intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tóm tắt Luận án tiến sĩ Kỹ thuật: Nghiên cứu thuật toán và xây dựng chương trình xử lý số liệu GNSS dạng RINEX nhằm phát triển ứng dụng công nghệ định vị vệ tinh ở Việt Nam

Chia sẻ: Trần Văn Gan | Ngày: | Loại File: PDF | Số trang:29

47
lượt xem
10
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nội dung nghiên cứu của đề tài: Các trị đo trong công nghệ GNSS và định dạng dữ liệu. Ảnh hưởng của các nguồn sai số đối với trị đo GNSS và biện pháp khắc phục. Phương pháp xác định tọa độ vệ tinh từ lịch vệ tinh quảng bá và lịch vệ tinh chính xác. Thuật toán tìm kiếm số nguyên đa trị.

Chủ đề:
Lưu

Nội dung Text: Tóm tắt Luận án tiến sĩ Kỹ thuật: Nghiên cứu thuật toán và xây dựng chương trình xử lý số liệu GNSS dạng RINEX nhằm phát triển ứng dụng công nghệ định vị vệ tinh ở Việt Nam

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC MỎ - ĐỊA CHẤT NGUYỄN GIA TRỌNG NGHIÊN CỨU THUẬT TOÁN VÀ XÂY DỰNG CHƯƠNG TRÌNH XỬ LÝ SỐ LIỆU GNSS DẠNG RINEX NHẰM PHÁT TRIỂN ỨNG DỤNG CÔNG NGHỆ ĐỊNH VỊ VỆ TINH Ở VIỆT NAM Ngành: Kỹ thuật trắc địa - bản đồ Mã số : 9520503 TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT TRẮC ĐỊA - BẢN ĐỒ Hà Nội - 2019
  2. Công trình được hoàn thành tại: Bộ môn Trắc địa cao cấp Khoa Trắc địa - Bản đồ và Quản lý đất đai Trường Đại học Mỏ - Địa chất Người hướng dẫn khoa học: PGS. TS Đặng Nam Chinh Phản biện 1: GS.TS Võ Chí Mỹ Phản biện 2: PGS.TS Trần Đình Tô Phản biện 3: PGS.TSKH Hà Minh Hòa Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án cấp Trường họp tại Trường Đại học Mỏ - Địa chất vào hồi …..giờ … ngày … tháng… năm… Có thể tìm hiểu luận án tại thư viện: - Thư viện Quốc Gia, Việt Nam - Thư viện Trường Đại học Mỏ - Địa chất
  3. 1 MỞ ĐẦU 1. Tính cấp thiết của luận án Được đưa vào Việt Nam từ những năm 1990, công nghệ GNSS cũng đã chứng tỏ được ưu thế vượt trội so với các công nghệ khác khi sử dụng trong các đơn vị sản xuất trắc địa - bản đồ. Về nghiên cứu ứng dụng công nghệ GNSS cũng như nghiên cứu thuật toán xử lý số liệu GNSS, đã có các công trình được công bố bởi một số nhà khoa học như PGS.TS Đặng Nam Chinh, PGS.TSKH Hà Minh Hòa, PGS.TS Nguyễn Ngọc Lâu … cung cấp kiến thức tổng quát về công nghệ GNSS. Đã có các công bố về nghiên cứu xây dựng phần mềm như PGS.TSKH Hà Minh Hòa, PGS.TS Nguyễn Ngọc Lâu công bố gói phần mềm GUST dùng để xử lý cạnh dài; TS Nguyễn Thị Thanh Hương và nhiều người khác đã công bố kết quả xây dựng phần mềm GNSS- PRO xử lý dữ liệu cạnh ngắn kết hợp tín hiệu GPS/GLONASS; Trung tâm NAVIS (Đại học Bách khoa Hà Nội) đã xây dựng giải pháp định vị (cả phần cứng và phần mềm) độ chính xác cao dựa trên các trạm tham chiếu. Tuy nhiên, cho đến thời điểm hiện tại việc ứng dụng công nghệ GNSS ở Việt Nam vẫn thuần túy dựa trên máy và phần mềm của nước ngoài. Với các ứng dụng GNSS rất rộng rãi trong nhiều lĩnh vực, nhu cầu xây dựng phần mềm GNSS nhằm chủ động trong ứng dụng công nghệ này tại Việt Nam là nhu cầu cần thiết. Tháng 9 năm 2011, khi mà đa số các đơn vị sản xuất trong lĩnh vực trắc địa - bản đồ tại Việt Nam đang quen với việc sử dụng phần mềm GPSurvey 2.35, TGO thì hai phần mềm này hết thời gian sử dụng. Việc đột ngột dừng không hỗ trợ cho các phần mềm GPSurvey 2.35, TGO đã khiến nhiều đơn vị sản xuất chậm bàn giao thành quả do đo xong mà không xử lý được số liệu. Đây là một minh chứng rõ nét về việc cần chủ động trong khai thác, sử dụng công nghệ tại Việt Nam. Khoa Trắc địa - Bản đồ và Quản lý đất đai, trường Đại học Mỏ - Địa chất là cơ sở đào tạo lớn về trắc địa - bản đồ của cả nước nhưng cho đến thời điểm hiện tại vẫn chỉ đơn thuần sử dụng phần mềm của nước ngoài trong giảng dạy định vị vệ tinh cho các bậc học. Để có thể nâng cao chất lượng đào tạo đáp ứng yêu cầu của xã hội nhất thiết phải xây dựng nhóm nghiên cứu mạnh về xử lý số liệu GNSS nói chung và xây dựng phần mềm xử lý số liệu GNSS nói riêng. Xuất phát từ các yêu cầu nêu trên, việc lựa chọn đề tài “Nghiên cứu thuật toán và xây dựng chương trình xử lý số liệu GNSS dạng RINEX nhằm phát triển ứng dụng công nghệ định vị vệ tinh ở Việt Nam” mang ý nghĩa khoa học và thực tiễn cao.
  4. 2 2. Mục tiêu và nội dung nghiên cứu Mục tiêu nghiên cứu: Làm rõ các thuật toán giải bài toán định vị tuyệt đối và định vị tương đối; Xây dựng chương trình xử lý số liệu định vị vệ tinh từ định dạng RINEX. Nội dung nghiên cứu: Các trị đo trong công nghệ GNSS và định dạng dữ liệu; Ảnh hưởng của các nguồn sai số đối với trị đo GNSS và biện pháp khắc phục; Phương pháp xác định tọa độ vệ tinh từ lịch vệ tinh quảng bá và lịch vệ tinh chính xác; Thuật toán tìm kiếm số nguyên đa trị; Ứng dụng phép lọc Kalman trong xử lý số liệu định vị vệ tinh; Quy trình giải bài toán định vị tuyệt đối và định vị tương đối xử lý sau. 3. Đối tượng và phạm vi nghiên cứu - Đối tượng nghiên cứu: Định dạng dữ liệu RINEX; Phương pháp hiệu chỉnh ảnh hưởng của các nguồn sai số đối với trị đo GNSS; Thuật toán giải các bài toán định vị vệ tinh; Phương pháp xây dựng chương trình xử lý số liệu GNSS. - Phạm vi nghiên cứu: Thuật toán giải các bài toán định vị vệ tinh từ dữ liệu RINEX; Độ chính xác định vị GNSS một tần số đáp ứng yêu cầu về độ chính xác của đa số các mục tiêu định vị và nguyên lý định vị đối với các hệ thống vệ tinh về cơ bản là như nhau nên mặc dù tên luận án có đề cập đến xử lý dữ liệu GNSS nhưng luận án này chủ yếu tập trung nghiên cứu các thuật toán xử lý dữ liệu GPS một tần số. 4. Cơ sở tài liệu xây dựng luận án - Số liệu sử dụng trong tính toán thực nghiệm là các số liệu đo tại Việt Nam và trên thế giới đã được chuyển đổi về định dạng RINEX, các dữ liệu phụ trợ được lấy về từ internet. - Nghiên cứu sinh đã tham khảo tài liệu từ các đề tài mà mình trực tiếp tham gia và các báo cáo tổng kết đề tài, nhiều bài báo, công trình trong và ngoài nước liên quan đến nghiên cứu thuật toán và xây dựng chương trình xử lý số liệu GNSS. 5. Những luận điểm bảo vệ Luận điểm 1: Xử lý số liệu GNSS được thực hiện trong hệ 4D (không gian-thời gian) với các trị đo và sai số liên tục biến đổi, vì thế vấn đề đồng bộ thời gian và tính toán các số cải chính thay đổi theo thời gian mang tính quyết định tới chất lượng của lời giải các bài toán định vị. Phương pháp đồng bộ hóa thời gian bằng cách tính số cải chính thay đổi khoảng cách theo thời gian đảm bảo yêu cầu về đồng bộ hóa thời gian trong xử lý số liệu GNSS.
  5. 3 Luận điểm 2: Phương pháp tính trọng số bằng cách ước lượng phương sai theo tiêu chuẩn của Ủy ban vô tuyến cho hàng không (RTCA) cho hiệu quả cao hơn phương pháp tính trọng số theo hàm của góc cao vệ tinh. Luận điểm 3: Chương trình xử lý số liệu GNSS đã được xây dựng cho phép xử lý sau bài toán định vị tuyệt đối có độ chính xác tương đương định vị vi phân (DGPS) phục vụ định vị trên biển. 6. Điểm mới của luận án - Đề xuất công thức đồng bộ thời gian do đạo hàm bậc nhất của khoảng cách theo thời gian. - Đề xuất công thức tính chuyển chiều dài cạnh từ các tâm ăng ten về các tâm mốc trắc địa. - Ứng dụng thành công phương pháp ước lượng phương sai của các nguồn sai số đối với trị đo theo tiêu chuẩn của RTCA và phép lọc Kalman trong xử lý số liệu GNSS. - Đề xuất ứng dụng thuật toán giải bài toán định vị tuyệt đối trong trường hợp nhảy đồng hồ máy thu. 7. Ý nghĩa khoa học Đã xác lập cơ sở khoa học và phương pháp luận xây dựng thuật toán xử lý dữ liệu GNSS dạng RINEX phục vụ lập trình giải các bài toán định vị vệ tinh. 8. Ý nghĩa thực tiễn Kết quả nghiên cứu của luận án có thể được ứng dụng để xử lý dữ liệu GNSS dạng RINEX trong các nội dung định vị trên lãnh thổ Việt Nam. 9. Bố cục của luận án Luận án gồm 4 chương, không kể phần mở đầu và kết luận: - Mở đầu - Chương 1. Tổng quan về thuật toán và phần mềm xử lý số liệu GNSS - Chương 2. Trị đo GNSS và vấn đề hiệu chỉnh ảnh hưởng của các nguồn sai số đối với trị đo - Chương 3. Thuật toán giải bài toán định vị tuyệt đối và định vị tương đối - Chương 4. Xây dựng chương trình xử lý số liệu GNSS và tính toán thực nghiệm - Kết luận và kiến nghị
  6. 4 10. Nơi thực hiện đề tài Luận án được thực hiện tại Bộ môn Trắc địa cao cấp, Khoa Trắc địa - Bản đồ và Quản lý đất đai, Trường Đại học Mỏ - Địa chất. 11. Lời cảm ơn Tôi xin trân trọng cảm ơn thầy giáo hướng dẫn PGS.TS Đặng Nam Chinh, các thầy cô giáo trong Bộ môn Trắc địa cao cấp, Khoa Trắc địa - Bản đồ và Quản lý đất đai, Trường Đại học Mỏ - Địa chất đã tận tình giúp đỡ, góp ý và tạo những điều kiện tốt nhất để nghiên cứu sinh có thể hoàn thành nhiệm vụ của mình. Trân trọng cảm ơn Ban chủ nhiệm Khoa, các thầy cô giáo trong Khoa, các nhà khoa học trong và ngoài trường đã quan tâm, đóng góp ý kiến để nghiên cứu sinh hoàn thiện tốt hơn bản luận án của mình. Đặc biệt gửi lời cảm ơn tới tất cả các thành viên trong gia đình đã dành những điều kiện tốt nhất về tinh thần và vật chất để tôi có thể hoàn thành tốt nhất khóa học của mình.
  7. 5 CHƯƠNG 1. TỔNG QUAN VỀ THUẬT TOÁN VÀ PHẦN MỀM XỬ LÝ SỐ LIỆU GNSS 1.1 Các kết quả nghiên cứu ở nước ngoài 1.1.1 Các kết quả nghiên cứu về thuật toán xử lý số liệu GNSS Công nghệ GPS nói riêng và công nghệ GNSS nói chung đang được ứng dụng trong mọi lĩnh vực của đời sống xã hội. Để có các kết quả như vậy, đã có rất nhiều các nghiên cứu sâu, rộng về chế tạo vệ tinh, chế tạo máy thu, thuật toán giải các bài toán cũng như xây dựng các phần mềm xử lý số liệu GNSS. Từ các kết quả nghiên cứu đó, ứng dụng của GNSS hiện nay đã hình thành các quy trình khép kín từ phần cứng đến phần mềm. Cũng từ các nghiên cứu đó, rất nhiều các công trình nghiên cứu về thuật toán xử lý số liệu GNSS đã được công bố. Trước hết có thể kể đến các công bố về thuật toán được công bố trong các sách giáo khoa về GNSS như Hofmann-Wellenhof [59], Teunissen [61], Alfred Leick [63], Montenbruck [76] … Các công trình nêu trên tổng hợp kết quả nghiên cứu của rất nhiều các tác giả khác nhau nhằm cung cấp đến người đọc từ các kiến thức cơ bản nhất về công nghệ GNSS đến công thức giải các bài toán định vị. Tuy nhiên, trong các tài liệu đó, hầu hết không đề cập tới thuật toán phục vụ cho lập trình máy tính và trình tự tính toán tường minh. Bên cạnh các tài liệu cung cấp tổng hợp kiến thức về GNSS, có các tài liệu cung cấp kiến thức về một nội dung chuyên biệt như tài liệu bàn về vấn đề giải số nguyên đa trị của Verhagen.S. Thuật toán giải các bài toán định vị tuy được công bố rộng rãi trên rất nhiều các công trình khác nhau nhưng thông tin chỉ mang tính tổng quát và không phải lúc nào cũng có thể làm theo được. Thông thường, các thuật toán sau khi được nghiên cứu sẽ được chuyển giao để chuyển thành các sản phẩm thương mại hóa, có bản quyền. Tính cho đến thời điểm hiện tại, định vị tương đối đã cho độ chính xác rất cao nên ở nước ngoài các nghiên cứu về xử lý số liệu GNSS tập trung vào nâng cao độ chính xác định vị PPP tức thời, định vị GNSS - indoor, GNSS-R và thuật toán xử lý số liệu GNSS trên các thiết bị thông minh … 1.1.2 Các kết quả xây dựng phần mềm Các phần mềm đã được xây dựng trên thế giới có thể được chia làm 4 nhóm: a. Nhóm các phần mềm thông dụng: được xây dựng bởi các hãng chế tạo máy thu: - Hãng Trimble (Mỹ): có các phần mềm TBC, TTC …
  8. 6 - Hãng Topcon (Nhật Bản): Pinacle, TOPSurvey, Topcon Tool. - GMC manufacture (Trung Quốc): Hi-Target ….. Đặc trưng của các phần mềm này là dùng để xử lý số liệu đo cạnh ngắn và các mục tiêu định vị điểm với độ chính xác không cao. b. Nhóm các phần mềm xử lý số liệu độ chính xác cao (chuyên dụng): - Bernese: Được phát triển bởi Viện Thiên văn thuộc Đại học Bern (Thụy Sỹ). - Gamit/Globk: Được xây dựng bởi Khoa Khí quyển Trái Đất và Khoa học hành tinh, Viện công nghệ Massachusetts (MIT- Massachusetts Institute of Technology). - GIPSY-OASIS: Được phát triển bởi Phòng thí nghiệm tên lửa đẩy (JPL). Trong số các phần mềm nêu trên, Bernese và Gamit/Globk chỉ nhận dữ liệu đầu vào ở định dạng RINEX. c. Nhóm các phần mềm mã nguồn mở - RTKLib: RTKLib là gói chương trình mã nguồn mở do tác giả T.Takasun (Nhật Bản) công bố năm 2004 phục vụ cho mục đích định vị GNSS thông thường và định vị GNSS chính xác. - Phần mềm LAMBDA: dùng để tìm kiếm (giải) số nguyên đa trị. d. Nhóm các phần mềm xử lý số liệu trực tuyến 1.2 Các kết quả nghiên cứu ở Việt Nam 1.2.1 Các kết quả nghiên cứu về thuật toán xử lý số liệu GNSS Bên cạnh các nghiên cứu ứng dụng GNSS, có rất nhiều các nghiên cứu về thuật toán xử lý số liệu GNSS đã được công bố ở Việt Nam trong thời gian vừa qua. Trước tiên, có thể kể đến các sách giáo khoa về GNSS đã được xuất bản bởi các tác giả PGS.TS Đặng Nam Chinh, PGS.TS Đỗ Ngọc Đường [4], PGS.TSKH Hà Minh Hòa, PGS.TS Nguyễn Ngọc Lâu [12], TS. Trần Hồng Quang [27] … Các tài liệu nêu trên đã giới thiệu các bài toán cơ bản trong xử lý số liệu định vị vệ tinh như bài toán định vị tuyệt đối, bài toán định vị tương đối tĩnh nhưng chưa giới thiệu sâu về bài toán định vị tuyệt đối chính xác cũng như bài toán định vị động (PPK, RTK). Bên cạnh các công trình nghiên cứu phát triển và ứng dụng công nghệ GNSS như đã trình bày ở trên, còn một số hạn chế có thể kể đến như: - Chưa có nhiều nghiên cứu cơ bản về xử lý số liệu GNSS. - Các đề tài hầu hết chỉ giới thiệu kết quả nghiên cứu, ít làm rõ cơ sở lý thuyết và thuật toán (quy trình) tính toán các bài toán cơ bản trong định vị vệ tinh.
  9. 7 - Các nghiên cứu mang tính đơn lẻ, chưa hình thành trường phái hay một tập thể có chung mục tiêu. - Trong giảng dạy về công nghệ GNSS cũng chỉ mới đề cập tới những công thức cơ bản, chưa đi vào các thuật toán, phương pháp tính. 1.2.2 Các kết quả xây dựng phần mềm a. Bộ phần mềm NAVISTAR được xây dựng bởi Trung tâm NAVIS, Trường Đại học Bách khoa Hà Nội. b. Các phần mềm xây dựng bởi các tác giả thuộc Viện Khoa học Đo đạc và Bản đồ: - Phần mềm GUST dùng để xử lý số liệu cạnh dài. - Phần mềm GNSS-PRO dùng để xử lý dữ liệu đo tĩnh cạnh ngắn. Tính đến thời điểm hiện tại, việc xử lý số liệu GNSS tại Việt Nam vẫn sử dụng phần mềm của nước ngoài. Khi sử dụng các phần mềm như vậy có một số nhược điểm: - Không can thiệp được vào quá trình xử lý do phần mềm khép kín. - Giao diện sử dụng với ngôn ngữ là tiếng Anh. - Không đưa ra kết quả xử lý như mong muốn của người sử dụng. 1.3 Phạm vi nghiên cứu của luận án Xuất phát từ tính cấp thiết và hạn chế như đã nêu ở trên, luận án tập trung giải quyết một số vấn đề như sau: - Trình bày một cách hệ thống thuật toán giải các bài toán định vị GNSS trong đó tập trung vào việc xác định trọng số dựa vào ước lượng phương sai cho các trị đo, ứng dụng phép lọc Kalman trong xử lý số liệu GNSS. - Đề xuất thuật toán đồng bộ hóa thời gian khi khai triển Taylor khoảng cách từ vệ tinh đến máy thu theo thời gian, thuật toán quy chuyển véc tơ cạnh từ các tâm pha ăng ten về các tâm mốc trắc địa. - Đề xuất ứng dụng thuật toán sử dụng phép lọc Kalman trong xử lý số liệu GNSS. - Đề xuất ứng dụng phương pháp tính trọng số bằng cách ước lượng phương sai của các nguồn sai số đối với trị đo theo tiêu chuẩn của RTCA. - Dựa trên các thuật toán đã đề xuất, sử dụng ngôn ngữ lập trình VB.net để xây dựng chương trình xử lý số liệu GNSS từ định dạng RINEX.
  10. 8 CHƯƠNG 2. TRỊ ĐO GNSS VÀ VẤN ĐỀ HIỆU CHỈNH ẢNH HƯỞNG CỦA CÁC NGUỒN SAI SỐ ĐỐI VỚI TRỊ ĐO 2.1 Trị đo GNSS - Công thức xác định trị đo khoảng cách giả theo mã Pji (t) = ρi (t) + cδt(t) + Iij (t) + Tji (t) + εij (t) (2.1) - Công thức xác định trị đo pha sóng tải Φsr,j (t)=ρsr (t,t-τsr )+Isr,j (t)+Trs (t)+c(dt r (t)-dts (t-τsr )+δr,j (t)+δs,j (t-τsr )+λ j Nsr,j +εsr,j (t) (2.2) - Công thức xác định trị đo doppler dρsr (t r ,t e ) dβ D= -f + δf + ε (2.3) λdt dt Trong các công thức (2.1), (2.2), (2.3): i là khoảng cách hình học từ máy thu tới vệ tinh thứ i. t là sai số đồng hồ bao gồm cả sai số đồng hồ máy thu và sai số đồng hồ vệ tinh. I là ảnh hưởng của tầng điện ly đối với trị đo. T là ảnh hưởng của tầng đối lưu đối với trị đo.  là bước sóng của sóng tải. N là số nguyên lần bước sóng (hay còn gọi là số nguyên đa trị). f là tần số của sóng tải. εij là ảnh hưởng của các nguồn sai số khác đối với trị đo như: - Số hiệu chỉnh do độ lệch ăng ten máy thu. - Số hiệu chỉnh do độ lệch ăng ten vệ tinh. - Số hiệu chỉnh do độ trễ phần cứng (DCB) của máy thu, vệ tinh. - Số hiệu chỉnh do ảnh hưởng của hiện tượng đa đường dẫn. Từ các công thức trên có thể thấy rằng, tất cả các yếu tố tham gia vào giải bài toán định vị như tọa độ vệ tinh, trị đo cũng như các số hiệu chỉnh cho trị đo liên tục thay đổi (là hàm) của thời gian. Do đó khi xử lý số liệu GNSS, vấn đề xác định thời điểm và đồng bộ hóa thời gian là công việc cực kỳ quan trọng. Bên cạnh đó, vấn đề hiệu chỉnh hoặc loại trừ ảnh hưởng của các nguồn sai số cũng quyết định đến chất lượng giải các bài toán định vị. Từ đó có thể thấy rằng, cần thiết phải nghiên cứu về bản chất của trị đo, phương pháp giảm thiểu hoặc loại trừ ảnh hưởng của các nguồn sai số đối với trị đo cũng như vấn đề đồng bộ hóa thời gian. 2.2 Các nguồn sai số trong trị đo GNSS và biện pháp khắc phục
  11. 9 2.2.1 Các nguồn sai số liên quan đến vệ tinh - Sai số đồng hồ vệ tinh. - Sai số do phần cứng của vệ tinh. - Sai số do độ lệch tâm phát tín hiệu và biến thiên tâm phát tín hiệu vệ tinh. - Sai số xác định tọa độ vệ tinh trên quỹ đạo. 2.2.2 Các nguồn sai số liên quan đến máy thu - Sai số do đồng hồ máy thu. - Sai số lệch tâm pha ăng ten và biến thiên tâm pha ăng ten máy thu. - Sai số do phần cứng của máy thu. 2.2.3 Các nguồn sai số liên quan đến môi trường truyền tín hiệu - Sai số do ảnh hưởng của tầng điện ly. - Sai số do ảnh hưởng của tầng đối lưu. - Sai số do ảnh hưởng của hiện tượng đa đường dẫn 2.3 Dữ liệu đo chuyển về định dạng RINEX Định dạng dữ liệu RINEX là định dạng dữ liệu độc lập với máy thu, theo đó, dữ liệu đo được bởi các máy thu khi chuyển về định dạng RINEX ở dạng mã ASCII có thể đọc được một các tường minh. Quy trình chuyển từ dữ liệu thô đo được bởi các máy thu sang định dạng RINEX như sau: - Định dạng dữ liệu RINEX là một định dạng tường minh, giúp người nghiên cứu không thuộc các hãng sản xuất máy thu có thể hiểu được định dạng dữ liệu trong công nghệ GNSS. Dựa vào định dạng RINEX, có thể xử lý số liệu mạng lưới trắc địa được đo bởi máy thu của các hãng chế tạo máy khác nhau. - Từ việc hiểu tường minh định dạng RINEX, có thể giúp người nghiên cứu xây dựng các chương trình (phần mềm) xử lý số liệu định vị vệ tinh độc lập.
  12. 10 CHƯƠNG 3. THUẬT TOÁN GIẢI BÀI TOÁN ĐỊNH VỊ TUYỆT ĐỐI VÀ ĐỊNH VỊ TƯƠNG ĐỐI 3.1 Bài toán định vị tuyệt đối 3.1.1 Bài toán định vị tuyệt đối thông thường (SPP) Bài toán SPP được giải theo trình tự như sau: - Tính tọa độ vệ tinh. - Tính tọa độ gần đúng của điểm quan sát. - Tính các số hiệu chỉnh do ảnh hưởng của các nguồn sai số đối với trị đo. - Giải nghiệm, đánh giá độ chính xác. - Tính đổi và tính chuyển tọa độ (nếu cần). 3.1.2 Tính số hiệu chỉnh khoảng cách theo thời gian Trong tính toán định vị tuyệt đối bằng khoảng cách giả, cần biết giá trị đạo hàm khoảng cách địa diện theo thời gian (  ( t ) ) như là một hệ số biến đổi để tính số hiệu chỉnh do không đồng bộ thời gian vào khoảng cách giả theo công thức sau. (t )   (t ).t (3.1) trong đó  ( t )  (d / dt ) và  t là khoảng thời gian tín hiệu lan truyền từ vệ tinh đến máy thu. Đạo hàm khoảng cách địa diện theo thời gian (  ) đối với một vệ tinh j là giá trị biến đổi theo thời gian, nó phụ thuộc vào tốc độ chuyển động của vệ tinh, tốc độ quay quanh trục của Trái Đất, vị trí tức thời của vệ tinh trên quỹ đạo và vị trí máy thu trong hệ tọa độ trái đất. Trong trường hợp này ta thay Ellipsoid trái đất bằng hình cầu (phụ trợ) bán kính R (bán kính trung bình). Xét tam giác tạo bởi vị trí vệ tinh S tại thời điểm t, tâm trái đất O và vị trí máy thu M, ta có quan hệ giữa khoảng cách địa diện  với khoảng cách địa tâm r và bán kính trung bình R của Trái Đất tại điểm quan sát như sau:  2  R 2  r 2  2Rr cos  (3.2) trong đó  là khoảng cách cầu giữa hướng tới điểm quan sát M và hướng S’ tới vệ tinh (S’ là hình chiếu hướng tâm của vệ tinh S trên mặt cầu). Qua chứng minh, thu được công thức tính ảnh hưởng do chuyển động của vệ tinh đối với sự thay đổi khoảng cách như sau: d a.e.(1  e 2 ) sin (r  R cos ) R.r [A1 sin(   )  B1 cos(   )] ( ) VT  {  }n 0 (3.3) dt (1  e cos ) 2 (1  e cos )  (1  e cos )
  13. 11 Khi chứng minh công thức (3.3) ta chỉ xét vệ tinh chuyển động trên quỹ đạo, còn Trái đất không chuyển động. Trên thực tế, Trái Đất liên tục quay quanh trục, do đó phải xét thêm thành phần thứ hai đến đạo hàm d / dt do chuyển động quay của Trái đất: d ( ) td  E R. cos BM cos E. sin A (3.4) dt trong đó: E là vận tốc góc chuyển động quay quanh trục của Trái Đất, BM là độ vĩ điểm quan sát, E là góc cao vệ tinh, A là phương vị vệ tinh tại điểm quan sát. Như vậy ảnh hưởng tổng hợp của chuyển động vệ tinh và chuyển động của Trái đất trong đạo hàm  sẽ là: d d  ( t )  ( ) VT  ( ) td (3.5) dt dt Sau khi đã có giá trị  ( t ) , theo công thức (3.1) sẽ tính được số hiệu chỉnh ( t ) vào khoảng cách giả. Có thể nhận thấy, khi hiệu chỉnh thêm ảnh hưởng do Trái d Đất quay, giá trị ( ) td .t được loại bỏ do có dấu ngược nhau. Trên thực tế chỉ cần dt d cộng vào khoảng cách giả số hiệu chỉnh   ( ) VT .t là đủ. dt Từ các kết quả tính số hiệu chỉnh thay đổi khoảng cách theo thời gian cho thấy, số hiệu chỉnh này thay đổi 1 lượng xấp xỉ 1 cm trên 1 giây. 3.1.3 Tính trọng số Trong các công trình đã công bố trước đó, các tác giả tính trọng số dựa vào hàm góc cao hoặc mô hình kinh nghiệm sử dụng các tham số độ chính xác của máy kết hợp hàm góc cao. Ở đây, tác giả để xuất công thức tính trọng số bằng cách ước lượng phương sai theo tiêu chuẩn của RTCA như sau: 1 wi = (3.6) σ 2 recv +σ 2 URA + σcor 2 + σ 2trop + σion 2 Trong đó: σ 2recv là nhiễu của máy thu ảnh hưởng đến trị đo. σ 2URA là giá trị phương sai tính được dựa vào giá trị sai số khoảng cách đối với người sử dụng được cung cấp trong tệp lịch quảng bá. σcor 2 là phương sai của tọa độ vệ tinh xác định được ảnh hưởng đến trị đo.
  14. 12 σ 2trop là phương sai được xác định theo số hiệu chỉnh do ảnh hưởng của tầng đối lưu đối với trị đo. là phương sai được xác định theo số hiệu chỉnh do ảnh hưởng của tầng điện ly đối với trị đo. 3.1.4 Ứng dụng phép lọc Kalman trong giải bài toán SPP Khi áp dụng phép lọc Kalman vào bài toán SPP, các ma trận được gán các giá trị cụ thể như sau: Ma trận liên hệ với trị đo (hay chính là ma trận hệ số hệ phương trình số hiệu chỉnh trong phương pháp số bình phương nhỏ nhất):  a1X a1Y a1Z -1  2  a a Y2 a 2Z -1 H=  X (3.7)    n   aX a Yn a nZ -1 Trong phương trình trên, chỉ xét đến sử dụng tín hiệu của một hệ thống vệ tinh để giải bài toán. Trong trường hợp thêm một hệ thống vệ tinh cần phải đưa thêm nghiệm là độ lệch về thời gian giữa các hệ thống (tuy đã được quy chuyển thời gian). Ví dụ về ma trận liên hệ với trị đo khi sử dụng tín hiệu của hai hệ thống vệ tinh để giải bài toán như sau:  a1X a1Y a1Z -1 1  2  a a Y2 a 2Z -1 1 H=  X  ... ... ... ... ...   n   aX a Yn a nZ -1 1  Ma trận sai số của trị đo:  σ12    σ 22 R=   (3.8)  ...     σ 2n  Trong (3.8), i được xác định theo tiêu chuẩn của RTCA và: σ2 = σ2rev + σ2URA + σcor 2 + σ2trop + σion 2 (3.9) 3.1.5 Bài toán định vị tuyệt đối chính xác (PPP) Bài toán PPP có các đặc điểm khác so với bài toán SPP như:
  15. 13 - Sử dụng kết hợp cả trị đo khoảng cách giả theo mã và trị đo pha sóng tải. - Sử dụng lịch vệ tinh chính xác và các sản phẩm được cung cấp từ internet. - Tính đến các số hiệu chỉnh như: Tải trọng đại dương, sức tải của khí quyển, di chuyển cực của Trái Đất, số ảnh hưởng do ảnh hưởng của địa triều. - Đưa thêm các tham số như độ trễ tầng đối lưu theo phương thiên đỉnh, số hiệu chỉnh do tầng điện ly … vào giải cùng với các ẩn số khác đã biết. Hệ phương trình tuyến tính khi giải bài toán PPP có thể viết ở dạng: y = Gx (óa10) trong đó  R1C - ρ10 + cδt1 - Tr01   1 1   ΦC - ρ0 + cδt - Tr0 - λ N w  1 1 1 y=  ..............................  (3.11)    R C - ρ0 + cδt - Tr0  n n n n  Φ n - ρ n + cδt n - Tr n - λ w n   C 0 0 N   x 0 - x1 y0 - y1 z 0 - z1   1 M1wet 0 ... 0 ... 0   ρ0 ρ10 ρ10 1   x - x1 y0 - y1 z 0 - z1   0 1 1 M1wet 1 ... 0 ... 0   ρ0 ρ10 ρ10   ... ... ... ... ... ... ... ... ... ...    x0 - xk y0 - yk z0 - zk   1 M kwet 0 ... 0 ... 0   ρ0 ρ0k ρ0k k  G=  k  (3.12)  x0 - x y0 - yk z0 - zk 1 M k 0 ... 1 ... 0   ρ0 k ρ0k ρ0k wet     ... ... ... ... ... ... ... ... ... ...   x - xn y0 - yn z0 - zn   0 n 1 M nwet 0 ... 0 ... 0   ρ0 ρ0n ρ0n   n   x0 - x y0 - yn z0 - zn  ρn 1 M nwet 0 ... 0 ... 1   0 ρ0n ρ0n  x =  dx dy dz cδt R B1C ... BCk ... BCn  T ΔTrz,wet (3.13) 3.2 Bài toán định vị tương đối 3.2.1 Hiệu của các trị đo - Hiệu đơn: Dùng để xác định lời giải ban đầu khi giải bài toán RTK. - Hiệu kép: Dùng để giải bài toán định vị tương đối tĩnh và lời giải cuối khi giải bài toán RTK. - Hiệu bội 3: Sử dụng để giải cạnh, phát hiện và hiệu chỉnh hiện tượng trượt chu kỳ. 3.2.2 Thuật toán định vị tương đối tĩnh Xuất phát từ phương trình hiệu bậc 2 của các trị đo, viết được phương trình số hiệu chỉnh:
  16. 14 jk VAB jk (t)=a XB jk (t)dX B +a YB jk (t)dYB +a ZB jk (t)dZB +λN AB -lAB jk (t) (3.14) Hệ phương trình số hiệu chỉnh ở dạng ma trận có thể được viết như sau: V = BXB + AXN + L, P (3.15) Trong đó:  A1  λ  A   λ  A=  2  Ai =    ...   ...       A n t   λ  (n -1)(n -1) ; j j  N AB j1   j2  N dX B  X N =  AB  X B =  dYB   ...   j,k   dZB   N AB  (n j -1),1 ;  B1  a XB j1 j1 a YB j1 a ZB  B   j2 j2 j2  a a YB a ZB B=   2 Bi =  XB   ...   ... ... ...     jk jk  a XB  3,(n -1) jk  Bn t  a YB a ZB ; j 3.2.3 Vấn đề ước lượng phương sai 3.2.4 Quy chuyển véc tơ cạnh từ các tâm ăng ten về các tâm mốc trắc địa a. Công thức tính hiệu chỉnh độ cao ăng ten đã công bố - PGS.TSKH Hà Minh Hòa đã tính hiệu chỉnh độ cao ăng ten cho các trị đo của tệp trị đo đơn nhưng chưa xét đến độ lệch và biến thiên tâm pha ăng ten máy thu. - Trong phần mềm RTKLib đã công bố cách tính hiệu chỉnh độ cao, độ lệch tâm pha cũng như biến thiên tâm pha ăng ten máy thu cho trị đo. b. Đề xuất công thức quy chuyển véc tơ cạnh từ các tâm ăng ten về các tâm mốc trắc địa
  17. 15 Hình 3.1 Chiều cao ăng ten máy thu tại hai điểm M1 và M2 Tọa độ tâm pha ăng ten A1 của máy thu đặt tại M1 và tâm pha ăng ten A2 của máy thu đặt tại điểm M2 trong hệ tọa độ địa diện là:  x1   0  x2   0   y  =  0  và  y  =  0  (3.16)  1    2    z1   h1   z 2   h 2  Thành phần độ lệch tâm pha ăng ten khi chuyển từ hệ tọa độ địa diện sang hệ tọa độ địa tâm tại hai điểm M1, M2 lần lượt sẽ là : δx1  0 cosB1cosL1  δx 2  0 cosB2cosL2   δy  = R  0  = h  cosB sinL  và  δy  = R  0  = h  cosB sinL  (3.17)  1 1  1 1 1  2 2   2  2 2  δz1   h1   sinB1   δz 2   h 2   sinB2  Với: -sinB1cosL1 -sinL1 cosB1cosL1  -sinB2cosL2 -sinL 2 cosB2cosL 2   R1 =  -sinB1sinL1 cosL1 cosB1sinL1  và R 2 =  -sinB2sinL 2  cosL 2 cosB2sinL 2   cosB1 0 sinB1   cosB2 0 sinB2  Như vậy các số cải chính vào các thành phần của véc tơ cạnh (xác định trong hệ địa tâm) để chuyển từ hai tâm ăng ten về hai tâm mốc trắc địa sẽ là: θx12  δx 2  δx1  cosB2cosL 2  cosB1cosL1  θy  =  δy  -  δy  = h  cosB sinL  - h  cosB sinL  (3.18)  12   2   1  2  2 2 1 1 1  θz12   δz 2   δz1   sinB2   sinB1  Ký hiệu các thành phần véc tơ cạnh trong hệ địa tâm giữa hai tâm pha ăng ten là X12, Y12, Z12 chúng ta sẽ tính được véc tơ cạnh cũng trong hệ địa tâm nhưng đã được chuyển về hai tâm mốc theo công thức:
  18. 16 ΔX12  ΔX12  θx12         ΔY12  =  ΔY12  + θy12  (3.19)  ΔZ12   ΔZ12   θz12  3.2.5 Thuật toán định vị tương đối động Tại mỗi thời điểm cần xác định véc tơ ẩn số có dạng như sau: X =  rrT B5T  T vTr B1T BT2 (3.20) Để giải các ẩn số nêu trên, sử dụng phương trình trị đo: y =  Φ1T P5T  T ΦT2 Φ5T P1T P2T (3.21) Với ma trận liên hệ:  -DE 0 λ1D 0 0     -DE 0 0 λ2D 0  h(x)  -DE 0 0 0 λ5D  H(x) = =  (3.22) x  -DE 0 0 0 0   -DE 0 0 0 0     -DE 0 0 0 0  Ma trận sai số của các trị đo:  DR Φ,1DT   T   DR Φ,2 D   DR Φ,5 DT  R=   (3.23)  DR P,1DT   DR P,2 DT     DR P,5 DT   Để xác định được các giá trị tiên nghiệm, cần xác định ma trận chuyển trạng thái cũng như nhiễu trạng thái. Ma trận chuyển trạng thái được xác định như sau:  I3x3 I3x3 τ r  k+1   Fk = I3x3  (3.24)  I(3m-3)(3m-3)   Ma trận nhiễu của trạng thái:  03x3  k+1   Q k = Qv  (3.25)  0(3m-3)(3m-3)  
  19. 17 Sau khi giải nghiệm theo chu trình Kalman được nghiệm thực và ma trận trọng số lần lượt là:   T ˆ  = GX X ˆ (+) = rˆ T vˆ Tr ˆT N (3.26) k k r Q QNR  Pk = GPk (+)G T =  R  (3.27)  QRN QN  Tiến hành tìm kiếm số nguyên đa trị theo công thức: ˆ TQ-1 (N - N)) N = argmin ((N - N) ˆ (3.28) N NZ Nghiệm số nguyên đa trị tìm kiếm được trong (3.173) chỉ được công nhận khi thỏa mãn điều kiện sau:  N - Nˆ  T ˆ Q-1N (N 2 - N) 2 R= > R thres (3.29)  N - Nˆ  T -1 ˆ Q (N - N) N Và xác định nghiệm cố định:  rr   rˆr  -1 ˆ   =  ˆ  - QRN Q N (N - N) (3.30)  r  r v v 3.3 Giải số nguyên đa trị Để xác định (giải) số nguyên đa trị, có các phương pháp như sau: - Phương pháp làm tròn số nguyên đa trị (IR). - Phương pháp làm tròn có điều kiện (IB). - Phương pháp bình phương số nguyên nhỏ nhất (ILS).
  20. 18 CHƯƠNG 4. XÂY DỰNG CHƯƠNG TRÌNH XỬ LÝ SỐ LIỆU GNSS VÀ TÍNH TOÁN THỰC NGHIỆM 4.1 Giới thiệu về ngôn ngữ lập trình Tác giả lựa chọn ngôn ngữ Visual Studio.NET để xây dựng chương trình xử lý số liệu GNSS dựa trên các thuật toán đã lựa chọn. 4.2 Thiết kế phần mềm 4.2.1 Nguyên tắc chung khi thiết kế phần mềm 4.2.2 Giới thiệu về chương trình tính lập được Chương trình tính do tác giả lập được có giao diện chính như sau: Hình 4.1 Giao diện chính của chương trình a. Mô đun quản lý: Khi chạy chương trình, chương trình sẽ tạo ra các thư mục để lưu trữ số liệu đầu vào và các kết quả tính toán. b. Mô đun nhập số liệu: Cho phép nhập nhiều loại dữ liệu như tệp thông tin trị đo, tệp lịch vệ tinh quảng bá, tệp lịch vệ tinh chính xác, tệp thông tin ăng ten vệ tinh và ăng ten máy thu, tệp thông tin về sự di chuyển cực của Trái đất, tệp các hệ số triều, tệp IONEX, các tệp DCB cũng như các tệp định nghĩa khác. c. Mô đun định vị tuyệt đối: Mô đun này cho phép lựa chọn giải các bài toán SPP cũng như PPP. Giao diện khi chọn giải bài toán SPP cho như hình 4.2, hình 4.3 là giao diện khi lựa chọn giải bài toán PPP và giao diện của chương trình giải bài toán định vị tương đối như hình 4.4.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2