Tóm tắt Luận án tiến sĩ Hóa học: Mô phỏng ứng xử cơ học của ống nano phốt pho đen bằng phương pháp phần tử hữu hạn nguyên tử
lượt xem 2
download
Mục đích của luận án nhằm thông qua các thí nghiệm mô phỏng kéo và nén ống nano phốt pho đen để tìm ra các đặc trưng cơ học như mô đun đàn hồi, ứng suất phá hủy, biến dạng phá hủy, hệ số Poisson và đường cong ứng suất biến dạng. Ảnh hưởng của đường kính và chiều dài đến.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tóm tắt Luận án tiến sĩ Hóa học: Mô phỏng ứng xử cơ học của ống nano phốt pho đen bằng phương pháp phần tử hữu hạn nguyên tử
- 1 MỞ ĐẦU Lý do chọn đề tài Hiện nay, công nghệ nano có nhiều ứng dụng quan trọng trong các lĩnh vực khác nhau như y học, điện tử, quang điện tử, cảm biến, pin Li-ion, vật liệu composite, may mặc và nông nghiệp… Để sử dụng các vật liệu nano mới được tìm ra vào các ứng dụng thực tế cần có những hiểu biết sâu sắc và tường tận về cơ tính. Các đặc trưng cơ học của các vật liệu nano như các bon nano graphene, BN, SiC, Si, AlN... đã nghiên cứu rõ ràng. Năm 2014, vật liệu nano phốt pho đen được tổng hợp. Phốt pho đen là một chất bán dẫn có độ rộng vùng cấm lớn và có nhiều ứng dụng tiềm năng trong lĩnh vực nano điện tử, quang điện tử, cảm biến và làm vật liệu anốt của pin Li-ion. Do đó, ứng xử cơ học của vật liệu nano phốt pho đen là vấn đề thời sự hiện nay. Cơ tính của tấm phốt pho đã được nghiên cứu khá rõ. Tuy nhiên, cơ tính của ống phốt pho chưa được nghiên cứu kỹ lưỡng. Vì vậy, nghiên cứu sinh đã chọn hướng nghiên cứu là tính toán mô phỏng để xác định các đặc trưng cơ học của ống nano phốt pho đen cho luận án của mình . Tên đề tài là: “Mô phỏng ứng xử cơ học của ống nano phốt pho đen bằng phương pháp phần tử hữu hạn nguyên tử ”. Mục đích, đối tượng và phạm vi nghiên cứu Thông qua các thí nghiệm mô phỏng kéo và nén ống nano phốt pho đen để tìm ra các đặc trưng cơ học như mô đun đàn hồi, ứng suất phá hủy, biến dạng phá hủy, hệ số Poisson và đường cong ứng suất- biến dạng. Ảnh hưởng của đường kính và chiều dài đến cơ tính của ống nano phốt pho đen cũng được nghiên cứu và bàn luận. Phương pháp nghiên cứu Phương pháp phần tử hữu hạn nguyên tử (AFEM). Nghiên cứu sinh ứng dụng phương pháp này và mở rộng để tính toán, mô phỏng cho ống nano phốt pho đen với hàm thế Stillinger-Weber. Ý nghĩa khoa học và thực tiễn của đề tài Do vật liệu nano phốt pho đen mới được tìm ra nên việc nghiên cứu thực nghiệm là khó khăn. Vì vậy, việc mô phỏng các thí nghiệm kéo và nén vật liệu nano phốt pho đen để tìm ra các đặc trưng cơ học của nó là cần thiết, có tính thời sự, có ý nghĩa khoa học và thực tiễn rõ ràng. Điểm mới của luận án:
- 2 Điểm mới của luận án là đã xác định được ứng xử cơ học của ống nano phốt pho đen bằng phương pháp phần tử hữu hạn nguyên tử với hàm thế Stillinger-Weber. Bố cục luận án: Nội dung chính của luận án được trình bày gồm 4 chương như sau: Chương 1. Tổng quan Nghiên cứu sinh giới thiệu về vật liệu hai chiều bao gồm vật liệu nano phốt pho đen. Phân tích các công trình đã được công bố trước đây liên quan đến đề tài luận án. Chương 2. Cơ sở của phương pháp phần tử hữu hạn nguyên tử áp dụng để tính toán ống nano phốt pho đen Trong chương này, nghiên cứu sinh trình bày về các cơ sở khoa học của luận án như cấu trúc của tấm và ống vật liệu nano phốt pho đen, thế năng tương tác giữa các nguyên tử và phương pháp phần tử hữu hạn nguyên tử. Chương 3. Kết quả kéo ống nano phốt pho đen Các đặc trưng cơ học của vật liệu nano phốt pho đen được xác định bằng thí nghiệm mô phỏng kéo ống nano phốt pho đen. Chương 4. Kết quả nén ống nano phốt pho đen Các đặc trưng cơ học của vật liệu nano phốt pho đen được xác định bằng thí nghiệm mô phỏng nén ống nano phốt pho đen. Ảnh hưởng của đường kính và chiều dài đến các đặc trưng cơ của của ống vật nano phốt pho đen cũng được đưa ra thảo luận. Bên cạnh đó, các so sánh về đặc trưng cơ học của ống phốt pho đen khi kéo và nén cũng được đưa ra. Ở phần cuối, nghiên cứu sinh đưa ra các kết luận của luận án và kiến nghị các hướng phát triển tiếp theo. Chương 1 TỔNG QUAN 1.1 Giới thiệu về vật liệu hai chiều (2D) và phốt pho đen Các vật liệu hai chiều (2D) điển hình gồm graphene, BN, SiC, Si và các vật liệu 2D khác. Các nghiên cứu đã chỉ ra rằng nhóm vật liệu 2D này có thuộc tính khác hoàn toàn so với vật liệu dạng khối (dạng cục). Graphene là một trong những thành viên nổi bật nhất của gia đình vật liệu 2 chiều. Với cấu trúc điện tử độc đáo, đặc biệt là khả năng dẫn điện và độ bền, graphene được coi là vật liệu kỳ diệu mới. Tuy nhiên, một điểm hạn chế của graphene là độ rộng vùng cấm gần
- 3 như bằng không tức là graphene có tính chất của kim loại (là chất bán kim loại), do vậy tính ứng dụng của nó bị hạn chế trong lĩnh vực điện tử. Tấm lục giác BN đã được tìm ra có độ bền, độ dẫn nhiệt cao, động rộng vùng cấm lớn, ổn định nhiệt và hóa học. Năm 2014, tấm phốt pho đen là một lớp vật liệu tác ra từ thỏi phốt pho đen đã gia nhập nhóm lớp vật liệu hai chiều chiều (hình 1.6). Phốt pho đen một lớp có độ rộng vùng cấm lớn và có tính dị hướng đáng kể trong các thuộc tính quang-điện tử và thuộc tính cơ- nhiệt, đây là sự khác biệt so với các vật liệu 2D khác. Một trong những điểm nổi bật của phốt pho đen là có độ rộng vùng cấm lớn và có thể thay đổi tối ưu độ rộng vùng cấm này bằng việc thay đổi số lớp, biến dạng và khuyết tật kỹ thuật. Hình 1.6 Hình ảnh tấm phố pho đen nhiều lớp 1.2 Các phương pháp tính Phương pháp lý thuyết phiếm hàm mật độ Phương pháp mô phỏng tính toán dựa trên lý thuyết phiếm hàm mật độ (DFT) về bản chất là việc giải gần đúng phương trình Schrӧdinger. Nhược điểm của phương pháp này là không tính được với hệ có nhiều nguyên tử. Phương pháp động lực phân tử Mô phỏng động lực phân tử (MD) có mục tiêu là giải phương trình đặc trưng động lực lượng hạt dựa trên định luật 2 Newton: U r1 , r2 ,...rN mi ri Fi , i 1, 2,...N (1.2) ri MD cho kết quả có độ chính xác cao, mô phỏng được với hệ có nhiều nguyên tử và xét được đến ảnh hưởng của nhiệt độ. Tuy nhiên, thời gian tính toán lâu và phức tạp. Phương pháp phần tử hữu hạn nguyên tử
- 4 Trong AFEM, các nguyên tử và chuyển vị của các nguyên tử được coi như là các nút và chuyển vị nút. Ma trận độ cứng của các phần tử được lắp ráp dựa trên hàm thế năng tương tác giữa các nguyên tử. Giống như phương pháp phần tử hữu hạn (FEM), ma trận độ cứng tổng thể có được bằng cách lắp rắp các ma trận độ cứng phần tử. Do đó, mối quan hệ giữa chuyển vị và lực có được bằng cách giải hệ phương trình tuyến tính. Thủ tục của phương pháp này có 1 số điểm giống FEM nên gọi là AFEM. So với phương pháp mô phỏng MD thì kết quả của AFEM có độ chính xác cao, sai số có thể bỏ qua khi so với MD tính ở 0K. 1.3 Tình hình nghiên cứu trên thế giới về tấm và ống nano 1.3.1 Graphene và các vật liệu tương tự graphene Cơ tính của tấm graphene, BN, SiC và Si đã được xác định đầy đủ bằng các phương pháp như DFT, MD, AFEM, ab initio và thực nghiệm (xem bảng 1.1, 1.2, 1.3 và 1.4). Bảng 1.1 Đặc trưng cơ học của tấm graphene tính bằng các phương pháp khác nhau Tài liệu Mô đun đàn hồi 2 Ứng suất 2 Biến dạng tại vị tham khảo chiều Yt , N/m chiều t, N/m trí đạt ứng suất lớn nhất , % MD bởi Le 358 (zigzag) 43,0 (zigzag) 24 (zigzag) 350 (armchair) 37,9 (armchair) 19,3 (armchair) DFT bởi Xu 350 40,0 (zigzag) 24 (zigzag) và cộng sự 36,4 (armchair) 19 (armchair) Thí nghiệm 34050 424 25 bởi Lee và cộng sự DFT bởi Lui 351 40,4 (zigzag) 26,6 (zigzag) và cộng sự 36,7 (armchair) 19,4 (armchair) MD bởi 373 (zigzag) 41,1 (zigzag) 19,6 (zigzag) Lindsay và 350 (armchair) 28,5 (armchair) 11,4 (armchair) cộng sự Bảng 1.2 Cơ tính của tấm BN tính bằng các phương pháp khác nhau
- 5 Tài liệu tham khảo Mô đun đàn Ứng suất 2 Biến dạng tại hồi 2 chiều chiều t, N/m vị trí đạt ứng Yt, N/m suất lớn nhất , % AFEM bởi Sevik 258 (zigzag) 37,7 (zigzag) 25,7 (zigzag) và cộng sự 251 35,5 26,4 (armchair) (armchair) (armchair) MD bởi Le 263,4 36,1 (zigzag) 22,7 (zigzag) (zigzag) 253,3 29,7 17,7 (armchair) (armchair) (armchair) DFT bởi Kudin và 271 cộng sự Inelastic x-ray 260 scattering bởi Bosak và cộng sự DFT bởi Sahin và 267 cộng sự DFT by Topsakal 258 (armchair và cộng sự nanoribbon) MD bởi Zhang và 267 cộng sự DFT bởi Peng và 278 cộng sự DFT bởi Andrew 275,8 và cộng sự Thực nghiệm bởi 245 Suryavanshi và cộng sự Bảng 1.3 Cơ tính của tấm SiC tính bằng các phương pháp khác nhau
- 6 Tài liệu tham khảo Mô đun đàn Ứng suất 2 Biến dạng hồi 2 chiều chiều t, tại vị trí đạt Yt, N/m N/m ứng suất lớn nhất , % MDFEM bởi Sevik và cộng 174 (zigzag) 20,7 24,8 sự (zigzag) (zigzag) 171 17,9 18,5 (armchair) (armchair) (armchair) MD bởi Le 179,6 20,5 22,8 (zigzag) (zigzag) (zigzag) 173,4 17,6 17,4 (armchair) (armchair) (armchair) DFT bởi Sahin và cộng sự 166 DFT bởi Andrew và cộng sự 163,5 Bảng 1.4 Cơ tính của tấm Si tính bằng các phương pháp khác nhau Tài liệu tham khảo Mô đun đàn hồi 2 Ứng suất Biến dạng tại vị chiều Yt, N/m 2 chiều trí đạt ứng suất t, N/m lớn nhất , % DFT bởi Sahin và cộng 62 sự DFT by Topsakal và 51 cộng sự DFT bởi Zhao và cộng 60,6 (zigzag) sự 63,51 (armchair) Ab initio bởi Jing và 62,4 (zigzag) 19,5 (zigzag) cộng sự 59,1 (armchair) 15,5 (armchair) 1.3.2 Tấm phốt pho đen Cơ tính của tấm phốt pho đen đã được nghiên cứ rõ ràng bởi phương pháp DFT, phương pháp MD và AFEM (xem bảng 1.5). Bảng 1.5 Cơ tính của tấm phốt pho nano bằng các phương pháp khác nhau
- 7 Biến dạng tại vị trí Tài liệu Mô đun đàn hồi 2 Ứng suất lớn nhất đạt ứng suất lớn tham chiều Yt (N/m) t, N/m nhất , % khảo zigzag armchair zigzag armchair zigzag armchair AFEM bởi Nguyen 58,3 12,5 4,08 2,09 16,3% 27,9% 2017 và cộng sự MD bởi Sha 54,0 12,6 4,61 2,57 16,0% 27,5% 2015 và cộng sự MD bởi Jiang 55,3 17,6 13,0% 23,5% 2015 và cộng sự MD bởi 2016 và 55,5 13,6 cộng sự DFT bởi Jiang 56,3 21,9 11,0% 48,0% 2014 và cộng sự DFT bởi Wei 92,1 24,4 9,99 4,44 27,0% 30,0% 2014 và cộng sự 1.3.3 Ống phốt pho đen Cơ tính của ống phốt pho đen được tính bằng một số phương pháp khác nhau như MD, DFT, DFT-TB và DFT-FEM (xem bảng 1.6). Mô đun đàn hồi của ống armchair nano phốt pho đen tính bằng mô phỏng MD với hàm thế compass bởi Chen (~40.6 N/m) và nghiên cứu bằng DFT-TB (
- 8 toán để có bức tranh tổng thể về cơ tính của ống nano phốt pho đen đầy đủ nhất và đây chính là mục đích của luận án. 1.4 Tình hình nghiên cứu tại việt nam về tấm và ống nano Đi đầu trong việc nghiên cứu ứng xử cơ học của các cấu trúc nano là nhóm nghiên cứu của Lê Minh Quý và Nguyễn Danh Trường, ĐH Bách khoa Hà Nội nghiên cứu bài toán tĩnh học. Sau đó được mở rộng cho bài toán động lực học và cho hàm thế Stillinger- Weber để tính tấm nano phốt pho đen. Nghiên cứu sinh mở rộng phương pháp AFEM với hàm thế Stillinger-Weber tính cho ống nano phốt pho đen. Có thể nói rằng, hiện tại ở Việt Nam chưa có các nghiên cứu về ứng xử cơ học của ống nano phốt pho đen. Chương 2 Cơ sở của phương pháp phần tử hữu hạn nguyên tử áp dụng để tính toán ống nano phốt pho đen 2.1 Cấu trúc tấm và ống nano phốt pho đen 2.1.1 Cấu trúc tấm nano phốt pho đen Phốt pho đen có cấu trúc lớp bao gồm các mặt phẳng gấp nếp song song với nhau (hình 2.1 và 2.2). Thông số hình học của phốt pho đen được thể hiện trên bảng 2.1. a) a) b) a) b) P t Pt c) c) Pb Pb Zigzag Zigzag d) d) Armchair Armchair Hình 2.1 Cấu trúc hình học của tấm nano phốt pho đen: a) Hình ảnh phóng to của 6 nguyên tử phốt pho; b) Hình ảnh 3D; c) Hình chiếu đứng; d) Hình chiều cạnh của tấm.
- 9 a) b) Hình 2.2 Thông số hình học tấm phốt pho đen a) Hình chiếu đứng b) hình chiều bằng Bảng 2.1 Thông số hình học của tấm và ống phốt pho đen Khoảng cách giữa hai Góc giữa Góc giữa Véc tơ đơn vị, Å nguyên tử, Å ba nguyên ba nguyên tử thuộc tử thuộc cùng một hai nhóm nhóm khác nhau Pt-Pt Pt-Pb Pt-Pt-Pt Pt-Pt-Pb Phương Phương Pb-Pb Pb-Pb-Pb Pb-Pb-Pt armchair zigzag r1=2,224 r2=2,224 1=96,359º 2=102,09º a2=4,376 a1=3,314 2.1.2 Cấu trúc ống nano phốt pho đen Theo Chen và đồng sự ống nano phốt pho đen được hình thành bằng cách cuộn tấm nano phốt pho đen theo phương véc tơ C na 1 ma 2 (hình 2.2 và 2.3). Trong đó, n và m là số ô cơ bản dọc theo phương véc tơ đơn vị a1 và a2 . Nếu m=0, ống nano được gọi là ống nano phốt pho đen zigzag và có cấu hình là (n, 0). Nếu n=0, ống nano được gọi là ống nano phốt pho đen armchair và có cấu hình là (0, m).
- 10 a) b) Hình 2.3 Cấu trúc nguyên tử của ống nano phốt pho đen: a) Ống armchair; b) Ống zigzag 2.2 Thế năng tương tác giữa các nguyên tử 2.2.1 Giới thiệu chung về thế năng tương tác giữa các nguyên tử Việc lựa chọn hàm thế năng tương tác giữa các nguyên tử là một bước quan trọng khi mô phỏng hệ các nguyên tử sử dụng phương pháp mô phỏng động lực phân tử, phương pháp phần tử hữu hạn nguyên tử hay các phương pháp mô phỏng ở cấp độ nguyên tử khác. 2.2.2 Hàm thế Tersoff Đây là hàm thế thường được dùng trong mô phỏng hệ các nguyên tử theo phương pháp MD và AFEM. Hàm thế này được đề xuất bởi Tersoff để mô tả năng lượng tương tác giữa các nguyên tố C-C, Si-Si, Si-C. 2.2.3 Hàm thế Stillinger-Weber Đây là hàm thế phù hợp để mô tả năng lượng tương tác giữa các nguyên tử P-P, Mo-S và Mo-Se. Thế năng E của cấu trúc nguyên tử là tổng năng lượng kéo dãn liên kết Er và năng lượng uốn liên kết E: E Er E (2.12) M N Er V2 , E V3 (2.13) e 1 e 1
- 11 B r 1 rij rmax ij V2 Ae 4 ij (2.14) rij rmax ij ik rik rmax ik cos coso ij 2 V3 Ke ijk (2.15) Trong đó V2 tương ứng là thế năng kéo dãn liên kết và V3 là thế năng uốn liên kết. M và N ký hiệu tổng phần tử kéo dãn liên kết và uốn liên kết. Bán kính ngắt của hàm ngắt rmaxij, rmaxik được xác định dựa trên cấu trúc vật liệu. A, K là hệ số. ρ, B, ρij, ρik, θo là 5 thông số hình học. rij, rik là chiều dài của liên kết ij và ik. ijk là góc giữa liên kết ij và ik. 2.3 Phương pháp phần tử hữu hạn nguyên tử 2.3.1 Giới thiệu về phương pháp phần tử hữu hạn nguyên tử Phương pháp phần tử hữu hạn nguyên tử hay còn gọi là phương pháp động lực phân tử phần tử hữu hạn được hiểu là sự kết hợp giữa phương pháp mô phỏng cấp độ nguyên tử và phương pháp phần tử hữu hạn. So với các phương pháp mô phỏng khác như mô phỏng MD thì độ chính xác của AFEM nhỏ hơn, tuy nhiên thời gian tính toán của AFEM lại nhanh hơn rất nhiều. 2.3.2 Cơ sở lý thuyết của phương pháp AFEM Xét hệ gồm N nguyên tử. Gọi ri(0) , ri là véc tơ vị trí của nguyên tử i ở thời điểm ban đầu và sau khi dịch chuyển trong không gian, u ri ri(0) là chuyển vị của nguyên tử i. rij ri r j là véc tơ nối giữa 2 nguyên tử i và j. ui , fi tương ứng là điều kiện biên chuyển vị và ngoại lực tác dụng lên nguyên tử thứ i. Khi đó tổng năng lượng của hệ sẽ bằng nội năng của hệ trừ đi lượng cân bằng với công của ngoại lực: N ET r E fi .ri (2.16) i 1 Trong đó: r r1,r2 ,...,rN là véc tơ vị trí của hệ, E E (r) là nội T năng hay thế năng tương tác của hệ có N nguyên tử. fi là ngoại lực tác dụng lên nguyên tử thứ i.
- 12 Khi hệ ở trạng thái cân bằng, năng lượng đạt giá trị cực tiểu nên đạo hàm bậc nhất của tổng năng lượng của hệ khi đó phải bằng không: ET 0 (2.17) r Khai triển Taylor hàm năng lương ET tại ví trí cân bằng ban T đầu r r1(0) ,r2(0) ,...,rN(0) ta có: ET r ET r 0 ET 1 2 ET T .u r r 0 . .u (2.18) r r r 0 2 rr r r 0 Trong đó, u r r là chuyển vị đủ nhỏ quanh vị trí cân bằng r (0). (0) u càng nhỏ thì khai triển Taylor của phương trình (2.18) càng chính xác. Thay phương trình (2.18) vào (2.17) và bỏ qua các vô cùng bé bậc cao, ta có: 2 ET E .u f (2.19) rr r r 0 r r r0 Biến đổi (2.19) ta có: Ku P (2.20) Trong đó, ta dặt: 2 ET 2 E K , được gọi là ma trận độ cứng của hệ ở rr r r 0 rr r r0 trạng thái cân bằng ban đầu. (2.21) E Pf , là véc tơ lực ở trạng thái không cân bằng. (2.22) r r r0 Phương trình (2.20) là phương trình đặc trưng của AFEM, nó giống với phương trình đặc trưng của phương pháp FEM truyền thống khi ta coi mỗi nguyên tử là một nút. Khi đó, các lập luận tính toán trong FEM hoàn toàn có thể áp dụng lên AFEM. Tuy nhiên, việc chia phần tử trong AFEM là hoàn toàn khác trong FEM. Trong trường hợp tổng quát (2.20) là hệ phương trình phi tuyến. Do đó để giải (2.20) ta dùng các phương pháp lặp cho đến khi
- 13 chuyển vị của hệ hoặc lực của hệ ở trạng thái cân bằng nhỏ thua là một số dương đủ nhỏ cho trước. 2.3.3 Kiểu phần tử trong AFEM Có hai kiểu xây dựng phần tử trong AFEM là xây dựng phần tử dựa trên hàm thế và xây dựng phần tử dựa trên cấu trúc nguyên tử. Kiểu xây dựng phần tử dựa trên hàm thế và kiểu xây dựng phần tử dựa trên cấu trúc nguyên tử. Trong luận án này, tác giả dùng kiểu xây dựng phần tử dựa trên hàm thế. 2.3.4 Mô hình phần tử hữu hạn nguyên tử với hàm thế Stillinger- Weber Trong nghiên cứu này, hàm thế SW được sử dụng để mô hình hóa tương tác giữa các nguyên tử P-P. r j ij i i j ijk k a) b) Hình 2.8 Hai kiểu phần tử sử dụng hàm thế Stillinger-Weber a) Hai nguyên tử (kéo dãn liên kết) b) Ba nguyên tử (uốn liên kết) Bộ thông số hàm thế SW cho tương tác giữa P-P của phốt pho đen được trình bày trong bảng 2.2 và 2.3. Bộ thông số này được xác định bằng phương pháp tính toán theo nguyên lý ban đầu với lý thuyết hàm mật độ.
- 14 Chương 3 Kết quả kéo ống nano phốt pho đen 3.1 Đánh giá độ tin cậy của chương trình tính kéo ống nano phốt pho đen Hình 3.1 Đường cong ứng suất biến dạng tính bằng AFEM và MD khi kéo ống nano phốt pho đen Hình 3.1 cho thấy đường cong ứng suất-biến dạng tính bằng AFEM và bằng MD của Liao trùng khít nhau. Điều này khẳng định độ tin cậy của chương trình tính bằng AFEM. 3.2 Khảo sát ảnh hưởng của chiều dài ống đến đặc trưng cơ học của ống nano phốt pho đen 3.2.1 Ảnh hưởng của chiều dài ống đến đường cong ứng suất- biến dạng của ống nano phốt pho đen chịu kéo Kết quả chỉ ra rằng đường cong ứng suất-biến dạng của ống nano phốt pho đen khi chịu kéo dọc trục sẽ không phụ thuộc vào chiều dài ống. 3.2.2 Khảo sát ảnh hưởng của chiều dài ống đến giá trị mô đun đàn hồi của ống nano phốt pho đen chịu kéo Kết quả trên hình 3.4 và 3.5 cho thấy, mô đun đàn hồi của cả hai kiểu ống armchair (0, 8) và zigzag (10, 0) thay đổi rất ít (1,3 %) khi tỷ số chiều dài/đường kính (L/D) tăng từ 6-20. Khi đó, ta có thể coi mô đun đàn hồi là không thay đổi khi tỷ số chiều dài ống thay đổi. 3.2.3 Khảo sát ảnh hưởng của chiều dài ống đến giá trị ứng suất phá hủy của ống nano phốt pho đen chịu kéo
- 15 Kết quả chỉ ra rằng, ứng suất phá hủy của các hai kiểu ống armchair (0, 8) và zigzag (10, 0) hầu hư không thay đổi khi tỷ số chiều dài/đường kính (L/D) thay đổi từ 2-20. Do đó, ta có thể khẳng định rằng giá trị ứng suất phá hủy của ống nano phốt pho đen không thay đổi khi chiều dài ống thay đổi. Hình 3.4 Mô đun đàn hồi của ống Hình 3.5 Mô đun đàn hồi của ống armchair (0, 8) khi tỷ số L/D thay armchair (10, 0) khi tỷ số L/D thay đổi từ 6 đến 20 đổi từ 6 đến 20 3.3 Kết quả kéo ống nano phốt pho đen bằng AFEM 3.3.1 Đường cong ứng suất-biến dạng Hình 3.11 thể hiện ứng suất kéo đồng biến với việc tăng của biến dạng dọc trục tới một giá trị tới hạn, sau đó giảm đột ngột cho tất cả các ống. Khi đó, ứng suất kéo lớn nhất và biến dạng tại vị trí đạt ứng suất lớn nhất thay thế cho ứng suất phá hủy và biến dạng phá hủy tương ứng. a) b) Hình 3.11 Đường con ứng suất-biến dạng của ống: a) armchair; b) zigzag phốt pho đen chịu kéo dọc trục tính bằng phương pháp AFEM
- 16 3.3.2 Mô đun đàn hồi Bảng 3.3 và 3.4 thể hiện mô đun đàn hồi của ống nano armchair và zigzag phốt pho đen tính bằng phương pháp phần tử hữu hạn nguyên tử. Khi đường kính ống tăng thì mô đun đàn hồi của ống armchair và ống zigzag tăng lần lượt là 10 và 8,6%. Bảng 3.3 Mô đun đàn hồi của ống amrchair nano phốt pho đen (kéo theo phương zigzag)tínhs bằng phương pháp AFEM TT Ống Đường kính ống, Å Mô đun đàn hồi Yt, N/m 1 (0, 8) 12,107 50,36 2 (0, 10) 14,833 51,68 3 (0, 12) 17,589 52,77 4 (0, 14) 20,324 53,57 5 (0, 15) 21,706 53,88 6 (0, 16) 23,080 54,21 7 (0, 18) 25,838 54,59 8 (0, 19) 27,219 54,74 9 (0, 20) 28,599 54,92 10 (0, 21) 29,977 55,06 11 (0, 22) 31,352 55,20 12 (0, 24) 34,105 55,42 Bảng 3.4 Mô đun đàn hồi của ống nano zigzag phốt pho đen (kéo theo phương amrchair) tính bằng phương pháp AFEM TT Ống Đường kính Mô đun đàn ống, Å hồi Yt, N/m 1 (10, 0) 11,958 5,88 2 (13, 0) 14,962 7,69 3 (16, 0) 17,824 9,39 4 (18, 0) 20,013 10,08 5 (20, 0) 21,814 10,65 6 (21, 0) 23,118 10,87 7 (23, 0) 25,106 11,30 8 (26, 0) 27,857 11,72 9 (27, 0) 28,874 11,83 10 (28, 0) 29,881 11,96 11 (29, 0) 31,375 12,08 12 (31, 0) 33,411 12,26
- 17 3.3.3 Hệ số Poisson Hình 3.16 thể hiện hệ số Poisson của ống armchair có xu hướng tăng nhẹ khi đường kính ống tăng. Trong khi đó, hệ số Poisson của ống zigzag giảm khi đường kính tăng. a) b) Hình 3.16 Hệ số Poisson thay đổi theo đường kính ống nano: a) armchair; và b) zigzag phốt pho đen 3.3.4 Ứng suất và biến dạng phá hủy Bảng 3.7 và 3.8 thể hiện, khi đường kính ống tăng thì ứng suất phá hủy của ống armchair và zigzag tăng lần lượt là 109 và 214%. Biến dạng phá hủy của ống amrchair giảm nhẹ (3%), trong khi đó biến dạng phá hủy của ống zigzag tăng 113% khi đường kính ống tăng. Bảng 3.7 Ứng suất phá hủy và biến dạng phá hủy của ống nano amrchair phốt pho đen (kéo theo phương zigzag) tính bằng AFEM TT Ống Đường kính Ứng suất phá Biến dạng ống, Å hủy t, N/m phá hủy , % 1 (0, 8) 12,107 3,573 16,6 2 (0, 10) 14,833 3,689 16,5 3 (0, 12) 17,589 3,714 16,4 4 (0, 14) 20,324 3,763 16,3 5 (0, 15) 21,706 3,784 16,5 6 (0, 16) 23,080 3,805 16,2 7 (0, 18) 25,838 3,828 16,2 8 (0, 19) 27,219 3,838 16,2 9 (0, 20) 28,599 3,849 16,1 10 (0, 21) 29,977 3,858 16,1 11 (0, 22) 31,352 3,866 16,1 12 (0, 24) 34,105 3,880 16,1
- 18 Bảng 3.8 Ứng suất phá hủy và biến dạng phá hủy của ống nano zigzag phốt pho đen (kéo theo phương amrchair) tính bằng AFEM TT Ống Đường kính Ứng suất phá Biến dạng ống, Å hủy t, N/m phá hủy , % 1 (10, 0) 11,958 0,574 12,7 2 (13, 0) 14,962 0,834 14,4 3 (16, 0) 17,824 1,126 17,0 4 (18, 0) 20,013 1,249 17,5 5 (20, 0) 21,814 1,378 18,7 6 (21, 0) 23,118 1,448 19,8 7 (23, 0) 25,106 1,569 21,5 8 (26, 0) 27,857 1,701 24,0 9 (27, 0) 28,874 1,708 24,1 10 (28, 0) 29,881 1,756 26,0 11 (29, 0) 31,375 1,775 26,0 12 (31, 0) 33,411 1,805 27,0 Biến dạng phá hủy của ống armchair phốt pho đen giảm khi đường kính ống tăng được thể hiện trên hình 3.20. Tính toán bằng DF-TB bởi Sorkin và cộng sự cũng chỉ ra rằng biến dạng phá hủy của ống armchair giảm khi đường kính ống tăng. Biến dạng phá hủy của ống zigzag tăng khi đường kính ống tăng. a) b) Hình 3.19 Ứng suất phá hủy thay đổi theo đường kính ống: a) armchair; và b) zigzag phốt pho đen
- 19 a) b) Hình 3.20 Biến dạng phá hủy thay đổi theo đường kính ống: a) armchair; và b) zigzag phốt pho đen Chương 4 Kết quả nén ống nano phốt pho đen 4.1 Đánh giá độ tin cậy của chương trình tính nén ống nano phốt pho đen Kết quả trên hình 4.1 cho thấy, đường cong ứng suất-biến dạng tính bằng MD của Liu và bằng AFEM trùng khít nhau hoàn toàn cho tới điểm tới hạn. Sự trùng khớp này, khẳng định độ tin cậy của chương trình tính bằng AFEM. Hình 4.1 So sánh đường cong ứng suất-biến dạng tính bằng AFEM và MD khi nén ống phốt pho đen 4.2 Kết quả nén ống nano phốt pho đen tính bằng AFEM 4.2.1 Ảnh hưởng của đường kính ống khi tỷ số chiều dài/đường kính cố định, L/D=8 và đường kính ống thay đổi
- 20 Bảng 4.3 Đặc trưng cơ học của ống armchair nano phốt pho đen (nén dọc theo phương zigzag) Ống Đường Mô đun đàn Ứng suất tới Biến dạng kính D, Å hồi Yt, N/m hạn t, N/m tới hạn , % (0, 8) 12,107 51,074 8,878 12,95 (0, 10) 14,833 52,134 8,908 12,50 (0, 12) 17,589 52,836 8,557 11,70 (0, 14) 20,324 53,400 7,894 10,70 (0, 16) 23,080 53,816 7,127 9,70 (0, 18) 25,838 54,162 6,305 8,70 (0, 20) 28,606 54,359 5,590 7,85 Bảng 4.3 và 4.4 thể hiện mô đun đàn hồi, ứng suất tới hạn và biến dạng tới hạn của ống nano phốt pho đen. Kết quả tiết lộ rằng ứng suất tới hạn của ống armchair (0, 20) (5,590 N/m) lớn hơn khoảng 4 lần so với giá trị này của ống zigzag (26, 0) (1,382 N/m) với tỷ số chiều dài/đường kính, L/D=8. Các kết quả này rất phù hợp với kết quả từ tính toán bằng DFT-TB. Thêm vào đó, biến dạng tới hạn của ống armchair (0, 20) và zigzag (26, 0) nano phốt pho đen lần lượt là 7,85% và 12,10%, với tỷ số chiều dài/đường kính, L/D=8. Bảng 4.4 Đặc trưng cơ học của ống zigzag nano phốt pho đen (nén dọc theo phương armchair) Ống Đường kính Mô đun đàn Ứng suất tới Biến dạng ống, Å hồi Yt, N/m hạn t, N/m tới hạn , % (10, 0) 11,958 6,900 0,497 7,25 (13, 0) 14,962 8,203 0,603 7,20 (16, 0) 17,824 8,990 0,665 7,15 (18, 0) 20,013 9,985 0,712 6,85 (21, 0) 23,118 10,451 0,814 7,40 (23, 0) 25,106 11,038 0,889 7,60 (26, 0) 27,857 11,245 1,382 12,10 Hình 4.5 thể hiện sự ứng suất tới hạn của ống armchair nano phốt pho đen giảm khi đường kính ống tăng. Tuy nhiên, ứng suất tới hạn của ống zigzag nano phốt pho đen tăng nhẹ khi đường kính ống tăng. Các kết quả trên hình 4.6 chỉ ra rằng biến dạng tới hạn của ống armchair nano phốt pho đen giảm khi đường kính ống tăng. Tuy nhiên, biến dạng tới hạn của ống zigzag nano phốt pho đen giảm với đường kính ống bé và tăng với đường kính ống lớn.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Chiến lược Marketing đối với hàng mây tre đan xuất khẩu Việt Nam
27 p | 191 | 18
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Thúc đẩy tăng trưởng bền vững về kinh tế ở vùng Đông Nam Bộ đến năm 2030
27 p | 212 | 17
-
Tóm tắt Luận án Tiến sĩ Luật học: Hợp đồng dịch vụ logistics theo pháp luật Việt Nam hiện nay
27 p | 281 | 17
-
Tóm tắt Luận án Tiến sĩ Y học: Nghiên cứu điều kiện lao động, sức khoẻ và bệnh tật của thuyền viên tàu viễn dương tại 2 công ty vận tải biển Việt Nam năm 2011 - 2012
14 p | 273 | 16
-
Tóm tắt Luận án Tiến sĩ Triết học: Giáo dục Tư tưởng Hồ Chí Minh về đạo đức cho sinh viên trường Đại học Cảnh sát nhân dân hiện nay
26 p | 157 | 12
-
Tóm tắt luận án Tiến sĩ: Nghiên cứu tối ưu các thông số hệ thống treo ô tô khách sử dụng tại Việt Nam
24 p | 261 | 12
-
Tóm tắt luận án Tiến sĩ Kỹ thuật: Nghiên cứu tính toán ứng suất trong nền đất các công trình giao thông
28 p | 225 | 11
-
Tóm tắt Luận án Tiến sĩ Kinh tế Quốc tế: Rào cản phi thuế quan của Hoa Kỳ đối với xuất khẩu hàng thủy sản Việt Nam
28 p | 188 | 9
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển kinh tế biển Kiên Giang trong tiến trình hội nhập kinh tế quốc tế
27 p | 64 | 8
-
Tóm tắt Luận án Tiến sĩ Xã hội học: Vai trò của các tổ chức chính trị xã hội cấp cơ sở trong việc đảm bảo an sinh xã hội cho cư dân nông thôn: Nghiên cứu trường hợp tại 2 xã
28 p | 151 | 8
-
Tóm tắt Luận án Tiến sĩ Luật học: Các tội xâm phạm tình dục trẻ em trên địa bàn miền Tây Nam bộ: Tình hình, nguyên nhân và phòng ngừa
27 p | 215 | 8
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phản ứng của nhà đầu tư với thông báo đăng ký giao dịch cổ phiếu của người nội bộ, người liên quan và cổ đông lớn nước ngoài nghiên cứu trên thị trường chứng khoán Việt Nam
32 p | 185 | 6
-
Tóm tắt Luận án Tiến sĩ Luật học: Quản lý nhà nước đối với giảng viên các trường Đại học công lập ở Việt Nam hiện nay
26 p | 137 | 5
-
Tóm tắt luận án Tiến sĩ Kinh tế: Các yếu tố ảnh hưởng đến xuất khẩu đồ gỗ Việt Nam thông qua mô hình hấp dẫn thương mại
28 p | 22 | 4
-
Tóm tắt Luận án Tiến sĩ Ngôn ngữ học: Phương tiện biểu hiện nghĩa tình thái ở hành động hỏi tiếng Anh và tiếng Việt
27 p | 126 | 4
-
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu cơ sở khoa học và khả năng di chuyển của tôm càng xanh (M. rosenbergii) áp dụng cho đường di cư qua đập Phước Hòa
27 p | 10 | 4
-
Tóm tắt luận án Tiến sĩ Kinh tế: Các nhân tố ảnh hưởng đến cấu trúc kỳ hạn nợ phương pháp tiếp cận hồi quy phân vị và phân rã Oaxaca – Blinder
28 p | 29 | 3
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển sản xuất chè nguyên liệu bền vững trên địa bàn tỉnh Phú Thọ các nhân tố tác động đến việc công bố thông tin kế toán môi trường tại các doanh nghiệp nuôi trồng thủy sản Việt Nam
25 p | 175 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn