trên đoạn CD. Biết CO = 3,45mm, DO = 4,35mm, C và D nằm ở hai phía của vân trung tâm. Áp dụng cách làm ở phần e. Tính được: + Trên đoạn CO có: 5 vân sáng, 6 vân tối. + Trên đoạn OD có: 7 vân sáng, 7 vân tối. Vậy trên đoạn CD có: 5 + 1 + 7 = 13 vân sáng ( +1 là do có cả vân sáng trung tâm) 6 + 7 = 13 vân tối. h. Xác định số vân sáng, số vân tối trên vùng giao thoa. Biết bề rộng của vùng giao thoa là 2,6cm. Ta lưu ý, Do tính đối xứng, nên vùng giao thoa PQ có điểm đầu và điểm cuối đối xứng với nhau qua O (Xem hình ở đề bài) Vậy PO = OQ = 1,3cm = 13mm. Áp dụng cách làm như ở phần e. Tính được: + Trên đoạn PO có: 21 vân sáng, 22 vân tối. + Trên đoạn QO có: 21 vân sáng, 22 vân tối. Vậy trên vùng giao thoa PQ có: 21.2 + 1 = 43 vân sáng. ( tính cả vân trung tâm nên phải +1) 22.2 = 44 vân tối.
- Giao thoa ánh sáng đơn sắc Nguyễn Văn Đạt, Lạng Giang 1, Bắc Giang. Để tính số vân sáng, số vân tối trên vùng giao thoa có thể thực hiện theo các bước sau: PQ OP PQ 2 + Tính : n i i 2i + Số vân sáng trên vùng giao thoa: NS = 2[n] + 1. Với [n] là phần nguyên của n. + Số vân tối trên vùng giao thoa có hai khả năng: NT = 2[n] nếu phần dư của n nhỏ hơn 0,5. NT = 2[n] + 2 nếu phần dư của n lớn hơn hoặc bằng 0,5. ( Vì mỗi bên thêm một vân tối nữa) i. Hệ vân sẽ dịch chuyển thế nào nếu ta đổ đầy vào vùng không gian làm thí nghiệm một chất lỏng trong suốt có chiết suất n = 1,5. Khi đổ chất lỏng vào không gian làm thí nghiệm, tính đối xứng ở hai bên của đường SO vẫn được duy trì, do vậy, vân trung tâm vẫn ở tại O. Tuy nhiên, tốc độ của ánh sáng khi này là v = c/n ( giảm hơn trước n lần, với n = 1,5 là chiết suất của chất lỏng) nên bước sóng của ánh sáng cũng giảm đi n lần, và do đó khoảng vân giao thoa giảm đi so với trước n lần. Vậy, các vân sáng ở hai bên vân trung tâm sẽ tiế lại gần O hơn trước. Đề bài có thể đặt ra các câu hỏi, ví dụ như: Khi đổ chất lỏng vào, vân sáng bậc 3 sẽ trùng vói vị trí của vân sáng nào khi chưa đổ chất lỏng?..... j. Quay lại với hình vẽ đầu tiên của đề. Cho nguồn sáng S di chuyển thẳng đứng đi xuống 1mm. Hỏi hệ vân dịch chuyển thế nào?
- Giao thoa ánh sáng đơn sắc Nguyễn Văn Đạt, Lạng Giang 1, Bắc Giang. Trong trường hợp này, các đại lượng a, D và không thay đổi gì, nên khoảng vân i vẫn có độ lớn như cũ. Tuy nhiên, vân trung tâm đã bị dịch đi đến O’, nơi mà ánh sáng từ S, đi theo hai đường nhau, nhưng đến đó vào cùng một thời điểm! Do tốc độ của ánh sáng khi đi theo hai đường là như nhau, thời gian truyền sáng là như nhau, nên tổng các quãng đường truyền cũng phải như nhau. Vậy ta có: d1 d1 d 2 d '2 d 2 d1 d1 d '2 ' ' ax d 2 d1 Trong SGK, ta đã có công thức: D ax' d1 d 2 ' ' Chứng minh tương tự ta có: (lưu ý, công thức này chỉ dùng được khi x’
CÓ THỂ BẠN MUỐN DOWNLOAD
-
SKKN: Một số kinh nghiệm giúp học sinh khắc phục những sai lầm thường gặp khi giải toán lớp 5- phần Số học
23 p | 634 | 100
-
KIỂM TRA 1 TIẾT GIẢI TÍCH 12 NÂNG CAO Môn:Giải tích (Thời gian 45 phút) Chương 1 : ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ HÀM SỐ
2 p | 571 | 73
-
Giáo án lớp 7 môn Âm Nhạc: ÂM NHẠC THƯỜNG THỨC:Một số thể loại bài hát
5 p | 363 | 28
-
Sáng kiến kinh nghiệm: Một số biện pháp nâng cao hiệu quả công tác bồi dưỡng thường xuyên giáo viên
23 p | 60 | 8
-
Sáng kiến kinh nghiệm Mầm non: Một số biện pháp rèn nề nếp trong sinh hoạt hàng ngày của trẻ 24 - 36 tháng tuổi Trường mầm non Thanh Kỳ
21 p | 26 | 7
-
ĐỂ KHẢO SÁT VÀ VẼ HÀM SỐ
3 p | 100 | 6
-
Sáng kiến kinh nghiệm THPT: Một số giải pháp thúc đẩy tuyển sinh hệ vừa làm vừa học, Từ xa tại Trung tâm GDTX-HN Nghệ An trong giai đoạn hiện nay
28 p | 30 | 6
-
SKKN: Kinh nghiệm dạy một số dạng toán về tỉ lệ thức và dãy tỉ số bằng nhau trong đại số 7
37 p | 76 | 6
-
Một số kỹ thuật đánh giá thường xuyên
10 p | 98 | 5
-
Sáng kiến kinh nghiệm THCS: Một số giải pháp rèn kĩ năng làm câu nghị luận xã hội trong bài thi vào lớp 10 THPT môn Ngữ văn
32 p | 6 | 4
-
Sáng kiến kinh nghiệm THPT: Một số biện pháp quản lí hoạt động giáo dục hướng nghiệp ở trường trung học phổ thông đáp ứng yêu cầu đổi mới giáo dục
76 p | 8 | 3
-
Sáng kiến kinh nghiệm THPT: Một số giải pháp nhằm nâng cao chất lượng hoạt động công đoàn tại trường THPT Nghi Lộc 4, tỉnh Nghệ An
58 p | 8 | 3
-
Sáng kiến kinh nghiệm THPT: Hướng dẫn học sinh một số dạng câu hỏi trong ôn thi THPT Quốc Gia (THPTQG) phần Lịch sử thế giới (1945- 2000)
37 p | 37 | 3
-
Sáng kiến kinh nghiệm THPT: Một số biện pháp đổi mới hoạt động đánh giá thường xuyên học sinh trong dạy học môn hoá học ở trường THPT nhằm phát triển phẩm chất và năng lực học sinh
45 p | 24 | 2
-
Giải bài tập Lũy thừa của một số hữu tỉ SGK Đại số 7 tập 1
5 p | 115 | 2
-
Sáng kiến kinh nghiệm THPT: Những giải pháp cần thiết của giáo viên chủ nhiệm nhằm giáo dục và rèn luyện kỹ năng thay đổi suy nghĩ và cảm xúc tiêu cực ở học sinh THPT thông qua một số hoạt động trải nghiệm
76 p | 6 | 2
-
Tài liệu Bồi dưỡng thường xuyên giáo viên mầm non: Modul 30 - Làm đồ dùng dạy học, đồ chơi tự tạo
46 p | 2 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn