Tóm tắt luận án Tiến sĩ Môi trường: Nghiên cứu phát triển công nghệ yếm khí cao tải tuần hoàn nội IC (internal circulation)
lượt xem 3
download
Luận án này tập trung mô phỏng quá trình tuần hoàn nội (khí kéo nước) để xác định: Lượng nước (QN) được kéo lên bởi mỗi lượng khí (QK); và khả năng khuấy trộn của khí sinh ra và nước tuần hoàn. Từ đó, tính toán cơ cấu tuần hoàn trong hệ IC. Trong luận án cũng trình bày kết quả thử nghiệm chế tạo mô hình hệ IC quy mô phòng thí nghiệm nhằm xác định năng lực xử lý của hệ IC khi vận hành hệ thống với nước thải chăn nuôi lợn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tóm tắt luận án Tiến sĩ Môi trường: Nghiên cứu phát triển công nghệ yếm khí cao tải tuần hoàn nội IC (internal circulation)
- BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ Trần Mạnh Hải NGHIÊN CỨU PHÁT TRIỂN CÔNG NGHỆ YẾM KHÍ CAO TẢI TUẦN HOÀN NỘI- IC (INTERNAL CIRCULATION) Chuyên ngành: Kỹ thuật môi trường Mã số: 9.52.03.20 TÓM TẮT LUẬN ÁN TIẾN SĨ MÔI TRƯỜNG Hà Nội - 2019
- Luận án được hoàn thành tại : - Phòng ứng dụng và chuyển giao công nghệ, Viện Công nghệ môi trường (IET) - Viện Hàn lâm Khoa học và Công nghệ Việt Nam VAST). - Phòng Công nghệ môi trường, Trung tâm nghiên cứu công nghệ môi trường và phát triển bền vững (CETASD) – Trường Đại học Khoa học tự nhiên (HUS). - Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam. Người hướng dẫn khoa học 1: PGS.TS. Cao Thế Hà Người hướng dẫn khoa học 2: PGS.TS. Nguyễn Hoài Châu Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Học viện, họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam vào hồi … giờ ..’, ngày … tháng … năm 2019 Có thể tìm hiểu luận án tại: - Thư viện Học viện Khoa học và Công nghệ - Thư viện Quốc gia Việt Nam
- 1 MỞ ĐẦU Trong lịch sử phát triển, có 4 loại kỹ thuật xử lý yếm khí đã được ứng dụng là: (1) bồn phản ứng khuấy trộn đều – CSTR, (2) kỹ thuật phản ứng tiếp xúc - AC, (3) kỹ thuật dòng chảy ngược qua lớp bùn yếm khí – UASB và (4) kỹ thuật tầng bùn hạt giãn nở - EGSB và kỹ thuật tuần hoàn nội - IC. Trong khoảng 40 năm trở lại đây nhiều công trình áp dụng kỹ thuật yếm khí cao tải với các thiết kế khác nhau được áp dụng [2]. Các tài liệu tham khảo cho thấy IC cùng với EGSB là 2 thiết bị xử lý yếm khí có năng suất cao nhất và tiên tiến nhất hiện nay, kỹ thuật IC có khả năng chịu tải và có năng suất cao nhất trong các kỹ thuật hiện có [3]. Do vậy tốc độ tăng trưởng của các hệ IC rất cao. Năm 1997 cả thế giới mới có 32 hệ IC, tới năm 2007 trên thế giới đã có tới 2266 hệ, đến năm 2015 ước tính số lượng các hệ yếm khí cao tải được lắp đặt đã vượt quá 4000 hệ [4]. Một đặc điểm quan trọng của các kỹ thuật xử lý vi sinh là sự khuấy trộn, tăng khuấy trộn làm tăng khả năng tiếp xúc của vi sinh vật với chất ô nhiễm nên hiệu quả chuyển hóa tăng. Các kỹ thuật UASB và EGSB sử dụng năng lượng của khí sinh ra và dòng tuần hoàn chất lỏng (bằng bơm tuần hoàn) để tăng khả năng khuấy trộn. Kỹ thuật IC sử dụng khí sinh ra để tuần hoàn nước. Đây chính là ưu thế làm cho IC có hiệu quả xử lý cao trong khi lại tiêu thụ ít năng lượng hơn (vìkhông dùng bơm tuần hoàn). Để nghiên cứu chế tạo thành công hệ IC, điểm mấu chốt là cần nghiên cứu chế tạo các cơ cấu tự tuần hoàn không cần năng lượng bên ngoài (bơm tuần hoàn), sử dụng quá trình kéo nước bằng khí tự sinh để tuần hoàn hỗn hợp bùn và nước thải. Hiện nay, các tài liệu hướng dẫn thiết kế hệ UASB tương đối phổ biến nhưng tài liệu về các kỹ thuật tuần hoàn nước như IC được công bố rất ít. Ví dụ, trong cuốn chuyên khảo mới nhất về công nghệ sinh học xử lý nước thải “Handbook of Biological Wastewater Treatment, 2012” [5] có tới 14 ví dụ tính thiết kế hệ UASB kèm lời giải chi tiết mà không có ví dụ nào về các hệ tiên tiến kiểu EGSB và IC. Do vậy, để thúc đẩy ứng dụng hệ IC ở Việt Nam cần phải có các nghiên cứu để xác định các thông số cơ bản phục vụ việc thiết kế và chế tạo thiết bị. Luận án này tập trung mô phỏng quá trình tuần hoàn nội (khí kéo nước) để xác định: (i) lượng nước (QN) được kéo lên bởi mỗi
- 2 lượng khí (QK); và(ii) khả năng khuấy trộn của khí sinh ra và nước tuần hoàn. Từ đó, tính toán cơ cấu tuần hoàn trong hệ IC. Trong luận án cũng trình bày kết quả thử nghiệm chế tạo mô hình hệ IC quy mô phòng thí nghiệm nhằm xác định năng lực xử lý của hệ IC khi vận hành hệ thống với nước thải chăn nuôi lợn. Mục tiêu nghiên cứu Nghiên cứu ứng dụng hệ xử lý yếm khí tuần hoàn nội (IC) trong xử lý nước thải giàu hữu cơ, cụ thể là: (i) Xác lập quan hệ giữa các thông số thiết kế thường dùng (ví dụ: tải lượng, tốc độ nước dâng) với các thông số thiết kế hệ IC (ví dụ: kích thước ống lên, chiều cao vùng phản ứng). (ii) Xác định mối tương quan giữa tải lượng và năng suất xử lý của hệ yếm khí IC trong trường hợp NTCNL. (iii) Xác định khả năng khuấy trộn trong hệ bằng khí sinh ra. (iv) Xác định giá trị các thông số (chiều cao thiết bị, chiều cao vùng phản ứng, đường kính thiết bị, kích thước ống lên) phục vụ thiết kế hệ yếm khí IC. Nội dung nghiên cứu Nội dung 1: Thực nghiệm xác định tỷ lệ K bằng lượng nước được kéo lên bởi mỗi lượng khí (K) ở các mức ngập nước (H1), chiều cao xả nước (H2) vàtiết diện ống dẫn lên thay đổi, độ nhớt và khối lượng riêng xác định của dung dịch. Nội dung 2: Thiết lập phương trình biểu diễn mối liên hệ giữa K=QN/QK với các thông số: mức ngập nước (H1), chiều cao xả nước (H2), tiết diện ống dẫn lên (S) ở độ nhớt và khối lượng riêng xác định của dung dịch. Nội dung 3: Chế tạo và vận hành hệ IC với nước thải chăn nuôi lợn nhằm xác định năng suất xử lý của hệ IC.
- 3 Nội dung 4: Tính toán khả năng khuấy trộn của khí sinh ra và nước tuần hoàn để xác định các thông số thiết kế hệ IC. CHƯƠNG I: TỔNG QUAN Trong lĩnh vực công nghệ vi sinh xử lý nước thải, động học của phản ứng phân hủy yếm khí nói riêng và các phản ứng vi sinh nói chung tuân theo phương trình Monod [12]: 𝑘.𝑆 𝑟𝑠𝑢 = 𝑋 (1.1) 𝐾𝑆 +𝑆 Trong đó: r su = tốc độ tiêu thụ cơ chất (chất ô nhiễm), g/m3 /ngày k = tốc độ tiêu thụ cơ chất riêng tối đa, g cơ chất/g VSS/ngày X = nồng độ sinh khối (vi khuẩn), g VSS/m 3 S = nồng độ cơ chất (quyết định tốc độ), g/m3 Ks = hằng số bán bão hòa = nồng độ cơ chất mà ở đó tốc độ tiêu thụ cơ chất riêng bằng 50% tốc độ tiêu thụ cơ chất riêng tối đa, g/m 3 Theo phương trình (1.1), tốc độ phản ứng (xử lý) tỷ lệ thuận với tốc độ riêng tối đa k (trong quá trình XLYK là hoạt tính tạo metan riêng - SMA (Specific Methanogenic Activity)) và nồng độ vi sinh X trong hệ phản ứng. Muốn giảm thể tích thiết bị phải tăng X. Các kỹ thuật phản ứng mới muốn có năng suất xử lý cao phải đồng thời giải quyết được các yêu cầu: tăng X nhưng không thất thoát mất vi sinh và tiếp xúc vi sinh/nước thải tốt (khuấy trộn). Các thiết bị phản ứng “cao tải” (high - rate) thế hệ mới (AC, AF, UASB, FB, EGSB, IC, . . .) sẽ giải quyết được các vấn đề này.
- 4 Kỹ thuật tuần hoàn nội IC Kỹ thuật IC bắt đầu từ bằng sáng chế của Vellinga (1986) [54]. Thành phần cấu tạo cơ bản của hệ xử lý tuần hoàn nội gồm hệ phân bố nước đầu vào, cơ cấu tuần hoàn nội, vùng phản ứng cao tải ở phía dưới và vùng phản ứng tải lượng thấp (làm sạch sâu) nằm ở phía trên (Hình 1.4). Hình 1. 1. Sơ đồ nguyên lý hệ IC [48] Thiết bị phản ứng kiểu IC có dạng như hai bồn UASB chồng lên nhau, thường là hình trụ có chiều cao khoảng 20 m, tỷ lệ giữa chiều cao và đường kính nằm trong khoảng giá trị 2,3 – 8. Cấu trúc của bộ phận phân phối dòng vào có dạng hình nón, dòng tuần hoàn nội hướng từ trên xuống vào vị trí chóp nón theo phương tiếp tuyến, tạo thành dòng chảy xoáy khi hòa trộn với dòng vào trong cấu trúc hì nh nón. Bên trên hệ phân bố dòng vào là vùng phản ứng cao tải với lớp hạt vi sinh giãn nở. Vùng phản ứng cao tải kéo dài cho tới tận phía dưới của bộ tách khí thứ nhất, chiếm 55 – 65% chiều cao của cột nước và tầng hạt vi sinh cũng có thể chiếm trọn chiều cao của nó (bộ
- 5 tách khí thứ nhất có chiều cao khoảng 2m). Phần lớn chất hữu cơ được chuyển hóa ở khoang này, khí biogas được sinh ra được thu gom nhờ bộ tách pha thứ nhất và dẫn lên qua ống lên 1 (riser). Khi dòng khí chuyển động lên sẽ cuốn theo nước và bùn (gas-lift) từ vùng phân hủy cao tải lên khoang tách khí-lỏng 3, khítách ra, vi sinh vànước được dẫn trở lại vào bộ phân phối. Nước thải sau khi thoát khỏi vùng cao tải chỉ còn chứa phần nhỏ lượng chất ô nhiễm vào vùng xử lý sâu (vùng trên), khoang này đóng vai trò như một hệ xử lý thứ cấp và thực hiện tiếp quá trình chuyển hóa chất hữu cơ, khí sinh ra cũng được thu gom nhờ bộ tách pha thứ hai và cũng thực hiện quá trình gas-lift giống như khoang thứ nhất. Ở tầng một của IC, tốc độ nước dâng có thể lên tới trên 20 m/h, khi tổ hợp hạt bùn-biogas va chạm với bộ tách pha K/L/R ở tốc độ cao thìhiệu quả tách khí sẽ cao hơn. Điểm nổi bật của kỹ thuật IC là mật độ vi sinh rất cao và do đóng góp của dòng tuần hoàn nội nên tốc độ dòng chảy ngược rất lớn, cộng với việc dòng khí sinh ra lớn (do tốc độ chuyển hóa cao) làm tăng cường khả năng khuấy trộn của hệ. Dòng tuần hoàn nội có tính chất tự điều chỉnh: nồng độ cơ chất cao sinh ra lượng khí lớn kéo theo lưu lượng lớn của dòng tuần hoàn, tăng khả năng khuấy trộn và pha loãng dòng vào. Như vậy, để tăng cường khuấy trộn, khác với các trường hợp AF, FB, EGSB phải dùng bơm tuần hoàn thì trong IC động lực để khuấy trộn bao gồm thành phần: (1) dòng nước vào, (2) biogas phát sinh do phân hủy yếm khí, (3) dòng nước tuần hoàn do airlift (khi khởi động sẽ phải dùng bơm và khi đó ta có (4) dòng lỏng do bơm tuần hoàn. Trong IC, biogas phát sinh từ quá trình phân hủy yếm khí
- 6 COD là động lực khuấy trộn quan trọng nhưng mức độ phát sinh biogas lại phụ thuộc vào VLR và khả năng chuyển hóa của vi sinh [19] [55]. Cơ chế dâng (cuốn theo) dòng nước nhờ dòng khí (airlift) là nguyên tắc hoạt động của thiết bị phản ứng kiểu khí dâng nước (airlift reactor – ALR). ALR gồm một ống dâng nước (riser), một đường khí cấp khí vào ống dâng nước và một đường xuống (downcomer). Khí sinh ra được gom về đáy ống đặt ngập trong nước, khi chuyển động lên trên sẽ giãn nở ra (do giảm áp suất và khối lượng riêng) và gây tác động tương tự như vậy đối với nước trong ống, dẫn tới nước chảy ngược lên theo và kéo theo dòng nước xung quanh cùng chảy ngược thành dòng như bơm khí nâng (airlift). CHƯƠNG II: ĐỐI TƯỢNG, PHẠM VI VÀ PHƯƠNG PHÁP NGHIÊN CỨU 2.1. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu Kỹ thuật tuần hoàn nội IC, mô hình airlift và nước thải chăn nuôi lợn. Phạm vi nghiên cứu - Mô hình airlift với chiều sâu ngập nước của ống lên 2,85 m và chiều cao xả nước 50 cm. - Xử lý yếm khí nước thải từ trang trại chăn nuôi lợn kiểu chuồng ướt bằng hệ IC có thể tích hữu ích 30 lít. Quy mô phòng thí nghiệm 2.2. Phương pháp nghiên cứu 2.2.1. Thực nghiệm xác định K = QN/QK.
- 7 Hình 2. 1. Sơ đồ hệ thí nghiệm xác định K Thí nghiệm được tiến hành bằng cách đưa các lượng không khíxác định QK vào đáy ống dẫn khí đi lên qua ống lên T1 theo chiều thẳng đứng, thay đổi các yếu tố: (i) chiều cao mức ngập nước H1, (ii) chiều cao xả nước H2, và (iii) đường kính trong của ống d. Hỗn hợp khí-nước được dẫn sang ống xuống T2 có đường kính d’ (d’ > d), khí thoát ra theo đầu hở phía trên ống T2, lượng nước do khí kéo lên QN được thu ở thùng thu nước và định lượng theo phương pháp cân khối lượng nước thu được trong một khoảng thời gian xác định. 2.2.2. Thiết lập phương trình biểu diễn liên hệ giữa các thông số thiết kế hệ airlift và các thông số vận hành-lưu lượng nước và tỷ lệ khí/nước Phương trình này được thiết lập dựa vào các số liệu thu được từ thực nghiệm, kết hợp với các phương trình, số liệu đã công bố trong các tài liệu và các chương trình máy tính.
- 8 Trước hết, dựa vào định luật bảo toàn năng lượng. Để có thể thực hiện được quá trình khí kéo nước thì năng lượng của khí (chính là thế năng của khí- Etk) phải đủ để thực hiện các quá trình sau: - Đẩy được nước lên độ cao xả nước H2 ở tiết diện ống lên xác định (Thế năng của nước ở độ cao H2- Etn). - Tạo dòng chuyển động của hỗn hợp khí-nước (Động năng của hỗn hợp khí-nước trong ống- Ed). - Tổn thất do lực ma sát của dòng chảy với ống lên ở mức động năng của hỗn hợp- Ett. (Etn + Ed + Ett) = η.Etk (2.3) Trong đó, E biểu diễn bằng J/s. Từ các biểu thức tính Etn, Ed, Ett vàEtk (với K = QN/QK) kết hợp với các phương trình trên và sử dụng chương trình Excel để thiết lập phương trình và tìm giá trị của K. 2.2.3. Phương pháp tìm mô hình thực nghiệm thống kê. Qua phân tích điều kiện thí nghiệm xác định K, ta thấy K là một hàm số của các thông số QK, H1, H2 vàd. Vận tốc khí vk được xác định bằng cách lấy lưu lượng khí Qk chia cho tiết diện ống S: Qk Qk Qk vk (2.4) .R .( d 2 2 S / 4) Khi đó, thay hai đại lượng QK và d bằng vận tốc khí vK ta có hàm biểu diễn K như sau: 𝐾 = 𝑓(𝑣𝐾 , 𝐻1 , 𝐻2 ) (2.5) Sử dụng ngôn ngữ lập trình Fortran để tìm mô hình thực nghiệm.
- 9 2.2.4. Thực nghiệm xử lý nước thải chăn nuôi lợn Hình 2. 2. Sơ đồ hệ IC thí nghiệm xử lý nước thải chăn nuôi Mục tiêu thí nghiệm: Xác định được năng lực xử lý của hệ IC với NTCNL và lượng khí sinh ra khi chuyển hóa mỗi lượng cơ chất (tính theo COD). 2.2.5. Tính công suất và cường độ khuấy trộn trong vùng phản ứng từ lượng biogas phát sinh . 𝑝𝑏𝑖𝑜𝑔𝑎𝑠,ℎ𝑖 𝑃𝑏𝑖𝑜𝑔𝑎𝑠 = 𝑝𝑎′ 𝑉𝑏𝑖𝑜𝑔𝑎𝑠 𝑙𝑛 ( 𝑝𝑎′ ) (2.16 b) hi = H + a – (i – i/2), m (2.17) Sơ đồ tính P như sau:
- 10 Hình 2. 5. Các thành phần khuấy trộn trong hệ IC
- 11 CHƯƠNG III: KẾT QUẢ VÀ THẢO LUẬN 1. Kết quả xác định K 1.1. Kết quả thí nghiệm Theo đó, lượng nước thu được trên mỗi lượng khí cấp vào (K = QN/QK) phụ thuộc vào vận tốc khí (v), mức ngập nước (H1) và chiều cao xả nước (H2): Hình 3. 1. Xu hướng sự thay đổi giá trị của K và QN (tại H1 = 285 và 185 cm) - K tăng khi (i) Vận tốc khí (vk = QK/S) trong ống giảm và/hoặc (ii) tỷ lệ H’ = H1/H2 tăng (mức ngập nước H1 tăng hoặc chiều cao xả nước H2 giảm); Giá trị K lớn nhất (Kmax = 7,2) đạt được trong các thí nghiệm là tại H1 = 285 cm; H2 = 10 cm (H’ = 28,5) và v = 291 m/h (Hình 3.6). Giá trị K nhỏ nhất (Kmin = 1,66) đạt được trong các thí nghiệm là tại H1 = 185 cm, H2 = 50 cm (H’ = 3,7) và v = 1456 m/h (Hình 3. 6). Lượng nước thu được (QN) tăng khi (i) Vận
- 12 tốc khí tăng; và/hoặc (ii) H1 tăng (hoặc H2 giảm) – tỷ lệ H’ = H1/H2 tăng. - QK tăng khi vk tăng thì dù K giảm nhưng QN vẫn tăng tức là K giảm theo QK nhưng tốc độ giảm chậm hơn theo hàm hyperbol. 1.2. Phương trình biểu diễn liên hệ giữa các thông số thiết kế hệ airlift và các thông số vận hành-lưu lượng nước và tỷ lệ khí/nước. Dựa vào định luật bảo toàn năng lượng để biểu diễn mối quan hệ giữa lượng nước được khí kéo lên, phụ thuộc vào: (i) Tiết diện S của ống lên T1; (ii) chiều sâu ngập nước H1; và (iii) chiều cao xả nước (H2) - (hàm K(H1, H2, d1)). Phương trình bảo toàn năng lượng: Etn + Ed + Ett - ηEtk = 0 (3.1) Etk là thế năng của khí [88]: gH E tk Q k P a ln( 1 1 ) (3.2) Pa Etn là thế năng của nước: E tn Q N gH 2 (3.3) Ed là động năng của hỗn hợp khí-nước trong ống: Q N (Q N Q K ) 2 Ed 2 (3.5) 2S Ett là tổn thất năng lượng do trở lực dòng chảy [89]: H1 H E tt ( 0 , 7 2 )Ed (3.6) d 0,7 là hệ số trở lực đi qua nón thu vào trong ống. 0 , 3164 0 , 25 Re (3.7)
- 13 Chỉ số Re [89]: Re = ρ.v.dtl/μ (3.8) 0,5 0,5 dtl = 2.(S/π) .(1-1/(K+1) ) (3.9) Thay các biểu thức tương ứng ở trên vào phương trình (3.1) ta được: 2 Qk gH gH 2 0 , 85 2 K ( K 1 ) Pa ln( 1 1 ) S Pa 0 , 75 H1 H K 1 1 0 ,1535 0 0 , 75 0 , 25 2 1 , 875 QK K( ) d S 4 K 1 1 (3.10) Giải phương trình (3.10) ta tìm được ẩn số K. Vế trái đồng biến với K nên dễ dàng tìm nghiệm bằng phương pháp đồ thị hoặc dùng các chương trình máy tính để giải phương trình. Ở đây, sử dụng phương pháp phân tích tối ưu (hàm What-if Analysis) bằng cách dịch chuyển kết quả (Goal-seek). Mức độ tin cậy (phù hợp) của phương trình 3.10 được đánh giá bằng cách tính phần trăm sai số (K) giữa giá trị K thu được từ thực nghiệm (Ktn) và K tính từ phương trình (3.11) ở cùng điều kiện thí nghiệm: K t韓 h K tn K . 100 % (3.11) K t韓h 1.3. Đánh giá sự phù hợp của phương trình đề xuất Số liệu thống kê trong tổng số 270 kết quả thí nghiệm có 254/270 (94.07%) số liệu thí nghiệm có sai số dưới 10%. Như vậy có thể thấy rằng phương trình đề xuất phù hợp với kết quả thí nghiệm và là cơ sở để tính toán hệ số K phụ thuộc vào vận tốc khí (v) mức ngập nước (H1) cũng như chiều cao đẩy (H2) ở các tiết diện ống (S).
- 14 1.4. Đánh giá sự thay đổi của K khi tăng tiết diện ống lên Để làm rõ ảnh hưởng của tiết diện ống lên, thực nghiệm được tiến hành với tiết diện của ống lên T1 là4,45 cm2 (lớn hơn 2,16 lần) và15,76 cm2 (lớn hơn 7,65 lần) tại H1 = 285 cm vàH2 = 50 cm. Bảng 3. 1. Giá trị của K với tiết diện ống lên S = 4,45 cm2 QK (lít/phút) 2 2.5 3 3.5 4 4.5 5 vk (m/h) 270 337 405 472 539 607 674 Ktn 3.60 3.60 3.70 3.66 3.40 3.29 3.12 Ktính 3.70 3.577 3.451 3.327 3.207 3.093 2.985 (K (%) 2.85 -0.63 -6.73 -9.02 -5.67 -5.95 -4.34 Bảng 3. 2. Giá trị của K với tiết diện ống lên S = 15,76 cm2 QK (lít/phút) 5 6 vk (m/h) 190 228 Ktn 4.40 4.00 Ktính 4.03 3.98 (K (%) -5.95 -4.34 Các kết quả này cho thấy hoàn toàn có thể sử dụng phương trình (3.10) để tính K cho trường hợp tiết diện ống tăng hơn nữa. 1.5. Sự thay đổi của K theo độ nhớt và khối lượng riêng a. Sự thay đổi của K khi độ nhớt tăng Các loại nước thải được coi là rất giàu hữu cơ thì hàm lượng cũng chỉ đến vài chục nghìn mg/l. Thực tế là thành phần hữu cơ lớn nhất trong phần lớn các nước thải giàu hữu cơ là carbonhyđrat. Giả thiết nước thải là dung dịch đường sucroza (phân tử khối = 342 g/mol; COD = 384 g/mol). Với hàm lượng đường sucroza 30 g/L tương ứng với COD = 30*384/342 = 33,7 g/L = 33.700 mg/L.
- 15 Kết quả tính toán cho thấy, giá trị của K giảm không đáng kể. Chẳng hạn, K ở H1 = 285 vàH2 = 50 cm, khi độ nhớt tăng thì K285-50 giảm gần như tuyến tính, mức giảm khoảng 1; 1,8 và 3,8% ứng với mức độ nhớt tăng 8,2; 14,4 và 33,3% (hay 30; 50 và 100 g đường sucroza). Hình 3. 7. Sự thay đổi giá trị của Hình 3. 8. Độ giảm giá trị của K K ở các độ nhớt khác nhau ở các giá trị độ nhớt khác nhau 3.1.4.2. Sự thay đổi của K khi khối lượng riêng của dung dịch tăng Trong thực tế, với mật độ bùn thường gặp trong các bồn xử lý yếm khí cao tải thường ở mức 20-40 kg/m3 (tối đa là 80 kg VSS/m3) và khối lượng riêng của bùn yếm khí hoạt tính ở mức 1,00-1,05 g/mL [4] thì khối lượng riêng tối đa của hỗn hợp bùn-nước yếm khí tối đa tính ở 25oC khoảng 999 kg/m3, so với 997 kg/m3 của nước thì độ chênh chỉ ở mức 0,2%. Như vậy, các số hạng trong phương trình (3.10) liên quan đến khối lượng riêng chỉ sai ở mức 0,2%. Với tỷ trọng ρ = 1050 thì mức giảm K từ 0,4 đến 0,02% ứng với vk tăng từ 291 đến 1456 m/h. Sai lệch này không lớn nên có thể bỏ qua và hoàn toàn có thể sử dụng nước thay vì hỗn hợp phản ứng trong tính toán tiếp theo.
- 16 Hình 3. 9. Sự thay đổi giá trị của Hình 3. 10. Mức giảm của K khi K khi tăng khối lượng riêng khối lượng riêng tăng 1.6. Lựa chọn mô hình biểu diễn Sử dụng kỹ thuật phù hợp hay không phù hợp (fitting) trong Excel để biểu diễn xu hướng sự thay đổi giá trị của K phụ thuộc vk, H1 vàH2. Tính K theo các hàm biểu diễn, tính sai số giữa K thu được với Ktn ta được kết quả là hàm bậc 2 phù hợp nhất. Với lựa chọn hàm bậc 2 và sử dụng “NGÔN NGỮ LẬP TRÌNH FORTRAN” để tìm “MÔ HÌNH TOÁN” ta thu được phương trình sau: K = 7,889 – 5,534.vk + 0,4.H1 – 13,597.H2 – 0,604.vk.H1 + 6,478.vk.H2 + 0,711.H1.H2 + 1,613.vk2 + 0,08.H12 + 3,786.H22. (3.19) Kết quả tính K bằng phương trình (3.19) cho thấy sai số trung bình cho tổng số 253 kết quả là 3,95% với R2 = 0,977. Kết quả này cho thấy có thể sử dụng phương trình (3.19) để tính K cho các trường hợp vk, H1 vàH2 thay đổi và tiết diện ống thay đổi.
- 17 2. Kết quả vận hành hệ IC với NTCNL 2.1. Mối quan hệ giữa năng suất và hiệu suất xử lý với tải lượng Tổng hợp các kết quả thí nghiệm trên ta có kết quả về mối quan hệ giữa năng suất và hiệu suất xử lý với OLR đưa vào hệ và được thể hiện trên Hình 3.16 và Hình 3.17. Hình 3. 16. Tải lượng CODvào, CODra và hiệu suất xử lý Các kết quả cho thấy khi tổng tải lượng hữu cơ (OLRtổng) vào hệ nằm trong khoảng từ 7 - 10,12 kg/m3/ngày hệ hoạt động ổn định nhất, hiệu suất xử lý đạt cao nhất đạt trên 82%, trung bình ở giai đoạn ổ định đạt 75%. Khi tải lượng vượt qua 10 kg/m3/ngày thìgiá trị NSXL và HSXL thu được giảm, tải lượng càng lên cao giá trị NSXL càng tản mạn và độ hồi quy của đường biểu diễn mối quan hệ giữa OLR và NSXL càng kém, hệ số hồi quy đạt khá thấp.
- 18 Hình 3. 17. Mối quan hệ giữa năng suất với tải lượng COD đầu vào 2.2. Diễn biến lưu lượng biogas trong hệ IC Hình 3.23. Diễn biến lưu lượng khí biogas sinh ra trong hệ IC Hiệu suất sinh khí cũng tăng dần từ khi tải lượng đầu vào tăng dần, giá trị tối đa đạt được là 64,6%, giá trị trung bình trong giai đoạn ổn định đạt 55%. Phần metan trong biogas tăng dần khi tăng tải lượng đầu vào, giá trị trung bình của phần metan trong biogas là 59%.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Chiến lược Marketing đối với hàng mây tre đan xuất khẩu Việt Nam
27 p | 183 | 18
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Thúc đẩy tăng trưởng bền vững về kinh tế ở vùng Đông Nam Bộ đến năm 2030
27 p | 210 | 17
-
Tóm tắt Luận án Tiến sĩ Luật học: Hợp đồng dịch vụ logistics theo pháp luật Việt Nam hiện nay
27 p | 269 | 17
-
Tóm tắt Luận án Tiến sĩ Y học: Nghiên cứu điều kiện lao động, sức khoẻ và bệnh tật của thuyền viên tàu viễn dương tại 2 công ty vận tải biển Việt Nam năm 2011 - 2012
14 p | 269 | 16
-
Tóm tắt Luận án Tiến sĩ Triết học: Giáo dục Tư tưởng Hồ Chí Minh về đạo đức cho sinh viên trường Đại học Cảnh sát nhân dân hiện nay
26 p | 154 | 12
-
Tóm tắt luận án Tiến sĩ: Nghiên cứu tối ưu các thông số hệ thống treo ô tô khách sử dụng tại Việt Nam
24 p | 253 | 12
-
Tóm tắt luận án Tiến sĩ Kỹ thuật: Nghiên cứu tính toán ứng suất trong nền đất các công trình giao thông
28 p | 223 | 11
-
Tóm tắt Luận án Tiến sĩ Kinh tế Quốc tế: Rào cản phi thuế quan của Hoa Kỳ đối với xuất khẩu hàng thủy sản Việt Nam
28 p | 182 | 9
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển kinh tế biển Kiên Giang trong tiến trình hội nhập kinh tế quốc tế
27 p | 54 | 8
-
Tóm tắt Luận án Tiến sĩ Xã hội học: Vai trò của các tổ chức chính trị xã hội cấp cơ sở trong việc đảm bảo an sinh xã hội cho cư dân nông thôn: Nghiên cứu trường hợp tại 2 xã
28 p | 149 | 8
-
Tóm tắt Luận án Tiến sĩ Luật học: Các tội xâm phạm tình dục trẻ em trên địa bàn miền Tây Nam bộ: Tình hình, nguyên nhân và phòng ngừa
27 p | 199 | 8
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phản ứng của nhà đầu tư với thông báo đăng ký giao dịch cổ phiếu của người nội bộ, người liên quan và cổ đông lớn nước ngoài nghiên cứu trên thị trường chứng khoán Việt Nam
32 p | 183 | 6
-
Tóm tắt Luận án Tiến sĩ Luật học: Quản lý nhà nước đối với giảng viên các trường Đại học công lập ở Việt Nam hiện nay
26 p | 136 | 5
-
Tóm tắt luận án Tiến sĩ Kinh tế: Các yếu tố ảnh hưởng đến xuất khẩu đồ gỗ Việt Nam thông qua mô hình hấp dẫn thương mại
28 p | 17 | 4
-
Tóm tắt Luận án Tiến sĩ Ngôn ngữ học: Phương tiện biểu hiện nghĩa tình thái ở hành động hỏi tiếng Anh và tiếng Việt
27 p | 119 | 4
-
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu cơ sở khoa học và khả năng di chuyển của tôm càng xanh (M. rosenbergii) áp dụng cho đường di cư qua đập Phước Hòa
27 p | 8 | 4
-
Tóm tắt luận án Tiến sĩ Kinh tế: Các nhân tố ảnh hưởng đến cấu trúc kỳ hạn nợ phương pháp tiếp cận hồi quy phân vị và phân rã Oaxaca – Blinder
28 p | 27 | 3
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển sản xuất chè nguyên liệu bền vững trên địa bàn tỉnh Phú Thọ các nhân tố tác động đến việc công bố thông tin kế toán môi trường tại các doanh nghiệp nuôi trồng thủy sản Việt Nam
25 p | 173 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn