intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Sáng kiến kinh nghiệm THPT: Xây dựng một số bài toán thực tế, liên môn tạo hứng thú học Toán cho học sinh lớp 10

Chia sẻ: Chubongungoc | Ngày: | Loại File: PDF | Số trang:60

48
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục tiêu nghiên cứu của sáng kiến kinh nghiệm là từ những bài toán cơ bản, đơn thuần là toán, xây dựng thành bài toán thực tế, liên môn. Xây dựng cách giải bài tập cho mỗi ví dụ tương ứng đưa ra. Tạo hứng thú cho học sinh trong việc học toán, năng cao sự yêu thích môn học, từ đó dần nâng cao kết quả học tập.

Chủ đề:
Lưu

Nội dung Text: Sáng kiến kinh nghiệm THPT: Xây dựng một số bài toán thực tế, liên môn tạo hứng thú học Toán cho học sinh lớp 10

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO NINH BÌNH TRƯỜNG TRUNG HỌC PHỔ THÔNG KIM SƠN B ------o0o----- SÁNG KIẾN KINH NGHIỆM PHƯƠNG PHÁP DẠY HỌC XÂY DỰNG MỘT SỐ BÀI TOÁN THỰC TẾ, LIÊN MÔN TẠO HỨNG THÚ HỌC TOÁN CHO HỌC SINH LỚP 10 Nhóm giáo viên: Phan Trác Lợi Nguyễn Văn Thành Ngô Thị Yến Tổ Toán: Trường THPT Kim Sơn B Năm học 2016 - 2017 1
  2. LỜI CAM ĐOAN Chúng tôi xin cam đoan: Sáng kiến này là công trình nghiên cứu thực sự của cá nhân chúng tôi, được thực hiện trên cơ sở nghiên cứu lý thuyết, kiến thức kinh nghiệm và nghiên cứu khảo sát tình hình thực tiễn dạy và học tại trường THPT Kim Sơn B - Ninh Bình. Các số liệu và những kết quả trong sáng kiến là trung thực, xuất phát từ thực tiễn và kinh nghiệm của bản thân tác giả. Một lần nữa, chúng tôi xin khẳng định về sự trung thực của lời cam kết trên. Kim Sơn, ngày 12 tháng 05 năm 2017. Nhóm tác giả Phan Trác Lợi Nguyễn Văn Thành Ngô Thị Yến 2
  3. LỜI CẢM ƠN Chúng tôi xin trân trọng cảm ơn lãnh đạo Sở GD&ĐT Ninh Bình cùng Ban giám hiệu trường THPT Kim Sơn B đã tạo điều kiện thuận lợi cho chúng tôi trong quá trình công tác và nghiên cứu. Chúng tôi xin chân thành cảm ơn các đồng nghiệp trường THPT Kim Sơn B đã giúp đỡ chúng tôi hoàn thành sáng kiến của mình. Dù đã có nhiều cố gắng, song do hạn hẹp về thời gian, điều kiện nghiên cứu và trình độ của bản thân, sáng kiến không tránh khỏi những thiếu sót. Chúng tôi rất mong nhận được sự đóng góp ý kiến của các thầy cô và các bạn để sáng kiến này sẽ trở thành tài liệu tham khảo hữu ích cho các bạn học sinh và các thầy cô giáo đang giảng dạy trong các trường trung học phổ thông. Kim Sơn, ngày 12 tháng 05 năm 2017. Nhóm tác giả Phan Trác Lợi Nguyễn Văn Thành Ngô Thị Yến 3
  4. CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc ĐƠN YÊU CẦU CÔNG NHẬN SÁNG KIẾN Kính gửi : Hội đồng sáng kiến: Sở GDĐT Ninh Bình. Chúng tôi ghi tên dưới đây: 1 Họ và tên: Phan Trác Lợi Chức vụ: Phó Hiệu trưởng Trình độ chuyên môn: Đại học Đơn vị công tác: Trường THPT Kim Sơn B – Ninh Bình Hộp thư điện tử: Phanloiksb@gmail.com ĐT: 0982.310.731 Phần trăm đóng góp : 30% 2 Họ và tên: Nguyễn Văn Thành Chức vụ: Tổ phó chuyên môn Trình độ chuyên môn: Đại học Đơn vị công tác: Trường THPT Kim Sơn B – Ninh Bình Hộp thư điện tử: Nguyenvanthanhksb@gmail.com ĐT: 0916.394.195 Phần trăm đóng góp : 30% 3 Họ và tên: Ngô Thị Yến Chức vụ: Giáo viên Trình độ chuyên môn: Đại học Đơn vị công tác: Trường THPT Kim Sơn B – Ninh Bình Hộp thư điện tử: Ngoyenksb@gmail.com ĐT: 01674.711.716 Phần trăm đóng góp : 40% 4
  5. 1. Tên sáng kiến, lĩnh vực áp dụng Nhóm tác giả đề nghị xét công nhận sáng kiến : “Xây dựng một số bài toán thực tế, liên môn tạo hứng thú học toán cho học sinh lớp 10” Lĩnh vực áp dụng: Phương pháp dạy học 2. Nội dung a. Giải pháp cũ thường làm: +, Đưa ra các ví dụ, bài tập đơn thuần là Toán: VD1: Bài toán về hàm Parabol a)Lập phương trình Parabol biết parabol đi qua A 0;1, 8, B 10;1, 8,C 2, 5; 3, 6 b) Với Parabol vừa tìm được, hãy xác định điểm cao nhất của parabol. 1 1 4 VD2: Chứng minh rằng x, y  0 ta có:   x y xy 4 VD3: Chứng minh rằng x  0 ta có:  2x2  6 x VD4: Tìm giá trí lớn nhất của hàm số: f  x   x 12  x  , với 0  x  12 2   540 ; AB  10. Tính độ dài cạnh VD5: Cho tam giác ABC vuông tại B có: A BC +, Ưu điểm: Tăng cường tư duy logic, khả năng ghi nhớ công thức. +, Nhược điểm: Học sinh học khô khan, thường chung một câu nhận xét: “Học toán để làm gì khi không còn ngồi trên ghế nhà trường thì chỉ sử dụng bốn phép toán cộng trừ nhân chia” Khi gặp bài toán yêu cầu vận dụng trong thực tế thường không giải quyết được. Chưa tạo được hướng thú, sự yêu thích môn học. Học sinh chưa thấy được vai trò của Toán học trong việc hình thành và phát triển tư duy. Chưa thấy ý nghĩa của Toán học với các môn học khác. 5
  6. +, Cần khắc phục: Tăng cường bài tập có nội dung thực tế, liên môn vào bài tập. b. Giải pháp mới cải tiến: +, Từ những bài toán cơ bản, đơn thuần là toán, xây dựng thành bài toán thực tế, liên môn. +, Xây dựng cách giải bài tập cho mỗi ví dụ tương ứng đưa ra. +, Tạo hứng thú cho học sinh trong việc học toán, năng cao sự yêu thích môn học, từ đó dần nâng cao kết quả học tập. VD1: Bài toán về hàm Parabol a)Lập phương trình Parabol biết parabol đi qua A 0;1, 8, B 10;1, 8,C 2, 5; 3, 6 b) Với Parabol vừa tìm được, hãy xác định điểm cao nhất của parabol. Bài toán thực tế tương ứng: Mỗi buổi chiều thứ năm hàng tuần, Nam và Thượng tham gia Câu lạc bộ Bóng rổ trường THPT Kim Sơn B để thư giãn và rèn luyện thân thể. Trong trận đấu kỷ niệm ngày thành lập Đoàn, Nam thực hiện một đường chuyền bóng dài cho Thượng, biết rằng quả bóng di chuyển theo một đường parabol như hình vẽ bên dưới. Giả sử rằng trục Ox trùng với mặt đất, quả bóng rời tay Nam ở vị trí A và Thượng bắt được quả bóng ở vị trí B, khi quả bóng di chuyển từ Nam đến Thượng thì đi qua điểm C . Biết rằng OA  BH  1, 8 m, OK  2, 5 m ,OH  10 m . Xác định khoảng cách lớn nhất của quả bóng so với mặt đất khi Nam chuyền cho Thượng. y C Quỹ đạo parabol A 3, 6m OH  10 m B 1,8m Mặt đất O K H x 6
  7. 1 1 4 VD2: Chứng minh rằng x, y  0 ta có:   x y xy Bài toán thực tế tương ứng: Trên cùng quãng đường có hai người di chuyển như sau: Người thứ nhất đi nửa đoạn đường đầu với vận tốc x km/h, nửa đoạn đường sau xy với vận tốc y km/h. Người thứ hai đi trên cả đoạn đường đều với vận tốc 2 km/h. Ai đi nhanh hơn? Vì sao? 4 VD3: Chứng minh rằng x  0 ta có:  2x 2  6 x Bài toán thực tế tương ứng: Tập đoàn Vinamilk cần thiết kế các hộp dạng hình hộp chữ nhật đáy là hình vuông cạnh x, chiều cao h có thể tích là 1dm3 .Hãy thiết kế các kích thước của hộp để lượng vật liệu sử dụng ít nhất? 7
  8. VD4: Tìm giá trị lớn nhất của hàm số: f  x  x 12  x , với 0  x  12 2 Bài toán thực tế tương ứng: Cho một tấm nhôm hình vuông cạnh 12 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gập tấm nhôm lại như hình vẽ dưới đây để được một cái hộp không nắp. Tìm x để hộp nhận được có thể tích lớn nhất.   540 ; AB  10. Tính độ dài cạnh VD5: Cho tam giác ABC vuông tại B có: A BC Bài toán thực tế tương ứng: Cần đo chiều cao của cây trong sân trường: Biết góc   540 và khoảng cách từ gốc cây tới điểm A là 10m. 3. Hiệu quả kinh tế, xã hội dự kiến đạt được - Hiệu quả kinh tế: +, Từ bài toán thực tiễn, qua phương pháp toán tìm được phương án tối ưu, từ đó làm lợi nhiều cho kinh tế. +, Giáo viên có tài liệu tham khảo, mất ít thời gian tìm tài liệu. 8
  9. - Hiệu quả xã hội: +, Với học sinh có hứng thú trong môn học, dần dần ngày càng yêu thích môn học, từ đó học sinh dành nhiều thời gian cho học tập, sẽ hạn chế chơi điện tử, hay vào những trò chơi không lành mạnh. +, Với giáo viên: Dạy Toán dễ dàng hơn, không lúng túng trước những bài toán thực tế. +, Áp dụng trong bài toán về kinh tế. 4. Điều kiện và khả năng áp dụng - Điều kiện áp dụng: Dùng cho giáo viên giảng dạy môn Toán khối 10. - Khả năng áp dụng: Đa số đều áp dụng được Chúng tôi xin cam đoan mọi thông tin nêu trong đơn là trung thực, đúng sự thật và hoàn toàn chịu trách nhiệm trước pháp luật. Kim Sơn, ngày 12 tháng 05 năm 2017 XÁC NHẬN CỦA LÃNH ĐẠO Người nộp đơn ĐƠN VỊ CƠ SỞ Phan Trác Lợi Nguyễn Văn Thành Ngô Thị Yến 9
  10. MỞ ĐẦU 1. Lí do chọn sáng kiến Dạy học toán ở trường phổ thông theo định hướng gắn toán học với thực tiễn, thực hiện nguyên tắc liên môn trong dạy học và tích cực hoá hoạt động học tập của học sinh là xu hướng đổi mới dạy học hiện nay. Mục đích của dạy học toán nói chung, với lưu ý rằng biết mô hình hoá toán học các tình huống thực tiễn được xem là yếu tố cơ bản của năng lực hiểu biết toán – năng lực đã và đang được chương trình đánh giá quốc tế PISA khảo sát ở nhiều nước trên thế giới nhằm mục đích cải thiện chất lượng đào tạo. Hiện nay, định hướng đổi mới chương trình giáo dục phổ thông là chuyển từ chương trình định hướng nội dung dạy học sang chương trình định hướng năng lực, định hướng chuẩn đầu ra về phẩm chất và năng lực của chương trình giáo dục cấp THPT. Cụ thể, các quan điểm dạy học từ trước đến nay là tập trung vào “định hướng nội dung”, hay “định hướng đầu vào”, nội dung của các môn học dựa vào khoa học chuyên ngành tương ứng, chú trọng vào trang bị cho người học hệ thống tri thức khoa học khách quan về nhiều lĩnh vực khác nhau. Quan điểm đổi mới dạy học trong tương lai (cụ thể là quan điểm của chương trình, nội dung, sách giáo khoa mới từ năm 2018) là “định hướng năng lực”, hay “định hướng kết quả đầu ra”. Với quan điểm này, chương trình dạy học không quy định chi tiết nội dung dạy học mà quy định những kết quả đầu ra mong muốn của giáo dục. Từ đó tạo điều kiện quản lý chất lượng theo kết quả đầu ra đã quy định, nhấn mạnh năng lực vận dụng của học sinh. Tóm lại, quan điểm giáo dục mới không chú trọng vào những nội dung học sinh “được học”, mà tập trung vào những gì học sinh “học được”. Quan điểm này không nhấn mạnh vào những nội dung khoa học bộ môn, mà chú trọng vào việc học sinh có năng lực làm được gì trong thực tiễn từ những nội dung học được. Nội dung chương trình toán lớp 10 là nội dung quan trọng vì nó có vị trí chuyển tiếp và hoàn thiện từ THCS lên THPT và có nhiều cơ hội để đưa nội dung thực tiễn vào dạy học. 10
  11. Tuy nhiên trong thực tiễn dạy học ở trường THPT nhìn chung mới chỉ tập chung rèn luyện cho học sinh vận dụng trí thức học toán ở kỹ năng vận dụng tư duy tri thức trong nội bộ môn toán là chủ yếu còn kĩ năng vận dụng tri thức trong toán học vào nhiều môn khác vào đời sống thực tiễn chưa được chú ý đúng mức và thường xuyên. Những bài toán có nội dung liên hệ trực tiếp với đời sống lao động sản xuất, liên quan tới môn học khác còn được trình bày một cách hạn chế trong chương trình toán phổ thông. Như vậy, trong giảng dạy toán nếu muốn tăng cường rèn luyện khả năng và ý thức ứng dụng, toán học cho học sinh nhất thiết phải chú ý mở rộng phạm vi ứng dụng, trong đó ứng dụng vào thực tiễn cần được đặc biệt chú ý thường xuyên, qua đó góp phần tăng cường thực hành gắn với thực tiễn làm cho toán học không trừu tượng khô khan và nhàm chán. Học sinh biết vận dụng kiến thức đã học để giải quyết trực tiếp một số vấn đề trong cuộc sống và ngược lại. Qua đó càng làm thêm sự nổi bật nguyên lý: “Học đi đôi với hành, giáo dục kết hợp với lao động sản xuất, lý luận gắn với thực tiễn, giáo dục nhà trường kết hợp với giáo dục gia đình và giáo dục xã hội”. Chính vì vậy tôi chọn đề tài: “ Xây dựng một số bài toán thực tế, liên môn tạo hứng thú học toán cho học sinh lớp 10” để làm đề tài nghiên cứu nhằm nâng cao chất lượng dạy và học trong nhà trường phổ thông. Đồng thời, góp phần bồi dưỡng năng lực tự học cho học sinh và đổi mới phương pháp dạy học hiện nay ở trường THPT. 2. Mục đích của sáng kiến Làm sáng tỏ cơ sở lý luận và thực tiễn tăng cường vận dụng các bài toán có nội dung thực tiễn vào dạy học môn toán 10 -THPT. Đưa một số nội dung toán học thể hiện về mối liên hệ giữa toán học với các môn học khác và thực tiễn được đưa vào giảng dạy môn Toán lớp 10 phần Đại số ở THPT. Qua đó thấy được ý nghĩa: “Học đi đôi với hành”. Biết vận dụng toán vào giải các bài tập thực tế và các bài tập môn học khác. 11
  12. Góp phần nâng cao tính thực tế, chất lượng dạy học môn toán ở trường THPT. Làm tài liệu tham khảo cho giáo viên trong khi giảng dạy môn Toán lớp 10 ở trường phổ thông . 3. Nhiệm vụ nghiên cứu Nghiên cứu về tính thực tiễn, tính ứng dụng và tính liên môn của toán học. Tìm hiểu thực tiễn dạy học môn toán 10 và vấn đề tăng cường vận dụng các bài toán có nội dung thực tiễn hoặc các bài tập môn học khác vào giảng dạy. Đề xuất biện pháp thiết kế, tổ chức dạy học, tiến hành trong giờ học đối với môn toán ở trường THPT,tính khả thi và hiệu quả của đề tài. 4. Phương pháp nghiên cứu a) Nghiên cứu lý luận: Tìm hiểu về các tài liệu đề cập đến Tìm hiểu về các tài liệu đề cập đến bài toán thực tế tương ứng với chương trình lớp 10; đặc biệt là các đề thi tốt nghiệp THPT, đề thi tuyển sinh Đại học, Cao đẳng và đề thi THPT Quốc gia những năm gần đây. b) Nghiên cứu thực tiễn: Tìm hiểu về cách giảng dạy phần đại số 10 mà giáo viên thường làm. Phân tích và làm rõ ưu điểm, nhược điểm của từng cách dạy để từ đó xây dựng tài liệu một cách hợp lý . c) Thực nghiệm sư phạm: Tiến hành thực nghiệm nhằm đánh giá tính khả thi, tính hiệu quả và tính phổ dụng của sáng kiến. Đồng thời, cũng nhằm hoàn thiện về mặt nội dung và lý luận trong sáng kiến. 5. Những điểm mới và ý nghĩa thực tiễn của sáng kiến a) Về mặt lý luận: Phân dạng một cách hợp lý một số bài toán thực tế, liên môn trong một số chương theo SGK đại số 10. Trong mỗi chương đều có VD và lời giải cụ thể từng VD. Đã có những bài toán liên quan tới thi THPT Quốc gia, tạo hứng thú, động lực cho học sinh tiếp cận dần với kì thi cuối cấp. 12
  13. Đề xuất phương án sử dụng tài liệu nhằm bồi dưỡng năng lực tự học cho học sinh. b) Về mặt thực tiễn: Các dạng toán mà sáng kiến đã xây dựng bám sát chuẩn kiến thức, kỹ năng và góp phần nâng cao chất lượng dạy và học môn toán phần Đại số lớp 10. Rèn luyện tính cẩn thận, sự linh hoạt, tính tích cực, chủ động và sáng tạo trong giải toán nói riêng và trong các hoạt động nói chung. Đặc biệt là góp phần bồi dưỡng năng lực tự học cho học sinh. Sáng kiến đã lấy ví dụ theo một số chương trong Đại số lớp 10 mà tác giả đã tiến hành trong năm học 2016 - 2017, những nội dung quan trọng, thường xuất hiện trong đề thi thì bài tập có nhiều hơn. Nội dung sáng kiến này là tài liệu tham khảo bổ ích cho giáo viên và học sinh. 6. Cấu trúc của sáng kiến Sáng kiến gồm 46 trang, ngoài phần mở đầu và kết luận, ở phần nội dung của sáng kiến gồm 2 chương Chương 1: Cơ sở lý luận và thực tiễn. Chương 2: Xây dựng một số bài toán thực tế, liên môn tạo hứng thú học toán cho học sinh lớp 10 13
  14. I. CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN 1.1. Cơ sở lý luận Luật Giáo dục năm 2005 có ghi rõ: “Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác, chủ động, sáng tạo của học sinh; phù hợp với đặc điểm của từng lớp học, môn học; bồi dưỡng phương pháp tự học, khả năng làm việc theo nhóm; rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn; tác động đến tình cảm, đem lại niềm vui, hứng thú học tập cho học sinh”. Nghị quyết Hội nghị Trung ương 8 khóa XI về đổi mới căn bản, toàn diện giáo dục và đào tạo ghi rõ về mục tiêu của giáo dục phổ thông: “Đối với giáo dục phổ thông, tập trung phát triển trí tuệ, thể chất, hình thành phẩm chất, năng lực công dân, phát hiện và bồi dưỡng năng khiếu, định hướng nghề nghiệp cho học sinh. Nâng cao chất lượng giáo dục toàn diện, chú trọng giáo dục lý tưởng, truyền thống, đạo đức, lối sống, ngoại ngữ, tin học, năng lực và kỹ năng thực hành, vận dụng kiến thức vào thực tiễn. Phát triển khả năng sáng tạo, tự học, khuyến khích học tập suốt đời. ...”. Mục đích của dạy học toán, là phải mang lại cho học sinh những kiến thức phổ thông, những kỹ năng cơ bản của người lao động, qua đó rèn luyện tư duy logic, phát triển năng lực sáng tạo, góp phần hình thành thế giới quan và nhân sinh quan đúng đắn cho các em. Quan điểm này đã dẫn đến khái niệm hiểu biết toán. Theo PISA, “hiểu biết toán là năng lực của một cá nhân, cho phép xác định và hiểu vai trò của toán học trong cuộc sống, đưa ra những phán xét có cơ sở, sử dụng gắn kết với toán học theo những cách khác nhau nhằm đáp ứng nhu cầu cuộc sống của cá nhân đó với tư cách là một công dân có tinh thần xây dựng, biết quan tâm và biết phản ánh” Như vậy, liên hệ với mục tiêu của dạy học toán, ta thấy quan điểm này hoàn toàn phù hợp với một thực tế là đại đa số học sinh mà chúng ta đào tạo sau này sẽ là người sử dụng toán chứ không phải là người nghiên cứu toán. Do đó, 14
  15. xu hướng đổi mới hiện nay là không nặng về mức độ nắm các nội dung có mặt trong chương trình giảng dạy, mà chú trọng vào khả năng sử dụng các kiến thức đã học vào thực tiễn và năng lực xử lý các tình huống mà họ có thể đối mặt trong cuộc sống sau khi rời ghế nhà trường. 1.2. Cơ sở thực tiễn 1.2.1. Thực trạng dạy học của Giáo viên Một mặt do cơ sở vật chất còn nhiều khó khăn, mặt khác do hạn hẹp về thời gian đứng lớp ít lại phải hoàn thành chương trình theo đúng quy định cùng với trình độ nhận thức của học sinh còn yếu nên giáo viên chỉ dạy những nội dung trong chương trình thậm chí thiết kế như sách giáo khoa, phần mở rộng ít khi được giáo viên cung cấp thêm. Từ đó mà những nội dung trong toán học có liên quan tới thực tiễn hay liên môn không được quan tâm và giới thiệu cẩn thận. Bên cạnh những nguyên nhân khách quan đó thì còn những nguyên nhân chủ quan như: Bản thân nhiều giáo viên chưa giải tốt được những bài toán thực tế, liên môn, không nắm rõ được bẩn chất vấn đề , nên thông thường chỉ quan tâm tới những bài toán cơ bản mà SGK, hay sách bài tập đưa ra. Nhiều bài toán thực tế có thể đưa vào nội dung học như bài toán về hàm bậc hai, bất đẳng thức…. Tuy nhiên giáo viên lại thường không khai thác, vô hình làm mất đi tính hấp dẫn của Toán với học sinh. Hiện nay đứng trước yêu cầu đổi mới phương pháp dạy học và đảm bảo sự phát triển toàn diện của học sinh, thì với dạy học toán việc phát triển tư duy, nâng cao năng lực giải quyết bài toán thực tế cho học sinh cần được đặc biệt quan tâm. 1.2.2. Thực trạng học của học sinh Qua thực trạng việc phát triển tư duy, nâng cao năng lực giải quyết bài toán thực tế trong môn toán ở trường phổ thông về phía giáo viên đã cho kết quả đa số học sinh lớp 10 chưa tiếp cận được. Đến lớp 12 khi các em ôn tập thi THPT Quốc gia gặp nhiều bài tập có tính thực tiễn thì giải quyết không tốt, thậm chí còn có học sinh không làm được. Chỉ có một lượng ít học sinh khá, giỏi mới xử lý được dạng toán này. 15
  16. Nhìn chung, có hai con đường hình thành tư duy, nâng cao năng lực giải quyết bài toán thực tế trong môn toán ở trường phổ thông ở học sinh: + Giáo viên chủ động bồi dưỡng, rèn luyện thông qua bài dạy. + Học sinh thông qua quá trình tự học, tự bồi dưỡng . Qua quan sát điều tra thực trạng dạy học ở trường phổ thông thì thấy cả hai khâu này còn chưa được chú trọng đúng mức mà phần nhiều ở dạng tự phát, tùy hứng của thầy và trò. 1.2.3. Phương pháp dạy học gắn liền với thực tiễn: Trong thực tiễn dạy học, bài tập được sử dụng với những ý khác nhau về phương pháp dạy học: Đảm bảo được trình độ xuất phát, gợi động cơ, làm việc với nội dung mới, củng cố hoặc kiểm tra…Kết quả của lời giải phải đáp ứng do nhu cầu thực tế đặt ra. Ta đã biết rằng không có một thuật giải tổng quát để giải mọi bài toán, ngay cả đối với những lớp bài toán riêng biệt cũng có trường hợp có, trường hợp không có thuật giải. Bài toán thực tiễn trong cuộc sống là rất đa dạng, phong phú xuất phát từ những nhu cầu khác nhau trong lao động sản xuất của con người. Do vậy càng không thể có một thuật giải chung để giải quyết các bài toán thực tiễn. Tuy nhiên, trang bị những hướng dẫn chung, gợi ý các suy nghĩ tìm tòi, phát hiện cách giải bài toán lại là có thể và cần thiết. Dựa trên những tư tưởng tổng quát cùng với những gợi ý chi tiết của Polya về cách thức giải bài toán đã được kiểm nghiệm trong thực tiễn dạy học, kết hợp với những đặc thù riêng của bài toán thực tiễn, có thể nêu lên phương pháp chung để giải bài toán có nội dung thực tiễn gồm 4 bước như sau: Bước 1: Xây dựng mô hình trung gian của vấn đề, tức là xác định các yếu tố có ý nghĩa quan trọng nhất trong hệ thống và xác lập các quy luật mà chúng ta phải tuân theo. Bước 2: Xây dựng mô hình toán học cho vấn đề đang xét, tức là diễn tả lại dưới dạng ngôn ngữ toán học cho mô hình trung gian. Lưu ý là ứng với vấn đề đang xem xét có thể có nhiều mô hình toán học khác nhau, tuỳ theo 16
  17. chỗ các yếu tố nào của hệ thống và mối liên hệ nào giữa chúng được xem là quan trọng. Bước 3: Sử dụng các công cụ toán học để khảo sát và giải quyết bài toán hình thành ở bước 2. Căn cứ vào mô hình đã xây dựng cần phải chọn hoặc xây dựng phương pháp giải cho phù hợp. Bước 4: Phân tích và kiểm định lại các kết quả thu được trong bước 3. Trong phần này phải xác định mức độ phù hợp của mô hình và kết quả tính toán với vấn đề thực tế hoặc áp dụng phương pháp phân tích chuyên gia. Tóm lược qua sơ đồ: B3. Giải B4. Giải Vấn đề B1. Mô hình B2. Mô hình thích kết thực tiễn trung gian toán học toán trong quả, kết luận mô hình toán Giảng dạy toán hiện nay tại Việt Nam đang tập trung ở bước 3, bởi vì: - Chương trình, nội dung, sách giáo khoa chủ yếu trình bày bước 3; - Các đề thi cũng tập trung nội dung ở bước 3; - Giáo viên giỏi ở bước 3 và chưa có nhiều kinh nghiệm ở các bước còn lại. Như vậy, cần có một sự bổ sung, trên cơ sở tiếp thu tri thức, kỹ năng liên quan đến các bước còn lại để có được một cái nhìn, quan điểm đầy đủ hơn trong việc đổi mới dạy học theo hướng tiếp cận năng lực, ứng dụng vào giải quyết vấn đề thực tiễn và tích hợp liên môn. Trong năm học vừa qua, với tinh thần đổi mới, tác giả đã ứng dụng tìm kiếm, tham khảo từ nhiều nguồn tư liệu khác nhau, thí điểm xây dựng các ứng dụng toán học để phục vụ giảng dạy và cũng đã tập hợp được một số tình huống. Phần tiếp sau sẽ trình bày những kết quả đạt được trong quá trình nghiên cứu, tìm kiếm và sáng tạo của bản thân tác giả. 17
  18. II. XÂY DỰNG MỘT SỐ BÀI TOÁN THỰC TẾ, LIÊN MÔN TẠO HỨNG THÚ HỌC TOÁN CHO HỌC SINH LỚP 10 2.1. MỆNH ĐỀ. TẬP HỢP 2.1.1. MỆNH ĐỀ. a) Mệnh đề. VD1: Câu hỏi lý thuyết mệnh đề: 1. “London là thủ đô của nước Anh” là mệnh đề đúng. 2. “Việt Nam nằm ở Châu Mỹ” là mệnh đề sai. 3. “20 là số chẵn” là mệnh đề đúng. 4. “15 lớn hơn 30” là mệnh đề sai. Các câu sau: 5.“Cuốn sách này giá bao nhiêu tiền?”. 5. “Bao giờ lớp mình đi thăm quan Hà Nội?”. 6. “Hôm nay trời đẹp quá!” đều không phải là mệnh đề. VD2: Mệnh đề phủ định Nếu A = “Hôm nay kiểm tra một tiết môn Toán” thì mệnh đề phủ định của A là: A : “ Hôm nay không kiểm tra một tiết môn Toán” Nếu qua xác minh mệnh đề A đúng (hoặc sai) thì mệnh đề phủ định A sẽ sai (hoặc đúng). VD3: Mệnh đề kéo theo “Nếu dây tóc bóng đèn có dòng điện chạy qua thì bóng đèn sáng” là mệnh đề đúng. “Nếu mặt trời quay quanh trái đất thì Việt Nam nằm ở Châu Âu” là mệnh đề đúng, vì ở đây hai mệnh đề A = “mặt trời quay quanh trái đất” và B = “Việt Nam nằm ở Châu Âu” đều sai. Mệnh đề kéo theo a b, người ta không quan tâm đến mối quan hệ về nội dung của hai mệnh đề a, b, không phân biệt trường hợp a có phải là nguyên nhân của b hay không mà chỉ quan tâm đến tính đúng sai của chúng. VD 4: Trong văn học, mệnh đề kéo theo còn được diễn tả như sau: “ Bao giờ bánh đúc có xương, Bấy giờ gì ghẻ mới thương con chồng”. Hoặc “Chuồn chuồn bay thấp thì mưa, bay cao thì nắng, bay vừa thì râm”. 18
  19. “Gần mực thì đen, gần đèn thì rạng ” “Ráng mỡ gà thì gió, ráng mỡ chó thì mưa” VD5: Suy luận: Trong một tiết học lớp 10b4, học sinh Hoàng Khắc Phúc chưa học bài cũ. Giáo viên bộ môn Toán đã xử phạt : Hoặc đứng góc lớp một tuần , hoặc viết bản kiểm điểm. Giáo viên cho học sinh này lựa chọn và giao hẹn: Nếu nói đúng thì viết bản kiểm điểm, nói sai thì bị đứng góc lớp. Học sinh này đã nói một câu mà giáo viên không xử phạt nữa, hỏi đó là câu gì? ĐA: Em bị đứng góc lớp. Giải thích: Nếu “Em bị đứng góc lớp ” là đúng thì giáo viên phải cho học sinh này viết bản kiểm điểm. Nhưng như vậy thì đúng ở chỗ nào? Nếu “Em bị đứng góc lớp ” là sai thì giáo viên phải cho học sinh này đứng góc lớp. Nhưng như vậy thì sai ở chỗ nào? b) Mệnh đề tương đương VD1: “Tháng 12 có 31 ngày khi và chỉ khi trái đất quay quanh mặt trời” là mệnh đề đúng. VD2: “12 giờ trưa hôm nay Hà có mặt ở Hà Nội nếu và chỉ nếu vào giờ đó Hà đang ở thành phố Hồ Chí Minh” là mệnh đề sai VD 3: Khi tranh luận về chiều cao của HS lớp 10A và chiều cao của HS lớp 10B, có 5 ý kiến sau : a) Người cao nhất của lớp 10B4 cao hơn người cao nhất của lớp 10B8 . b) Mỗi người trong lớp 10B4 cao hơn mỗi người trong lớp 10B8 . c) Chiều cao trung bình của lớp 10B4 cao hơn chiều cao trung bình của lớp 10B8 . d) Người thấp nhất của lớp 10B4 cao hơn người cao nhất của lớp 10B8 . e) Người thấp nhất của lớp 10B4 cao hơn người thấp nhất của lớp 10B8 . Trong 5 ý kiến trên có hai ý kiến tương đương với nhau, đó là hai ý kiến nào? ĐA: B-D 19
  20. 2.1.2. TẬP HỢP a) Giới thiệu về các tập hợp số Hướng 1: Giáo viên giới thiệu lịch sử hình thành các tập hợp số ( tích hợp kiến thức môn lịch sử) Công xã nguyên thủy là thời mà con người còn sống theo bầy đàn trong các hang hốc, hằng ngày chỉ biết săn bắt và hái lượm. Khi đó họ đã biết dùng các con số 1, 2, 3,... để miêu tả số lượng của những vật gì đó mà họ nhìn thấy trong tự nhiên bằng cách đếm, ví dụ như: Hôm nay bắt được 5 con gà, hôm nay nhặt được 7 quả dại, hôm nay tìm được 1 cái hang,... Những con số đó là những con số đầu tiên được ra đời. Khi dân số trong các tộc người tăng lên, họ săn được bắt nhiều hơn, hái lượm được nhiều hơn, những con số đếm cũng theo đó mà tăng lên. Đó là những con số lớn hơn như 100 con chim, 200 con gà, 1000 quả táo,... Và rồi dần dần những con số đó làm thành tập hợp số đầu tiên trong lịch sử nhân loại - tập hợp số tự nhiên - gọi như vậy là vì những con số này ra đời dựa trên cách đếm của con người để ước lượng các vật trong tự nhiên. Dần dần về sau này, tập hợp đó được các nhà toán học ký hiệu là N - chữ N là viết tắt của "Natural" trong tiếng anh, nghĩa là "tự nhiên". Tập hợp này gồm những con số bình thường mà ta đã được học từ bé, đó là 0, 1, 2, 3, 4, 5,... và người ta viết nó dưới dạng tập hợp của toán học là N = {0, 1, 2, 3, 4, 5,...} Dĩ nhiên trong tập hợp này có cả số 0 - người nguyên thủy đã biết dùng nó để chỉ sự "không có" hay "không còn", ví dụ hôm nay không săn được con thú nào, hay hôm nay không còn quả táo nào,.... Dần dần xã hội lại phát triển thêm một bậc, con người nhận ra rằng chỉ những số tự nhiên thôi thì không đủ để phản ánh những gì mà mình thấy nữa. Khi họ bước vào giai đoạn đá mới, làm ra được của ăn của để, bắt đầu giữa họ có sự tranh chấp lẫn nhau, hay đi sâu hơn là thậm chí đã phân hóa cơ bản về giàu nghèo và có sự cạnh tranh giữa các bộ lạc người. Ví dụ bộ lạc A nuôi 20 con dê, bộ lạc B cũng nuôi 20 con dê; khi hai bộ lạc A và B này đánh nhau, bộ lạc A thắng và ép bộ lạc B phải nộp cho mình 10 con dê, thế là bộ lạc A có thêm được 10 con dê, còn bộ 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2