Sáng kiến kinh nghiệm: Tiếp tục hướng dẫn học sinh khá, giỏi vận dụng kiến thức toán học vào việc giải các bài tập Vật lí nâng cao
lượt xem 16
download
Sáng kiến kinh nghiệm: Tiếp tục hướng dẫn học sinh khá, giỏi vận dụng kiến thức toán học vào việc giải các bài tập Vật lí nâng cao được nghiên cứu nhằm mục đích phục vụ cho ôn thi học sinh giỏi môn Vật lí. Để hiểu rõ hơn về đề tài mời các bạn cùng tham khảo tài liệu.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Sáng kiến kinh nghiệm: Tiếp tục hướng dẫn học sinh khá, giỏi vận dụng kiến thức toán học vào việc giải các bài tập Vật lí nâng cao
- Tên SKKN: TIẾP TỤC HƯỚNG DẪN HỌC SINH KHÁ, GIỎI VẬN DỤNG KIẾN THỨC TOÁN HỌC VÀO VIỆC GIẢI CÁC BÀI TẬP VẬT LÍ NÂNG CAO I DO CHỌN TÀI: Việc giải các bài tập Vật lí, đặc biệt là các bài tập Vật lí nâng cao đối với một số học sinh, kể cả học sinh giỏi gặp rất nhiều khó khăn. Nguyên nhân chính là do các em thiếu vốn kiến thức Toán học hoặc các em đã có một số kiến thức Toán học, nhưng chưa biết cách vận dụng vào bài toán Vật lí cụ thể để giải. Qua kinh nghiệm giải bài tập cho thấy, nếu học sinh sử dụng đúng lúc và sử dụng đúng loại kiến thức toán thì bài giải sẽ trong sáng và rút ngắn bài giải đáng kể. Chính vì lẽ đó, tôi đã sưu tầm và mạo muội nêu ra một số bài tập Vật lí nâng cao, có vận dụng những kiến thức Toán học vào trong bài giải, nhằm củng cố lại một số kiến thức toán học thường gặp để giúp học sinh vận dụng có hiệu quả vào việc giải bài tập Vật lí nâng cao trong uá tr nh b i dư ng học sinh giỏi. Đề tài này giới hạn trong phạm vi nghiên cứu những kiến thức Toán học cơ bản nhất, có nâng cao đúng mức ở chương trình THCS, mang tính chất điển hình, thường được vận dụng trong các dạng bài tập Vật lí nâng cao; nhằm mục đích phục vụ dạy b i dư ng học sinh giỏi nên t i chọn đề tài này. “TIẾP TỤC HƯỚNG DẪN HỌC SINH KHÁ, GIỎI VẬN DỤNG KIẾN THỨC TOÁN HỌC VÀO VIỆC GIẢI CÁC BÀI TẬP VẬT NÂNG CAO ” II C S ẬN VÀ THỤC TI N : C S ẬN: Để thực hiện mục tiêu: “Nâng cao dân trí, đào tạo nhân lực, b i dư ng nhân tài” thì công tác b i dư ng học sinh giỏi là một trong những công tác quan trọng bậc nhất mà chúng ta cần thực hiện; nhằm ươm mầm và phát triển những tài năng tương lai của đất nước. Vật lí học là một trong các bộ môn được tham gia tổ chức dạy b i dư ng để học sinh dự thi học sinh giỏi các cấp. Đối với một học sinh giỏi Vật lí cần phải hội đủ hai yếu tố đó là: giỏi về kiến thức Vật lí đ ng thời nắm chắc và đầy đủ các kiến thức Toán học. Nếu thiếu một trong hai yếu tố trên thì không thể trở thành một học sinh giỏi Vật lí; hay nói cách khác, một học sinh giỏi Vật lí phải sở hữu một kiến thức Toán học phong phú và biết cách vận dụng kiến thức đó để giải các bài tập Vật lí nâng cao một cách có hiệu quả nhất. Như vậy Toán học là cơ sở, là tiền đề để nghiên cứu Vật lí học. Trong để tài này, các cơ sở Toán học được l ng ghép vào từng nội dung nghiên cứu. -1-
- C S TH C TI N: Những kiến thức toán học như: Hệ thức Vi-et, tính chất dãy tỉ số bằng nhau, hằng đẳng thức, bất đẳng thức Côsi, hệ số góc của một đường thẳng, phương tr nh bậc 2 một ẩn, định lý Pitago v.v…là những kiến thức cơ bản thường gặp trong việc giải bài tập Vật lí nâng cao. Chúng là kiến thức cơ sở để vận dụng vào trong từng bài tập cơ, nhiệt, điện, quang. Hiện nay một bộ phận học sinh bị mai một đi, một số kiến thức Toán học cơ bản; hoặc cũng có một số học sinh chưa biết cách vận dụng Toán học vào trong bài giải Vật lí. Mặt khác có một số kiến thức Toán học nâng cao, trong chương trình chính khoá không có, nhưng học sinh giỏi được phép vận dụng để làm bài thi. Do đó nếu học sinh được trang bị lại một cách có hệ thống và nắm chắc cách vận dụng kiến thức Toán vào trong bài tập Vật lí thì tôi tin chắc rằng việc giải các bài tập Vật lí trở nên dễ dàng hơn và như vậy hiệu quả học tập của học sinh sẽ khả quan hơn. Trước đây việc giải bài tập Vật lí, tự thân mỗi người chúng ta đều huy động những kiến thức Vật lí và những kiến thức toán học thích hợp để giải chứ chưa có ai đi sưu tầm, nghiên cứu, liệt kê xem những kiến thức Toán nào thường được vận dụng vào bài tập Vật lí hay bài tập Vật lí này thì nên dùng những kiến thức Toán nào thì tốt hơn. Qua nhiều năm dạy b i dư ng HS giỏi, tôi đã sưu tầm các bài tập nâng cao, các đề thi HS giỏi, đề thi vào các trường chuyên. Sau khi giải, phân tích xem những kiến thức Toán học nào được vận dụng trong bài tập đó và tìm xem kiến thức Toán nào là điển hình nhất để từ đó phân loại về mặt kiến thức Toán được vận dụng. Trong quá trình dạy chúng ta có thể lần lượt đưa ra từng dạng kiến thức Toán học trước, sau đó cung cấp các bài tập Vật lí có áp dụng kiến thức Toán tương ứng để học sinh giải. III T CHỨC TH C HIỆN CÁC GIẢI PHÁP: G : Có một số bài tập Vật lí khi giải, nếu chúng ta không sử dụng một kiến thức toán học nào đó thì có thể dẫn đến bài giải rất dài hoặc có thể không giải được. nên t i đã áp dụng các kiến thức toán học vào việc giải một số bài tập vật lí nâng cao, đối tượng áp dụng ban đầu là những học sinh khá giỏi được đi b i dư ng. T i bắt đầu áp dụng giải pháp này từ năm học 2 2 – 2 cho đến nay. Sau đây là một số ví dụ vận dụng kiến thức Toán học vào việc giải bài tập Vật lí nâng cao. Nó chỉ mang tính chất gợi ý, tham khảo, nhằm giúp học sinh khi bắt gặp các dạng bài tập tương tự thì có thể vận dụng kiến thức toán học thích hợp để giải. -2-
- C : a-Vậ ệt V -et : a1) Cơ sở toán học để lí luận: Nếu hai số x1, x2 có tổng x1 + x2 = S và tích x1.x2 = P thì x1, x2 là nghiệm của phương trình: x2 – Sx + P = 0. a2) Bài tập vật lí áp dụng: Bài 1 : Có hai điện trở R1, R2 được mắc theo hai cách khác nhau vào ngu n điện có hiệu điện thế không đổi là 5,4V. Biết rằng cách thứ nhất có cường độ chạy qua toàn mạch là 0,27A, cách thứ hai là 3A. Tính điện trở R1, R2. Nhận xét: -Hai cách mắc khác nhau chỉ có thể là nối tiếp và song song. -Từ cách mắc nối tiếp ta tính được tổng của hai điện trở, kết hợp với cách mắc song song ta tính được tích của hai điện trở. Vận dụng định lí Viet để tính R1, R2. Giải: Cách mắc nối tiếp có điện trở tư,ơng đương lớn hơn, nên ta suy ra được cường độ dòng điện qua mạch nối tiếp là 0,27A, qua mạch song song là 3A. U 5,4 Điện trở mạch nối tiếp: R1 + R2 = = = 2 Ω. I 0,27 R 1.R 2 U 5, 4 Điện trở mạch song song: = = = ,8Ω R 1 R2 I' 3 → R1.R 2 = 20.1,8 = 36. Vậy theo định lí Vi-et thì R1, R2 là nghiệm của phương trình R2 – 20R + 36 = 0 (R1, R2 > 0) R1 + R2 = 20 Ω. (1) R1.R2 = 36 Ω (2) ta phân tích phương tr nh bậc 2 và đưa về dạng phương tr nh tích. (3) (R1-18)*(R1-2)=0 (R1-18) =0 Suy ra R1= 18 Hoặc (R1-2)=0 suy ra R1= 2 Thay R1 vào ( ta được R2 = 8Ω hoặc R2 = 2Ω. Các nghiệm đều thoả mãn bài toán. -3-
- Bài 2: Nếu mắc nối tiếp hai điện trở R1, R2 và nối với hai cực của một ngu n điện có hiệu điện thế U = 6V thì mạch này tiêu thụ một công suất P1 = 6W. Nếu các điện trở R1, R2 được mắc song song thì công suất tiêu thụ tăng lên là P2 = 27W. Tính R1, R2. Giải: Khi R1, R2 được mắc nối tiếp : U2 P1 = (1) R1 R2 Khi R1 mắc song song với R2 : U 2 ( R1 R2 ) P2 = (2) R1 R2 36 Thay các giá trị bằng số vào (1) và (2), 6 = biến đổi ta được : R1 R2 36.6 R1 + R2 = 6 27= => R1.R2 = 8 R1 R2 Áp dụng hệ thức Viet ta được phương trình R2 – 6R + 8 = 0 ta phân tích phương tr nh bậc 2 và đưa về dạng phương tr nh tích. (3) (R1-4)*(R1-2) = 0 Giải phương trình ta được : R1 = Ω hoặc R1 = 2Ω. Thay R1 vào ( ta được R2 = 2 hoặc R2 = 4 Các nghiệm đều thoả mãn bài toán. b-Tổ ủa số tự ê lê tế : b1)Cơ sở toán học để lí luận : Cho các số tự nhiên : ; 2; ;…..; n. Ta dễ dàng chứng minh được: n(n 1) + 2 + +…….+ n = 2 b2 Bài tập vật lí áp dụng Một xe mô tô chuyển động xem như thẳng đều từ A đến B với AB = 40,5(km), xe bắt đầu đi từ A và cứ sau 15 phút chuyển động, xe dừng lại nghỉ 5 phút, cho rằng trong 15 phút đầu tiên xe chuyển động với vận tốc v1 = 3,6(km/h) và các khoảng thời gian chuyển động kế tiếp sau đó xe có vận tốc v2 = 2v1, v3 = 3v1, v4 = 4v1. Tìm vận tốc trung bình của xe khi đi từ A đến B. Nhận xét: -Ta xác định xem trên quãng đường AB = 40,5km có bao nhiêu đoạn đường ngắn s1, s2, s3,… đi với các vận tốc v1, v2, v3,… tương ứng. -4-
- -Xác định s1, s2, s3, … sn. - AB = s = s1+s2+s3+…+sn -Thế số và biến đổi để được dạng tổng của n số tự nhiên đầu tiên. -Từ đó tính được số đoạn đường n xe đã đi và bài toán trở nên dễ dàng. Giải: Quãng đường xe đi trong 15 phút đầu tiên : S1 = v1t = 3,6.1/4 = 0,9 km Do đó v2 = 2v1 = 3,6.2 = 7,2 km/h Quãng đường xe đi với vận tốc v2 (trong 15 phút). S2 = v2t = 7,2.1/4 = 1,8 km Tương tự V3 = 3v1 = 3.3,6 = 10,8 km/h Quãng đường xe đi với vận tốc v3 (trong 15 phút) S3 = v3t = ,8. / = 2,7 km… Vận tốc vn của xe trên quãng đường cuối cùng là : Vn = n.v1 = 3,6n Do đó sn = vnt = 3,6n.1/4 = 0,9n Ta có : s = s1 + s2 + s3 + … + sn = 40,5 s = ,9 + ,8 + 2,7 + … + ,9n = ,5 s = ,9( + 2 + + … + n = ,5 → +2+ +…+n= ,5/ ,9 = 5 → ( + n n/2 = 5 → n2 + n – 9 = →n=9 Tổng thời gian mô tô chuyển động: t1 = n.15 = 9.15 = 135 phút Tổng thời gian mô tô nghỉ: t2 = (n – 1)5 = (9 – 1)5 = 40 phút Vận tốc trung bình của mô tô là: vtb = s/(t1 + t2) = 40500/10500 = 3,857 m/s. c-Hệ số ó ủa đườ t ẳ : c1)Cơ sở toán học để lí luận: -Đ thị hàm số y = ax + b (a ≠ là đường thẳng có hệ số góc tgα = a ( a >0) Cho 2 đường thẳng có hàm số tương ứng là: y = a1x + b1 và y = a2x + b2. -5-
- 2 đường thẳng song song với nhau khi và chỉ khi a1 = a2; b1 b2. -Liên hệ đ thị chuyển động trong Vật lí: Trên đường thẳng có hai vật chuyển động thẳng đều. Biểu thức quãng đường chuyển động của hai vật là : s1 = v1t và s2 = v2t. Nếu hai vật có vận tốc bằng nhau (v1 = v2) và chuyển động cùng chiều thì đ thị chuyển động của hai vật là hai đường thẳng song song với nhau. Ngược lại nếu đ thị chuyển động của hai vật là hai đường thẳng song song nhau thì hai vật đó có cùng vận tốc chuyển động thẳng đều. c2)Bài tập áp dụng: Đoạn đường AB dài 36 km. Có ba người đi từ A đến B nhưng chỉ có một xe đạp nên đi như sau : Ba người xuất phát từ A cùng một lúc. Người thứ nhất chở người thứ hai đến điểm C và để người thứ hai tiếp tục đi bộ đến B. Người thứ nhất quay lại gặp người thứ ba tại D và chở người thứ ba đến B. Cả ba người đến B cùng một lúc. Biết rằng vận tốc đi bộ là 5 km/h và vận tốc đi xe đạp là 15 km/h. a. Dùng đ thị biểu diễn chuyển động của ba người để chứng tỏ quãng đường đi bộ của người thứ hai và người thứ ba bằng nhau. b. Tính tổng quãng đường mà người thứ nhất đã đi. Nhận xét: -Dựa vào dữ kiện bài toán vẽ dạng đ thị chuyển động của ba người trên cùng một hệ trục toạ độ (không cần số liệu). -Các vận tốc bằng nhau và chuyển động cùng chiều thì các đoạn đ thị tương ứng phải song song nhau. -Các đoạn thẳng song song và bằng nhau thì hình chiếu của chúng trên cùng một trục sẽ bằng nhau. Giải: s B’ B (II) C C’ (I) D D’ E (III) t A -6-
- a) Đoạn AD’ biểu diễn chuyển động (đi bộ) của người thứ III Đoạn C’B’ biểu diễn chuyển động (đi bộ) của người thứ II. Do vận tốc đi bộ bằng nhau nên hệ số góc của hai đường thẳng đi qua hai đoạn thẳng trên bằng nhau. Suy ra AD’ // C’B’. -Tương tự như trên ta có AC’ // D’B’. suy ra tứ giác AC’B’D’ là hình bình hành, nên AD’ = C’B’ do đó các hình chiếu tương ứng trên trục tung cũng bằng nhau. Tức là AD = BC. Vậy quãng đường đi bộ của người thứ II và người thứ III bằng nhau. b) Khi người thứ I đến C thì người thứ III đến E, có AC = 3AE (cùng thời gian, vận tốc gấp 3 thì quãng đường gấp 3). Khi người thứ I quay lại gặp người thứIII tại D, có DC = DE → EC = ED → ED = EC/ (* AD = AE + ED = AE + EC/4 = AE + (AC-AE)/4 = AE + (3AE-AE)/4 = 3AE/2. AB = AC + CB = AC + AD =3AE + 3AE/2 = 9AE/2 AE = 2AB/9 = 2.36/9 = 8km AC = 3AE = 3.8 = 24km EC = AC – AE = 24 – 8 = 16km Từ (*) ta có ED = EC/4 = 16/4 = 4km DC = EC – ED = 16 – 4 = 12km Tổng quãng đường người thứ I đã đi: 2AC + DC = 2.24 + 12 = 60km. d-G trị tru bì ộ : d1)Cơ sở toán học để lí luận: Cho các số: a1, a2, a3, …, an. Trung bình cộng của n số đó là: a1 a2 ... an atb = n -7-
- Trong Vật lí học, ta thường gặp nhiều biểu thức mà trong đó, đại lượng này được biểu diễn dưới dạng một hàm số, có chứa biến số là một đại lượng kia. Việc tính giá trị trung bình của một đại lượng biến thiên có ý nghĩa hết sức quan trọng; bởi vì giá trị trung bình của một đại lượng biến thiên, đựơc xem như độ lớn của đại lượng đó và được dùng để tính toán trong các biểu thức nhằm xác định một đại lượng khác cần tìm. Đối với các biểu thức Vật lí dưới dạng hàm số bậc nhất, biến thiên theo biến số; khi tính giá trị trung bình ta chỉ cần tính trung bình cộng của giá trị đầu tiên và giá trị cuối cùng. d2) Bài tập vận dụng: Người ta đun 2kg nước trong một ấm điện có công suất 600W, ở nhiệt độ 250C. Cho rằng khi đun thì công suất hao phí do trao đổi với bên ngoài biến đổi theo thời gian đun bởi biểu thức: P = 100+t; trong đó t tính bằng giây, P tính bằng Watt; biết nhiệt dung riêng của nước c = 4200J/kgK. Tính thời gian đun để nước trong ấm tăng đến 350C. Cho rằng thời gian đun không vượt quá 10 phút. Nhận xét: AQ -Tỉ số là công suất hao phí do trao đổi với bên ngoài. t -Công suất hao phí biến thiên theo thời gian nên có thể tính giá trị trung bình của P. Giải: Nhiệt lượng cần thiết để nước trong ấm tăng từ 25→ 50C Q = c.m.(t2-t1) = 4200.2.(35-25) = 84000J Công của dòng điện thực hiện trên ấm điện: A = P1t = 600t AQ Tỉ số là công suất hao phí do trao đổi với bên ngoài. Hàm số t P = 100+t biểu diễn công suất hao phí, biến thiên theo thời gian, nên ta tính giá trị trung bình Ptb từ giây thứ 0 đến giây thứ t: + Ở giây thứ 0: P0 = 100+t = 100(W) + Ở giây thứ t: Pt = 100+t (W) P0 Pt 200 t Ptb = 2 2 AQ 200 t Vậy = Ptb = .Thế số và biến đổi ta được phương trình bậc 2: t 2 t2-1000t+168000 = 0 -8-
- Giải phương trình ta được: t1 = 214s ; t2 = 786s (loại vì t2 > 10 phút) e- S đẳ t : e1) Cơ sở toán học để lí luận: (a - b)2 = a2 + b2 - 2ab a b 2 0 dấu “ = ”xảy ra khi và chỉ khi a = b. e2) Bài tập áp dụng: Bài 1: Hai xe máy chạy theo hai con đường vuông góc với nhau, cùng tiến về phía ngã tư giao điểm của hai con đường. Xe A chạy từ hướng Đ ng về hướng Tây với vận tốc 50km/h. Xe B chạy từ hướng Bắc về hướng Nam với vận tốc 30km/h. Lúc 8h sáng xe A và xe B còn cách ngã tư lần lượt là 4,4km và 4km. Tìm thời điểm mà khoảng cách hai xe: a) Nhỏ nhất. b) Bằng khoảng cách lúc 8h sáng. Nhận xét: -Vì hai con đường vuông góc với nhau nên ta áp dụng định lí Pitago để tính bình phương khoảng cách giữa hai xe. -Biến đổi để có dạng bình phương của một tổng đại số. Đ ng Giải: A v1 Bắc B O Nam v2 Tây a) Chọn gốc thời gian là lúc 8h. +Sau thời gian t, xe A cách O một đoạn: OA = 4,4 v1t 4,4 50t +Sau thời gian t, xe B cách O một đoạn: OB = 4 v2t 4 30t Áp dụng định lí Pitago: -9-
- AB2 = OA2 + OB2 = (4,4-50t)2 + (4-30t)2 AB2 = 3400t2 – 680t + 35,36 (*) 1 1 AB2 = 3400(t2 - t ) + 1,36 5 100 2 2 AB = 3400 t 1,36 mà: 3400 t 0 AB 2 1,36 2 1 1 10 10 AB 1,166km ABmin = 1,166km khi t = 1/10h = 6 phút. Vậy thời điểm để hai xe cách nhau ngắn nhất là 8h 06phút. b) Vào lúc 8h hai xe cách nhau một đoạn l: Ta có: l2 = AB2 = OA2 + OB2 = 4,42 + 42 = 35,36 Vậy ta cần tìm t để bình phương khoảng cách giữa hai xe là 35,36km. Tức là AB2 = 3400t2 – 680t + 35,36 = 35,36 Suy ra t.(3400t – 680) = 0 t 0 680 t 0,2h 12 phut 3400 Vậy thời điểm để khoảng cách giữa hai xe bằng khoảng cách lúc 8h sáng là: 8h + 12phút = 8h 12phút. f-Bất đẳng thức Côsi: f1) Cơ sở toán học để lí luận: ab Cho 2 số a, b 0 ta có: ab ; dấu “ = “ xảy ra khi và chỉ khi a = b 2 f2) Bài tập áp dụng: Một biến trở có giá trị điện trở toàn phần là R = Ω, nối tiếp với một điện trở R1. Nhờ biến trở có thể làm thay đổi cường độ dòng điện trong mạch từ 0,9A đến 4,5A. a) Tìm giá trị của điện trở R1. b) Tính công suất toả nhiệt lớn nhất trên biến trở. Biết rằng mạch điện được mắc vào hiệu điện thế U không đổi. R1 A R B C + - U M N -10-
- Nhận xét: Biểu diễn công suất toả nhiệt trên Rx dưới dạng : Px = RxI2. Biến đổi để tử thức là hằng số, mẫu thức là một tổng có chứa biến số. Tích giữa hai số hạng có chứa biến số là một hằng số thì áp dụng được bất đẳng thức Côsi. Giải: a) Cường độ dòng điện lớn nhất khi con chạy C ở vị trí A, và nhỏ nhất khi con chạy C ở vị trí B của biến trở. - Ở vị trí A ta có: 4,5 = U/R1 (1) U - Ở vị trí B: 0,9 = (2) R1 120 Giải hệ phương trình trên ta được: R1 = Ω;U= 5V. b) Gọi Rx là phần điện trở của biến trở từ A đến C, thì công suất toả nhiệt trên phần đó là: Px = RxI2 = Rx U2 U2 U2 (3) R1 Rx 2 R1 R x 2 R1 R x 2 2 R1 2 R x 2 R1 Rx Rx Để Px đạt giá trị cực đại, mẫu số của nó phải cực tiểu tức là lượng R1 2 R cực tiểu. R x x Vì tích của hai số hạng trên là hằng số, nên ta áp dụng bất đẳng thức Côsi ta 2 2 R1 R được: Rx 2 1 .Rx 2 R1 . Vế trái đạt cực tiểu khi lấy dấu “ = “ Rx Rx 2 R1 R x 2R1 Thế R1 = Ω và biến đổi ta được phương trình bậc 2: Rx R2x – 60Rx + 900 = 0 Giải phương trình trên ta được Rx = Ω = R1. Thay vào (3) ta được: Pmax = 1352/120 = 151,875(W). ua nhiều năm giảng dạy vật lí và b i dư ng học sinh giỏi vật lí t i nhận thấy các dạng bài tập phần điện mà có điện trở học sinh gặp rất nhiều khó khăn trong khi giải kể cả học sinh giỏi. g. Một số ấ đề ề lý t uyết: g1) Khái niệm về biến trở: -11-
- Biến trở là điện trở có thể thay đổi được trị số và có thể được sử dụng để điều chỉnh cường độ dòng điện trong mạch. Biến trở có thể mắc nối tiếp, mắc song song hoặc mắc hỗn hợp với các thiết bị trong mạch điện. Có nhiều loại biến trở như biến trở con chạy, biến trở than hay biến trở có tay quay... Biến trở là dụng cụ có nhiều ứng dụng trong thực tế cuộc sống và kĩ thuật như biến trở hộp trong các thiết bị điện đài, ti vi, ... g2) Cách mắc biến trở vào mạch điện + Biến trở được mắc nối tiếp : A C B R . .N M + Biến trở được mắc vừa nối tiếp vừa song song Đ M C Đ . A C . . . M A B N N C B + Biến trở được mắc vào mạch cầu: R1 DR 2 M A C B N h. Một số ạ bà tậ ề ạ đệ ó b ế trở à Dạng 1: Biến trở được mắc nối tiếp với phụ tải Ví dụ 1: ( Bài 2 sgk vật lí 9 trang 2 U Một bóng đèn khi sáng b nh thường C A B Đ có điện trở là R1 = 7,5 và cường độ dòng điện chạy ua khi đó I = ,6 A. Bóng đèn được mắc nối tiếp với biến trở và -12-
- chúng được mắc vào hiệu điện thế U = 2 V. Phải điều chỉnh con chạy C để RAC có giá trị R2 = ?để đèn sáng b nh thường? Hướng dẫn Khi đèn sáng b nh thường => Iđ = 0,6 A => Itm = ,6 A (v mạch nt U Itm = 0, 6 ( A) RAC R1 Từ đó HS t m ra RAC + R1 và rút ra RAC khi thay R1 = 7,5 Bài giải Theo đầu bài: R1 = Rđ = 7,5 và Iđm = 0,6 A Để đèn sáng b nh thường Iđ = 0,6A. Vì Đ nối tiếp với RAC => I tm = 0,6 A. Áp dụng định luật m cho mạch nối tiếp ta có. U 12 RAC + Rđ= 20() RAC 20 7,5 12,5() I 0, 6 Vậy phải điều chỉnh con chạy C sao cho RAC = 12,5 th khi đó đèn sẽ sáng b nh thường. Ví dụ 2: Cho mạch điện (như h nh vẽ . A . có UAB = 12 V, khi dịch chuyển con M R1 A c B N chạy C th số chỉ của am pe kế thay đổi từ ,2 A đến , A . Hãy tính giá trị R1 và giá trị lớn nhất của biến trở ? Hướng dẫn Khi C dịch chuyển => số đo của ampe kế thay đổi từ ,2 A đến , A nghĩa là gì? +) Khi C trùng A => RAC = 0 => RMN = R1 (nhỏ nhất => I = , A là giá trị lớn nhất . Lúc đó Rtđ = R1 ... Biết I & U ta tính được R1 Ngược lại + Khi c trùng với B ..... I = ,2 A là giá trị nhỏ nhất => Rtđ = R1 + Ro . vậy biết U , R1 và I ta sẽ tính được Ro là điện trở lớn nhất của biến trở. -13-
- Bài giải 1. Tính R1: Khi con chạy C trùng với A => Rtđ = R1 ( vì RAC = và am pe kế khi đó chỉ , A. U MN 12 Mà UMN = 12 V => R1 = Rtđ= 30( ) I 0, 4 Vậy R1 = 30 2. Tính điện trở lớn nhất của biến trở: Khi C trùng với B => Rtđ = R1 + Ro có giá trị lớn nhất => I đạt giá trị nhỏ nhất => I = 0,24 A U MN 12 Ta có Ro + R1 = 50() Mà R1= 30( ) Ro = 50 – 30 = 20 ( ) I 0, 24 Vậy giá trị lớn nhất của biến trở là 2 Ví dụ 3 : Cho mạch điện ( như h nh vẽ M R A C B N . . Khi con chạy C ở vị trí A th v n kế chỉ 2 V Rx V khi con chạy C ở vị trí B th v n kế chỉ 7,2 V Tính giá trị điện trở R (Biết trên biến trở có ghi 2 - 1 A ) Hướng dẫn: Tương tự như VD2 khi c trùng với A => v n kế chỉ giá trị lớn nhất nghĩa là chỉ UMN và khi đó Rtđ chỉ còn là R (RAC = . Khi C trùng với B => RAC bằng số ghi trên biến trở => HS dễ dàng giải được bài toán...... Bài giải +) Khi con chạy C trùng với A khi đó RAC = 0 => Rtđ = R và khi đó v n kế chỉ 2 V nghĩa là UMN = 12 V + Khi con chạy C trùng với B khi đó RAC = 20 (bằng số ghi trên biến trở và khi đó v n kế chỉ 7,2 V => UR = 7,2 V U AC U MN U R 12 7, 2 4,8 (V ) U AC 4,8 I AC 0, 24 ( A) V mạch nt I R 0, 24 ( A) mà UR = 7,2 V RAC 20 UR 7, 2 Vậy: R 30 () I R 0, 24 -14-
- Trên đây là một số ví dụ tiêu biểu cho dạng mạch điện có biến trở mắc nối tiếp với phụ tải. Song để thành thạo loại bài tập này HS cần phải rút ra cho mình một vài kinh nghiệm sau: 1 - Rtđ = Rtải + Rx trong đó Rx là phần điện trở tham gia của biến trở. 2 - I Rx là cường độ dòng điện trong mạch chính và URx = Utm - Utải 3 - Khi C trùng với điểm đầu lúc đó Rx = 0 & Rtđ = Rtải (là giá trị nhỏ nhất của điện trở toàn mạch ) và khi đó I đạt giá trị lớn nhất ( vì UMN không đổi ). 4 - Ngược lại khi C trùng với điểm cuối lúc đó Rtđ = Rtải + Rx ( là giá trị lớn nhất của Rtđ ) và khi đó I đạt giá trị nhỏ nhất ( vì UMN không đổi ). Dạng 2: Biến trở được mắc vừa nối tiếp, vừa song song. Với loại bài tập này biến trở được dùng như một điện trở biến đổi, ta phải sử dụng bất đẳng thức ( 0 Rx Ro ) trong đó Ro là điện trở toàn phần của biến trở. Và HS phải biết vẽ lại mạch điện để dễ dàng sử dụng định luât m trong mạch nối tiếp cũng như mạch song song. Ví dụ 4: (Bài 11.4 b SBT L9) Cho mạch điện (như h nh vẽ , đèn sáng b nh thường Đ Uđm = 6 V và Iđm = 0,75A. Đèn được mắc với biến trở C B Có điện trở lớn nhất băng 6 và UMN kh ng đổi băng 2V A M N Tính R1 của biến trở để đèn sáng b nh thường? Hướng dẫn + Trước hết HS phải vẽ lại được mạch điện & khi đó (Đ// RAC) nt RCB Trong đó: RAC = R1 + Khi đèn sáng b nh thường => Uđ = UAC =? -> UCB =? + Iđ + IAC = ICB Trong đó: U AC U Ud U U Ud I AC ; I CB Id d (*) R1 16 R1 R1 16 R1 -15-
- Học sinh giải PT (* -> T m được R1 Bài giải Sơ đ mới: Đ 16-R1 + R1 .- C B A C Ta có: RCB = 16 – R1 V đèn sáng b nh thường -> Uđ = 6V Iđ = 0,75A Ud 6 -> UAC = Uđ = 6V-> IAC = R1 R1 U Ud V (Đ//RAC) nt RAC => Id + IAC = IAC Mà I AC 16 R1 6 12 6 6 6 Ta có PT: I d Hay 0,75 + R1 16 R1 R1 16 R1 3 6 6 1 2 2 4 R1 16 R1 4 R1 16 R1 R1 (16-R1) + 8(16-R1) = 8R1 16R1 – R21 + 128 – 8R1 = 8R1 R21 = 128 => R1 = 128 R1 = 11,3 ( ) Vậy phải điều chỉnh con chạy C để RAC = R1 = 11,3( th đèn sáng b nh thường. Ví dụ 5: . .N Cho mạch điện như h nh vẽ. I A Ro B Biến trở có điện trở toàn phần Ro = 12 Ix C Đèn loại 6V – 3W; UMN = 15 V. a, T m vị trí con chạy C để đèn sáng b nh thường. b, Khi định C -> Độ sáng của đèn thay đổi thế nào? Iđ Rx Bài giải: A Ro - Rx Tương tư như ví dụ 5. . .N M C B Mạch điện được vẽ lại: -16-
- Gọi RAC = x ( điều kiện: Iđ = 0,5( A) U 6 Pđ = Pđm = 3 W V (Đ// RAC) nt RCB -> Iđ + IAC = ICB và UAC = Uđ -> UCB = U - Uđ = 15 - 6 = 9 (V) Áp dụng định luật m trong mạch nối tiếp và song song: Ud U Ud 1 6 9 Id hay x 12 x 2 x 12 x x(12 x) 12(12 x) 18 x 12 x x 2 144 12 x 18 x x 2 18 x 144 0 ' 81 144 225 ' 225 15 9 15 9 15 x1 6(); x2 24 (loại 1 1 Vậy phải điều chỉnh con chạy C để RAC = 6( th khi đó đèn sáng b nh thường. b. Khi C A Rx giảm dần. Nhưng chưa thể kết luận về độ sáng của đèn thay đổi như thế nào được. Mà phải t m I ua đèn. Khi C=>A => biện luận độ sáng của đèn U 2 dm 62 12.x 12 x 144 x 2 U 15(12 x) Rd 12() RMN 12 x I MN 2 ( A) Pdm 3 12 x 12 x RMN x 12 x 144 Dòng điện ua đèn từ mạch song song: x 15( x 12) x 15 x 15 Id I . x 12 x 12 x 144 x 12 x 12 x 144 x 12 144 2 2 x 144 Khi C =>A làm cho x giảm => ( x 12 ) tăng lên => Iđ giảm đi. x Vậy độ sáng của đèn giảm đi (tối dần khi dịch C về A. -17-
- U0 Ví dụ 6: Cho mạch điện (như h nh vẽ + _ Biết Uo = 12 V, Ro là điện trở, R là biến trở M A am pe kế lí tưởng . Khi con chạy C của biến trở R từ C R M đến N , ta thấy am pe kế chỉ giá trị lớn nhất I1 = 2 A R0 Và giá trị nhỏ nhất I2 =1 A . Bỏ ua điện trở của các dây nối. N 1 – Xác định giá trị Ro và R? 2 – Xác định vị trí của con chạy C của biến trở R để c ng suất tiêu thụ trên toàn biến trở bằng một nửa c ng suất cực đại của nó? Bài giải: 1 – Tính R0 & R? Với mạch điện này th : RMC // RNC và RMC + RNC = R . x( R x) V vậy khi ta đặt RMC = x () RNC R x (0 x R) RMNC R U0 U0 khi đó chỉ số của am pe kế là: I R0 RMNC R x( R x) 0 R + Khi con chạy C ở M ( ở N th RMNC = và lúc đó am pe kế sẽ chỉ giá trị cực đại: U0 U 12 I1 R 0 0 6 ( ) R0 I1 2 x( R x) + Để am pe kế chỉ giá trị nhỏ nhất th : RMNC phải có giá trị cực R R2 R2 R2 R x 2 Rx ( x )2 R x Rx 2 4 4 4 2 đại, ta triển khai RMNC: RMNC R R R 4 R R R Để RMNC có giá trị cực đại bằng thì : ( x ) 2 0 x () Tức là con 4 2 2 R U0 12 chạy C ở chính giữa của biến trở và RMNC ( ) I 2 1(*) 4 R0 RMNC 6 R 4 Giải phương tr nh (* ta t m được R = 24 () Vậy: R0 = 6 và R = 24 -18-
- 2 - Để có phương án giải phần này ta phải áp dụng c ng thức P = I 2R và định luật bảo toàn năng lượng trên toàn mạch điện. x(24 x) Đặt RMNC y mà PMNC = RMNC.I 2 24 U0 2 12 2 + C ng suất tiêu thụ trên toàn biến trở là: P yI 2 ( ) .y ( ) .y R0 y 6 y mà c ng suất của ngu n điện & c ng suất tiêu thụ trên R0 là Pn =UoI & PRo = Ro I2 Theo định luật bảo toàn năng lượng ta có: Pn = PRo + P hay UoI = RoI 2 + P R0 I 2 U 0 I P 0 (**) (** là phương tr nh bậc 2 với ẩn là I U 02 Để phương tr nh có nghiệm 0 U 0 2 4 R0 P 0 P 4 R0 144 y 3 36 12 y y 2 U 02 122 12 2 P Vậy Pmax 6 (W ) ( ) . y max 3 => 144 y 108 36 y 3 y 2 4 R0 4.6 6 y 2 3 y 2 108 y 108 0 y 2 36 y 36 0 Phương tr nh có ' 17 y1 18 17 35 (loai) ; y2 18 17 1 ( ) x (24 x) x (24 x) Mà ta đặt y nên ta có phương tr nh 1 x 2 24 x 24 0 24 24 Giải phương tr nh trên ta có ' 11 x1 12 11 1 () ; x2 12 11 23 () Vậy có 2 vị trí của con chạy C trên biến trở R sao cho R MC 1 hoặc RMC 23 th c ng suất tiêu thụ trên toàn biến trở bằng một nửa c ng suất cực đại của nó. *) Những bài học kinh nghiệm mà HS cần phải được rút ra khi học & giải loại bài tập này là : 1- Biến trở là một điện trở biến đổi. 2 - Phải vẽ lại mạch điện để bài toán đơn giản. -19-
- 3 - Đưa bài toán về dạng giải bài toán bằng cách lập phương trình qua công thức của mạch điện cân bằng. Chọn RAC là ẩn, biểu diễn RCB theo ẩn là RAC. Chú ý: RAC =Ro không đổi (số ghi trên biến trở). RCB = Ro - RAC RAC = x thì ( 0 x R0 ) 4 - Quy tắc toán học cần phải thành thạo. - Giải phương trình bậc 2 một ẩn số. - Giải hệ phương trình bậc nhất. - Giải bài toán cực đại, bất đẳng thức Cô si… IV-HIỆ ẢC A TÀI: Việc trang bị cho học sinh khá, giỏi những kiến thức toán học cơ bản là cần thiết. Qua đó giúp học sinh không những phân loại được bài tập, về phương diện Vật lí, mà còn phân loại bài tập về phương diện kiến thức Toán học được vận dụng. Qua thực tế giảng dạy cho thấy, những học sinh có kiến thức toán vững chắc và phong phú, sau khi phân tích bài toán Vật lí, các em biết ngay cần phải áp dụng kiến thức Toán học nào vào trong bài tập đó; qua đó các em cũng thấy được, có thể có nhiều cách vận dụng kiến thức toán vào trong một bài tập Vật lí; đ ng thời các em biến đổi bài toán rất linh hoạt, trình bày bài giải chặt chẽ, gọn gàng. Nếu giáo viên chỉ trang bị những kiến thức Vật lí đơn thuần, thì học sinh sẽ lúng túng khi gặp các bài tập cần dùng đến các “công cụ” Toán học nâng cao hơn. Đề tài này tôi đã nghiên cứu từ đầu năm 2012 - 2013, và được áp dụng từ năm học 2013-2 và tiếp tục áp dụng thêm một số dạng bài tập có biến trở trong năm học 2 -2015. Tuỳ từng đối tượng học sinh mà mức độ đạt được có khác nhau. Trong đề tài này, tôi có cập nhật các bài toán được trích từ các đề thi học sinh giỏi cấp huyện, Do đó cấp độ kiến thức được nâng cao đáng kể. Tuy nhiên kết quả nêu ra sau đây là kết quả đạt được từ cấp huyện. Để dễ so sánh, đối chiếu kết quả, tôi chia ra làm hai nhóm đối tượng: N ó đố tượ t ất - học sinh có học lực khá, giỏi m n vật lí, được trang bị kiến thức toán đầy đủ nhưng khả năng áp dụng kiến thức toán vào làm bài tập vật lí chưa tốt. Bảng: Kết uả khảo sát chất lượng sau khi thực hiện đề tài -20-
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sáng kiến kinh nghiệm: Một số biện pháp phụ đạo học sinh yếu môn Toán lớp 4
11 p | 2171 | 496
-
Sáng kiến kinh nghiệm: Một số biện pháp tiếp tục xây dựng quĩ học bổng hỗ trợ học sinh nghèo ở trường THPT Sông Ray
10 p | 233 | 19
-
Sáng kiến kinh nghiệm Mầm non: Ứng dụng phương pháp Montessori vào hoạt động góc cho trẻ 5-6 tuổi
32 p | 204 | 17
-
Sáng kiến kinh nghiệm THPT: Nâng cao kỹ năng giao tiếp bằng tiếng Anh
28 p | 35 | 8
-
Sáng kiến kinh nghiệm Mầm non: Xây dựng đội ngũ đoàn kết nhằm nâng cao hiệu quả chăm sóc giáo dục trẻ trong trường Mầm non
16 p | 84 | 7
-
Sáng kiến kinh nghiệm THCS: Một số kinh nghiệm tổ chức các hoạt động trải nghiệm sáng tạo cho học sinh THCS
28 p | 128 | 7
-
Sáng kiến kinh nghiệm Mầm non: Sáng tạo một số hoạt động khám phá khoa học trẻ mẫu giáo nhỡ 4-5 tuổi theo hướng đổi mới hình thức tổ chức
28 p | 830 | 6
-
Sáng kiến kinh nghiệm Mầm non: Một số biện pháp giáo dục đạo đức, lễ giáo cho trẻ 3-4 tuổi ở trường mầm non Thanh Nê – Kiến Xương – Thái Bình
11 p | 52 | 6
-
Sáng kiến kinh nghiệm Tiểu học: Một số biện pháp tiếp tục chỉ đạo hoạt động dạy học theo định hướng phát triển năng lực ở trường Tiểu học (2021)
21 p | 14 | 6
-
Sáng kiến kinh nghiệm: Một số biện pháp nâng cao chất lượng hoạt động dạy hát dân ca cho trẻ mầm non 5 tuổi
32 p | 108 | 5
-
Sáng kiến kinh nghiệm THPT: Một số kinh nghiệm rèn kĩ năng viết đoạn văn nghị luận xã hội cho học sinh lớp 12 ở trường THPT Vĩnh Linh
20 p | 16 | 5
-
Sáng kiến kinh nghiệm THCS: Một số giải pháp dạy ôn tập trong môn Địa lý ở trường Trung học
10 p | 45 | 4
-
Sáng kiến kinh nghiệm THCS: Nâng cao vai trò của giáo viên chủ nhiệm ở trường THCS Thượng Thanh thông qua việc giáo dục học sinh đặc biệt
58 p | 34 | 4
-
Sáng kiến kinh nghiệm Mầm non: Một số giải pháp tiếp tục chỉ đạo giáo viên xây dựng môi trường giáo dục lấy trẻ làm trung tâm
15 p | 17 | 4
-
Sáng kiến kinh nghiệm Tiểu học: Biện pháp bồi dưỡng giáo viên nâng cao hiệu quả công tác chủ nhiệm lớp
29 p | 24 | 3
-
Sáng kiến kinh nghiệm Tiểu học: Dạy một số bài toán về diện tích cho học sinh lớp 4
17 p | 40 | 2
-
Sáng kiến kinh nghiệm Tiểu học: Kinh nghiệm một số biện pháp dạy tốt môn Tin học ở Tiểu học 5
23 p | 16 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn