Tuyển tập bài tập chuyên đề bất đẳng thức cực hay
lượt xem 449
download
Bất đẳng thức thực sự là bài tập khó đối với học sinh, điểm lại ít, vì vậy nắm vững kiến thức cơ bản và vận dụng linh hoạt được vào các bài tập không phải đơn giản, "Tuyển tập bài tập chuyên đề bất đẳng thức " sẻ giúp các bạn có kiến thức cơ bản về bất đẳng thức, làm được một số bài cơ bản, giúp ích các bạn trong kỳ thi đại học cao đẳng sắp tới.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tuyển tập bài tập chuyên đề bất đẳng thức cực hay
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Chöùng minh raèng : π 3π 1 π 1 1 π 1. ∫ 4 dx 4. ln 2 < ∫ dx < 4 π 4 3 − 2 sin 2 x 2 0 1+ x x 4 3 π cot g 1 1 1 π 2. ∫ 3 dx 5. ∫ 2 dx 12 π 4 x 3 0 x + x+1 8 1 1 1 π π x π 3. ∫ dx 2 1 6. ∫ dx 2 0 1− x 6 6 18 0 x + x + x3 + 3 5 4 9 3 Baøi giaûi : π 3π 1 1 1 1 1. x ⇒ sin x 1 ⇒ sin 2 x 1 ⇒ 1 2 sin 2 x 2 ⇒ 1 3 − 2 sin 2 x 2 ⇒ 1 4 4 2 2 2 3 − 2 sin 2 x 1 3π 3π 1 3π π 3π 1 π ⇒ ∫π 4 dx ∫π 4 2 dx ∫ π 4 dx ⇒ ∫π 4 3 − 2 sin 2 xdx 2 4 2 4 4 3 − 2 sin x 4 4 1 π π 3 cot gx 1 3 cot gx 4 3 π3 π cot gx 4 π3 2. x dx ∫π 3 dx dx π ∫π 4 π ∫π 4 ⇒ ⇒ ⇒ 4 3 3 1 4 π x π 4 x π x π 3 π cot gx 1 ∫π 4 x dx 3 3 ⇒ 12 Baøi toaùn naøy coù theå giaûi theo phöông phaùp ñaïo haøm. 1 3. 0 x < 1 ⇒ 0 x 6 .... x 2 < 1 ⇒ −1 − x 2 − x 6 0 ⇒ 0 1 − x 2 1 − x 6 1 ⇒ 1 − x 2 1 − x6 1 2 1 1 1 1 1 ⇒1 ⇒ ∫ 2 dx ∫ 2 dx I 1− x 6 1− x 2 0 0 1 − x6 1 1 π π Vôùi I = ∫ 2 dx Ñaët x = sin t ; t ∈ − ; ⇒ dx = cos tdt 0 1 - x2 2 2 x 0 1 2 1 cos tdt 1 π 1 1 1 π ⇒I=∫ 2 = ∫ 2 dt = Vaäy ∫0 1 − x 6 dx 6 2 t 0 π 0 1 − sin 2 t 0 6 2 6 4. 0 x 1 ⇒ x x 1 ⇒ x2 x x x ⇒ 1 + x2 1 + x x 1 + x 1 1 1 ⇒ ( 1) ; ∀x ∈ [ 0,1] x + 1 1 + x x 1 + x2 Daáu ñaúng thöùc trong (1) xaûy ra khi : x = 0 VT(1) VG(1) ⇒ x∈∅ x = 1 VG(1) VP(1) 1 1 1 1 1 dx 1 1 π Do ñoù : ∫ dx < ∫ dx < ∫ 2 ⇒ ln 2 < ∫ dx < 0 1+ x 0 x +1 4 0 1+ x x 0 1+ x x 1 1 π Chuù yù : ∫ dx = Xem baøi taäp 5 . 0 1 + x2 4 1
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 1 5. 0 x 1 ⇒ x2 x ⇒ x2 + x2 x2 + x ⇒ 2 + 2 x2 x2 + x + 2 ⇒ 2 2 x + x+ 2 2( x + 1) 1 1 1 1 1 1 1 ⇒∫ 0 x + x+2 2 dx 2 ∫0 x2 + 1 dx ; I = ∫0 1 + x2 dx 1 Ñaët x = tgt ⇒ dx = dt = (1 + tg 2 t)dt cos 2 t x 0 1 π 1 + tg 2 t π π π 1 1 π ⇒I=∫ 4 dt = ∫ 4 dt = ⇒ I = Vaäy ∫ 2 dx π 0 1 + tg t2 4 4 0 x + x+2 8 t 0 0 4 0 x5 x 3 6. 0 x 1 ⇒ ⇒ 0 x5 + x 4 2 x 3 ⇒ x3 + 3 x 5 + x4 + x3 + 3 3 x 3 + 3 0 x4 x 3 1 1 1 x x x ⇒ ⇒ 3 3x + 3 3 x + x + x3 + 3 5 4 x +33 3x + 3 x + x + x3 + 3 5 4 x +3 3 1 x 1 x 1 x ⇒∫ dx ∫ dx ∫ dx ( 1 ) 0 3x + 3 3 0 x + x + x3 + 3 5 4 0 x +33 x 1 1 1 x x 0 1 ° I1 = ∫ dx = ∫ 3 dx ; Ñaë t x = t 2 ;( t 0) ⇒ dx = 2 tdt 0 3 x3 + 3 3 0 x +1 t 0 1 1 1 2t 2 1 3 t 2 . dt t 0 1 2 1 du π I1 = ∫ 6 dt = ∫ 3 2 Ñaët u = t 3 ⇒ du = 3t 2 dt ⇒ I1 = ∫ 2 = 3 0 t +1 9 0 (t ) + 1 u 0 1 9 0 u +1 18 π Keát quaû : I = (baøi taäp 5) 4 1 x π 1 x °I2 = ∫ 3 = (töông töï) Vaäy (1) ⇔ I1 ∫ 5 dx I2 0 x +3 0 x + x + x3 + 3 4 9 3 π 1 x π 18 ∫ 0 x + x + x3 + 3 5 4 dx 9 3 π sin x .cos x π 1,Chöùng minh raèng : ∫ 2 dx 0 (1 + sin x ) (1 + cos x ) 4 4 12 2.Neáu : I ( t ) = ∫ t tg 4 x π π ( 2 tg 3t + 3 tgt dx > 0 , ∀t ∈ 0 , ; thì : tg t + > e 3 ) 0 cos 2 x 4 4 Baøi giaûi : 3 2 + cos2 x + sin2 x 2 + sin 4 x + cos 4 x 1. Ta coù : = (1 + sin 4 x)(1 + cos4 x) (1 + sin 4 x)(1 + cos 4 x) (1 + sin 4 x)(1 + cos 4 x) 3 1 + sin 4 x + 1 + cos 4 x 1 1 ⇒ = + (1 + sin x)(1 + cos 4 x) 4 (1 + sin x)(1 + cos x) 1 + sin x 1 + cos 4 x 4 4 4 2
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 3 sin x. cos x sin x. cos x sin x. cos x sin x. cos x 1 sin 2 x sin 2 x ⇒ + ⇒ 1 + sin 4 x + 1 + cos 4 x (1 + sin 4 x)(1 + cos 4 x) 4 1 + sin x 4 1 + cos x (1 + sin 4 x)(1 + cos 4 x) 6 π 3 sin x. cos x 1 π 2 sin 2 x π sin 2 x ⇒∫ 2 dx ∫0 1 + sin 4 x dx + ∫ 2 dx 0 (1 + sin 4 x)(1 + cos 4 x ) 6 0 1 + cos 4 x π sin 2 x °J1 = ∫ 2 dx Ñaë t t = sin 2 x ⇒ dt = sin 2 xdx 0 1 + sin 4 x x 0 π 2 ⇒ J = 1 dt = π (keát quaû I= π baøi taäp 5) t 0 1 1 ∫0 t 2 + 1 4 4 π sin 2 x °J2 = ∫ 2 dx Ñaë t u = cos 2 x ⇒ du = − sin 2 xdx 0 1 + cos 4 x x 0 π 2 1 du π π ⇒ J2 = ∫ 2 = (keát quaû I= baøi taäp 5) u 1 0 0 u +1 4 4 π sin x. cos x 1 π sin x. cos x π ⇒∫ 2 dx ( I + J ) Vaäy ∫ 2 dx 0 (1 + sin 4 x)(1 + cos 4 x) 6 0 (1 + sin 4 x )(1 + cos 4 x) 12 dt 2. Ñaët t = tgx ⇒ dt = (1 + tg 2 x) dx ⇒ dx = 1 + t2 tgt tgt t 4 dt tgt t 4 dt tgt 2 1 1 3 1 t-1 1 3 1 tgt - 1 I =∫ t 0 1 - t 2 . 1 + t 2 = ∫0 1 - t 2 = ∫0 -t - 1 + 1 - t 2 dt = - 3 t - t - 2 ln t + 1 0 = - 3 tg t - tgt - 2 ln tgt + 1 2 1+t Vì 1 1 tgt - 1 I > 0 neân : - tg 3 t - tgt - ln >0 (t) 3 2 tgt + 1 3 2 tg t + 3 tgt 1 tgt − 1 1 π 1 π ⇔ ln = ln tg t + > tg 3 t + tgt ⇒ tg t + > e 3 2 tgt + 1 2 4 3 4 x2 1 1 1 1. I n = Chöùng minh : ≤ ∫ In dx ≤ vaø lim In dx = 0 x +1 2( n + 1) 0 n+1 n→+∞ 1 2 2. J n = x n ( 1 + e-x ) Chöùng minh : 0 < ∫ J n dx vaø lim J n dx = 0 0 n +1 n→+∞ Baøi giaûi : 1 1 xn xn 1 1 1 xn 1 1. 0 x 1 ⇒ 1 x + 1 2 ⇒ 1 ; x n ⇒ ∫ x n dx ∫0 x + 1dx ∫ x n dx 2 x +1 2 x +1 2 0 0 1 1 x n+1 1 xn x n+1 1 1 xn 1 ⇒ 2 ( n + 1) ∫0 x + 1dx n +1 0 ⇒ 2 ( n +1) ∫0 x + 1dx n +1 0 3
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 n→∞ 2 ( n + 1) = 0 lim xn Ta coù : ⇒ lim =0 n→∞ x + 1 lim 1 = 0 n→∞ n + 1 2. 0 x 1⇒ 0 e− x e0 = 1 ⇒ 1 1 + e− x 2 ⇒ xn x n (1 + e − x ) 2. x n hay 0 x n (1 + e − x ) 2 xn 1 n (1 + e x ) dx x n (1 + e − x ) dx 2 1 1 ∫ 2∫ x ndx ⇒ 0 ∫ − ⇒0 x 0 0 0 n +1 ⇒ lim xn (1 + e− x ) dx = 0 2 Ta coù : lim =0 n→∞ n + 1 n→∞ Chöùng minh raèng : π 2 1. ∫ π cos x(4 − 3 cos x)(2 cos x + 2)dx ≤ 8π 2. ∫ 2 ln x(9 − 3 ln x − 2 ln x)dx ≤ 8(e − 1) - 2 1 π 2π π 49π 3. ∫π 4. ∫ 3 4 sin x(1 + 2 sin x )(5 − 3 sin x)dx < tgx(7 − 4 tgx)dx ≤ 4 3 0 64 π 243π 5. ∫ sin 4 x. cos6 xdx ≤ 0 6250 Baøi giaûi : Ñaët f(x) = cosx(4 - 3 cosx )(2 cosx + 2) 3 cos x + 4 − 3 cos x + 2 cos x + 2 =8 cauchy f(x) 3 π π π 2 2 2 ⇒∫ f(x)dx 8∫ dx ⇒ ∫ cos x(4 − 3 cos x )(2 cos x + 2)dx 8π −π −π −π 2 2 2 2. Ñaët f ( x) = ln x (9 − 3 ln x − 2 ln x) = ln x (3 + ln x )(3 − 2 ln x ) 3 ln x + 3 + ln x + 3 − 2 ln x f ( x) =8 3 e e e ⇒∫ f ( x) dx 8∫ dx ⇒ ∫ ln x (9 − 3 ln x − 2 ln x) dx 8( e −1) 1 1 1 3 sin x + 1 + 2 sin x + 5 − 3 sin x 3. Ñaët f ( x) = sin x (1 + 2 sin x)(5 − 3 sin x ) ; f(x) 8 3 sin x = 1 + 2 sin x sin x = −1 Ñaúng thöùc ⇔ ⇔ ⇔ x∈∅ sin x = 5 − 3 sin x 4 sin x = 5 π π π 2π ⇒ f(x) < 8 ⇒ ∫ f(x)dx < 8∫ ⇒∫ 3 3 3 dx sin x(1 + 2 sin x )(5 − 3 sin x)dx < π 4 π 4 π 4 3 1 4. Ñaët f(x) = tgx(7 − 4 tgx) = .4 tgx( 7 − 4 tgx) 4 4
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 2 1 4 tgx + 7 − 4 tgx 49 f ( x) ≤ = 4 2 16 ∏ 49 ∏ 4 ∏ 49 ∏ ⇒ ∫ 4 f ( x ) dx 0 16 ∫0 dx ⇒ ∫ 4 tgx 7 − 4 tgx dx 0 ( ) 16 5. sin 4 x.cos 6 x = (1 − cos 2 x).(1 − cos 2 x).cos 2 x . cos 2 x . cos 2 x 1 = (2 − 2 cos 2 x)(1 − cos 2 x).cos 2 x.cos 2 x.cos 2 x 2 5 1 2 − 2 cos 2 x + 1 − cos 2 x + cos 2 x + cos 2 x + cos 2 x ≤ 2 5 243 ∏ 243 ∏ ⇒ sin 4 x.cos 6 x ≤ ⇒ ∫ sin 4 x.cos 6 xdx ≤ 6250 0 6250 Chöùng minh raèng : ( ) 5∏ 2 ∏ ∫ cos 2 x + 3sin 2 x + sin 2 x + 3cos 2 x dx 2 1. −∏ 3 3 2. ∫ 1 e ( 3 + 2 ln 2 x + 5 − 2 ln 2 x dx ) 4 ( e − 1) ∏ 3 cos x + sin x ∏ 3. − 4 ∫ x2 + 4 dx 4 Baøi giaûi : 1. Ñaët f ( x ) = 1 cos 2 x + 3sin 2 x + 1. sin 2 x + 3cos 2 x f 2( x ) 2 ( cos 2 x + 3sin 2 x + 3cos 2 x + sin 2 x ) ⇒ f ( x ) 2 2 ( ) ∏ ∏ ∏ 5∏ 2 ⇒ ∫ ∏2 f ( x ) dx 2 2 ∫ ∏2 dx ⇒ ∫ ∏2 cos 2 x + 3sin 2 x + sin 2 x + 3cos 2 x dx − − − 3 3 3 3 2. Ñaët f ( x ) = 1 3 + 2 ln 2 x + 1 5 − 2 ln 2 x f ( x ) 2 ≤ 2 ( 3 + 2 ln 2 x + 5 − 2 ln 2 x ) ⇒ f ( x ) ≤ 4 e ⇒ ∫ f ( x ) dx 4 ∫ dx ⇒ ∫ 1 e 1 e ( 3 + 2 ln 2 x + 5 − 2 ln 2 x dx ≤ 4 ( e − 1) 1 ) 3. 3 cos x + sin x ≤ ( 3)2 + 1 ( cos 2 x + sin 2 x ) 3 cos x + sin x 2 2 3 cos x + sin x 2 dx ⇒ ≤ ⇒∫ ≤ 2∫ x +4 2 x2 + 4 0 x +4 2 0 x +4 2 5
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Ñaët x = 2tgt ⇒ dx = 2 (1 + tg 2 t ) dt x 0 1 2 dx ∏ 2 (1 + tg 2t ) 1 ∏ ∏ ⇒∫ =∫ 4 dt = ∫ 4 dt = ∏ x +4 4 (1 + tg t ) 2 2 t 0 0 0 2 0 8 4 2 3 cos x + sin x ∏ ∏ 2 3 cos x + sin x ∏ ⇒∫ dx ⇒− ∫ dx 0 x +4 2 4 4 0 x2 + 4 4 ÑAÙNH GIAÙ TÍCH PHAÂN DÖÏA VAØO TAÄP GIAÙ TRÒ CUÛA HAØM DÖÔÙI DAÁU TÍCH PHAÂN Chöùng minh raèng : ∏ ∏ ∏ sin x ∏ sin x 1.∫ 4 sin 2 xdx ≤ 2∫ 4 cos xdx 4..∫ 2 dx > ∫∏ dx 0 0 0 x 2 x ∏ ∏ 2 2 2.∫ 2 sin 2 xdx 2∫ 2 sin xdx 5. ∫ (ln x) 2 dx < ∫ ln xdx 0 0 1 1 2 x −1 2x − 12 ∏ ∏ 3.∫ dx < ∫ dx 6. ∫ 4 sin xdx < ∫ 4 cos xdx 1 x 1 x +1 0 0 Baøi giaûi : ∏ 0 ≤ sin x ≤ 1 1.∀x ∈ 0; ⇒ ⇒ 2sin x.cos x ≤ 2 cos x 4 0 ≤ cos x ≤ 1 ∏ ∏ 4 4 ⇔ sin 2 x ≤ 2 cos x ⇒∫ sin 2 xdx ≤ 2 ∫ cos xdx 0 0 6
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ∏ cos x ≤ 1 2. ∀x ∈ 0; ⇒ ⇒ 2 sin 2 x.cos x ≤ 2sin x 2 0 ≤ sin x ∏ ∏ 2 2 ⇔ sin 2 x ≤ 2sin x ⇒ ∫ sin 2 xdx ≤ 2 ∫ sin xdx 0 0 x -1 2 x − 1 −x 2 + x − 1 3. ∀x ∈ [ 1;2 ] Xeùt hieäu : − = 0 ⇒ < ⇒∫ dx < ∫ dx ∏−x x 0 ∏−x ∏ x 2 sin x ∏ ∏ sin x ⇒∫ dx > ∫∏ dx 0 x 2 x 5. Haøm soá y = f(x) = lnx lieân tuïc treân [1,2] neân y = g(x) = (lnx)2 cuõng lieân tuïc treân [1,2] 1 x 2 ⇒ 0 ln x ln 2 < 1 (*) ⇒ 0 (ln x )2 < ln x 2 2 ∀x ∈ [ 1,2 ] ⇒ ∫ (ln x )2 dx < ∫ ln xdx 1 1 Chuù yù : daáu ñaúng thöùc (*) xaûy ra taïi x0 = 1⊂ [1,2] ∏ ∏ sin x 6. 0 < x < ⇒ 0 < tgx < tg = 1 ⇔
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Baøi Giaûi: 1. 0 ≤ x ≤ 1 ⇒ 0 ≤ x 2 ≤ 1 ⇒ 4 ≤ x 2 + 4 ≤ 5 ⇒ 2 x2 + 4 ≤ 5 1 1 1 1 ⇒ 2 ∫ dx ≤ ∫ x 2 + 4 dx ≤ 5 ∫ dx ⇒ 2 ≤ ∫ x 2 + 4 dx ≤ 5 0 0 0 0 2. 0 ≤ x ≤ 1 ⇒ 0 ≤ x 8 ≤ 1 ⇒ 1 ≤ x 8 + 1 ≤ 2 1 1 ⇒ 0 ≤ x8 + 1 ≤ 2 ⇒ ≤1 ≤ 2 x8 + 1 1 1 1 dx 1 1 1 dx ⇒ ∫ dx ≤ ∫ ≤ ∫ dx ⇒ ≤∫ ≤1 2 0 0 x8 + 1 0 2 0 x8 + 1 3. 0 ≤ x ≤ 1 ⇒ 1 x10 + 1 2 ⇒1 3 x10 + 1 3 2 1 1 x 25 x 25 ⇒ 1⇔ x 25 3 2 3 x +1 10 3 2 3 x +110 1 1 1 x 25 1 1 1 x 25 1 ⇒ ∫ x 25 dx ∫ dx ∫ x 25 dx ⇒ ∫ dx 3 2 0 0 3 x +1 10 0 26 23 0 3 x +1 10 26 x sin x x 4. Tröôùc heát ta chöùng minh : ;(1) ∀x ∈ [ 0,1] . 1 + x sin x 1+ x Giaû söû ta coù : (1). 1 1 1 1 (1) ⇔ 1 − 1− ; ∀x [ 0.1] ⇔ 1 + x sin x 1+ x 1 + x sin x 1 + x ⇔ 1 + x 1 + x.sin x ⇔ x (1 − sin x ) 0 ñuùng ∀x ∈ [ 0,1] 1x sin x 1 x 1 1 (1) ⇔ ∫ dx ∫ dx = ∫ 1 − dx 0 x + x sin x 0 1+ x 1+ x 0 1 x .sin x 1 Vaäy (1) ñaúng thöùc ñuùng , khi ñoù: ⇔∫ dx ( x − ln 1 + x ) = 1 − ln 2 0 1 + x sin x 0 1 x.sin x ⇒∫ dx 1 − ln 2. 0 1 + x .sin x 1 1 0 < e− x = x e− x sin x 1, 3 ⊂ ( 0, ∏ ) ⇒ 5. x ∈ e e⇒0< 2 < 1 0 < sin x < 1 x +1 e ( x + 1) 2 3 e − x sin x 1 3 dx 1 3 dx ⇒0
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân x 1 3 ⇒ Ι = ∫∏ ∏ (1 + tg t )dt = 2 ∏ ∏ ∏ ∫∏ 4 dt = t = 3 3 3 ∏ t ∏ ∏ 4 1 + tg t 2 4 12 4 4 3 e − x sin x ∏ Vaäy 0 < ∫ dx < 1 x +1 2 12e 6. 0 x 1⇒ 0 x3 x2 ⇒ − x2 − x3 0 ⇒ 4 − 2x2 4 − x 2 − x3 4 − x2 ⇒ 4 − 2x2 4 − x2 − x3 4 − x2 1 1 1 ⇒ 4 − 2x2 4− x −x 2 3 4 − x2 1 1 1 1 1 1 ⇒I =∫ dx ∫ dx ∫ dx = J 0 4 − x2 0 4 − x2 − x3 0 4 − 2 x2 Ñaët x = 2sin t ⇒ dx = 2 cos tdt x 0 1 ∏ 2 cos tdt ∏ ∏ ⇒I =∫ 6 = ∫ 6 dt = t 0 ∏ 0 4 − ( 2sin t ) 2 0 6 6 Ñaët x = 2 sin t ⇒ dx = 2 cos tdt x 0 1 t 0 ∏ 4 ∏ ∏ 2 cos tdt 2 4 ∏ 2 ⇒J =∫ 4 = = ( ) 2 8 0 2 4−2 2 sin t 0 ∏ 1 dx ∏ 2 ⇒ ≤∫ ≤ 6 0 4 − x 2 − x3 8 Chöùng minh raèng : e −1 1 − x2 ∏ ∏ 1 ∏ 6 1. ∫0 e dx 1 3. ≤ ∫ 2 1 + sin 2 x .dx ≤ e 2 0 2 4 ∏ ∏ ∏ 1 1 sin 2 x 2. ∫0 2 e dx 2 e 4. 0.88 < ∫ dx < 1 2 0 1 + x4 Baøi giaûi : 9
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1.°0 x 1 ⇒ 0 x 2 x 1 ⇒ 0 < e x 2 ex 1 1 e− x (1) 2 ⇒ x2 x ⇔ e− x e e °x 2 1( 2 ) 2 2 0 ⇒ ex e0 = 1 ⇒ e− x Töø (1) vaø (2) suy ra : e − x 2 1 e− x 1 1 1 e −1 1 ⇒ ∫ e − x dx ∫e ∫0 dx ⇒ e ∫e 2 − x2 − x2 dx dx 1 0 0 0 2 2. 0 sin 2 x 1⇒1 esin x e ∏ ∏ ∏ ∏ ∏ ∏ ⇒∫ ∫ e.∫ ∫ 2 2 2 dx 2 esin x dx 2 dx ⇒ 2 esin x dx e 0 0 0 2 0 2 1 2 1 1 3 3. 0 sin 2 x 1⇒ 0 sin x ⇒1 1 + sin 2 x 2 2 2 2 ∏ ∏ 1 3 ∏2 ∏ ∏ 1 ∏ 6 ⇒∫ 2 dx ∫ 2 1 + sin 2 x dx ∫0 dx ⇒ 2 ∫ 2 1 + sin 2 x .dx 0 0 2 2 0 2 4 4. Caùch 1: 1 1 ∀x ∈ ( 0,1) thì x 4 < x 2 ⇒ 1 + x 4 < 1 + x 2 ⇒ > 1+ x 4 1 + x2 ( ) 1 1 1 1 1 ⇒∫ dx > ∫ dx = ln x + 1 + x 2 = ln 1 + 2 > 0,88 0 0 1 + x4 1 + x2 0 1 1 1 Maët khaùc : 1 + x 4 > 1 ⇒ ⇒∫ dx > I 1+ x 4 1+ x 2 0 1 + x4 1 1 Vôùi : I = ∫ dx 0 1 + x2 dt = (1 + tg 2t ) dt 1 Ñaët x = tgt ⇒ dx = cos 2 10
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân x 0 1 I =∫ (1 + tg t ) dt = ∏ 2 ∏ 1 ∫ 4 4 dt ∏ t 0 4 (1 + tg t ) 0 2 0 cos t ∏ cos t I =∫ 4 dt 0 1 − sin 2 t t 0 ∏ Ñaët u = sin t ⇒ du = cos tdt 4 u 0 1 2 1 du 1 1 1− u + u +1 1 1 1 1 I =∫ 2 = ∫ 2 du = ∫ 2 + du 0 1− u 2 2 0 (1 − u )(1 + u ) 2 0 1+ u 1− u 1 1 1 1 1 1 1 1 1+ u 2 = ∫ 2 du + ∫ 2 du = ln 2 0 1+ u 2 0 1− u 2 1− u 0 1 2+ 2 1 1 I= ln > 0,88 ⇒ ∫ dx > 0,88 2 2− 2 0 1 + x4 1 Maët khaùc :1 + x 4 > 1 ⇒
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Ta coù : α α 0 ∫ 0 x tgx dx xdx ∫ 0 β β ∏ ∏ 0 < ∫ x tgx dx < ∫ xdx ⇒ 0 ∫ 4 x tgx dx < ∫ 4 xdx α α 0 0 ∏ ∏ 0 ∫ x tgx dx ∫ xdx 4 4 β β ∏ ∏ 2 ⇒ 0 < ∫ 4 x tgx dx < 0 32 α β Chuù yù : (α , β ) ⊂ [ a, b ] thì b b ∫ a f ( x ) dx = ∫ f ( x ) dx + ∫ f ( x ) dx + ∫ f( x ) dx b α β Tuy nhieân neáu : m f( x ) M thì : b b b b m ∫ dx ∫ f( x ) dx M ∫ dx ⇒ m ( b − a ) ∫ f( x ) dx M (b − a ) a a a a Nhöng (α , β ) ⊂ [ a, b ] thì m ∫ dx < ∫ f( x ) dx < M ∫ f( x ) dx b b b a a a (Ñaây laø phaàn maéc phaûi sai laàm phoå bieán nhaát )Do chöa hieåu heát yù nghóa haøm soá f( x ) chöùa (α , β ) lieân tuïc [ a, b ] maø (α , β ) ⊂ [ a, b ] ) cos nx 1 1 cos nx 1 cos nx 1 1 1 2. ∫0 1 + x dx ∫ 0 1+ x dx = ∫ 0 1+ x dx ∫0 1 + x = ln 1 + x 0 = ln 2 1cos nx ⇒ ∫ 0 1+ x dx ln 2 e − x e −1 = 1 3. 1 x 3⇒ e sin x 1 1 3 e− x .sin x 3 e − x .sin x 3 e dx ⇒ ∫ 1 1 + x2 dx ∫ 1 + x2 dx ∫ 1 1 + x2 3 e− x .sin x 1 3 1 ⇒ ∫ dx .I vôùi I = ∫ dx 1 1 + x2 e 1 1 + x2 Ñaët x = tgt ⇒ dx = (1 + tg 2t ) dt x 1 3 ⇒ Ι = ∫∏ ∏ (1 + tg t )dt = 2 ∏ ∏ ∫ dt = 3 3 t ∏ ∏ 4 1 + tg t 4 2 ∏ 12 4 3 −x 3 e .sin x ∏ ⇒ ∫ dx (*) (Caùch 2 xem baøi 4 döôùi ñaây ) 1 1+ x 12e Ñaúng thöùc xaûy ra khi : 12
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân e − x = e −1 x = 1 ⇔ ⇒ x ∈ ∅, ∀x ∈ 1, 3 sin x = 1 sin x = 1 −x 3 e .sin x ∏ Vaäy : ∫ dx < 1 1+ x 2 12e Xem laïi chuù yù treân , ñaây laø phaàn sai laàm thöôøng maéc phaûi khoâng ít ngöôøi ñaõ voäi keát luaän ñaúng thöùc (*) ñuùng . Thaät voâ lyù 3 e− x cos x 3 e − x cos x 3 e− x 4. ∫ 1 1 + x2 dx ∫1 1 + x2 dx ∫ 1 1 + x2 dx Do y = e− x giaûm ⇒ max ( e− x ) = e −1 = 1 e 3 e− x cos x 1 3 1 ∏ ⇒ ∫ dx ∫1 1 + x 2 dx = 12e ;do I baøi 3 1 1 + x2 e Daáu ñaúng thöùc : e− x = e −1 x = 1 ⇔ ⇔ x ∈ ∅, ∀x ∈ 1, 3 cos x = 1 cos x = 1 3 e − x cos x ∏ Vaäy ∫ dx < 1 1+ x 2 12e u = 1 du = − 1 x 2 dx 5. Ñaët x ⇒ dv = cos xdx v = sin x 200 ∏ 200 ∏ cos x 1 200 ∏ sin x ⇒∫ dx = sin x +∫ dx 100 ∏ x x 100 ∏ 100 ∏ x2 200 ∏ cos x 200 ∏ 200 ∏ 1 1 1 ⇒∫ dx ∫ dx = − = 100 ∏ x 100 ∏ x 2 x 100 ∏ 200 ∏ 200 ∏ cos x 1 Vaäy ∫ dx 100 ∏ x 200 ∏ Baøi toaùn naøy coù theå giaûi theo phöong phaùp ñaïo haøm . 13
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 ex e 6. 0 x 1⇒1 ex e⇒ (1 + x ) (1 + x ) (1 + x ) n n n 1 1 1 ex 1 1 ⇒∫ dx ∫ (1 + x ) dx e∫ dx (1 + x ) (1 + x ) 0 n 0 n 0 n 1− n 1 1− n 1 ( x + 1) 1 ex ( x + 1) ⇔ 1− n ∫ (1 + x ) 0 n dx e. 1− n 0 0 1 1 1 e x e 1 Vaäy : 1 − n −1 ∫ (1 + x ) dx 1 − n −1 ; n > 1 n −1 2 0 n n −1 2 Baøi toaùn naøy coù theå giaûi theo phöông phaùp nhò thöùc Newton . Chöùng minh raèng : neáu f(x) vaø g(x) laø 2 haøm soá lieân tuïc vaø x xaùc ñònh treân [a,b] , thì ta coù : (∫ ) b 2 b b a f ( x ) .g( x ) .dx ∫a f 2( x ) dx . ∫ g 2( x ) dx a Caùch 1 : Cho caùc soá α1 , tuyø yù i ∈ 1, n ta coù : ( ) (α 2 1 + α 2 2 + ... + α 2 n )( β 21 + β 2 2 + ... + β 2 n ) (α1β1 + α 2 β 2 + ... + α n β n ) (1) α1 α 2 α Ñaúng thöùc (1) xaûy ra khi : = = ... n β1 β 2 βn Thaät vaäy : phaân hoaïch [a,b] thaønh n ñoaïn nhoû baèng nhau bôûi caùc ñieåm chia : a = x0 < x1 < x2 < ….
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân (∫ ) b 2 b b Töø (5) ⇒ f ( x).g ( x)dx ∫ f 2 ( x)dx . ∫ g 2 ( x)dx a a a Caùch 2 : ∀t ∈ R + ta coù : 0 [tf ( x) − g ( x) ] = t 2 f 2 ( x) − 2.t. f ( x).g ( x) + g 2 ( x) 2 b b b ⇒ h(t ) = t 2 ∫ f 2 ( x)dx − 2t ∫ f ( x).g ( x)dx + ∫ g 2 ( x)dx 0 a a a h(t) laø 1 tam thöùc baäc 2 luoân khoâng aâm neân caàn phaûi coù ñieàu kieän : ah = t > 0 2 ⇔ ∆ 'h 0 ∆ h 0 2 ⇔ ∫ f ( x).g ( x)dx − ∫ f 2 ( x)dx . ∫ g 2 ( x)dx ≤ 0 b b b a a a (∫ ) b 2 b b ⇒ a f ( x).g ( x)dx ∫ a f 2 ( x)dx . ∫ g 2 ( x)dx a Chöùng minh raèng : 1 (e − 1) e x − x 1 5 3. e x − 1 < ∫ e2 t + e− t dt < x 1. ∫ 1 + x3 dx < 0 2 0 2 1 3∏ 1 3cos x − 4sin x 5∏ 2. ∫ esin 2 x dx > 4. ∫ dx 0 2 0 1 + x2 4 Baøi giaûi : (∫ ) b 2 b b 1. Ta coù : f ( x).g ( x)dx ∫ f 2 ( x)dx . ∫ g 2 ( x)dx ( ñaõ chöùng minh baøi tröôùc ) a a a b b b ⇒ ∫ a f ( x).g ( x)dx ∫ a f 2 ( x)dx . ∫ a g 2 ( x)dx 1 + x3 = (1 + x ) . (1 − x + x 2 ) = (1 + x ) . (1 − x + x ) 2 (1 − x + x ) dx < ∫ (1 + x ) dx ∫ ( x − x + 1) dx 1 1 1 1 ⇒ ∫ 1 + x3 dx = ∫ 0 0 (1 + x ) 2 0 0 2 1 1 1 x2 x3 x 2 5 ∫0 1 + x3 dx < + x 2 0 3 − 2 + x = 2 0 1 5 ⇒ ∫ 1 + x3 dx < 0 2 ∏ ∏ ∏ 2. ∫ esin dx = ∫ dx + ∫ 2 2 2 x 2 esin x 2 esin x dx 0 0 0 x ∏ ∏ x 2 Ñaët t = + t ⇒ dx = dt 2 t 0 ∏ 2 15
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ⇒ ∫ esin ∏ 2 x ∏ dx = ∫ 2 esin x dx + ∫ 2 ∏ 2 e ( sin 2 ∏ + t 2 ) dt 0 0 0 ∏ ∏ ∏ =∫ dx + ∫ ecos x dx = 2∫ 2 2 2 2 2 2 esin x esin x dx 0 0 0 ∏ 2 ∏ 2 sin 2 x cos 2 x Ta laïi coù ∫ 2 edx = ∫ 2 e 2 .e 2 dx 0 0 ∏ ∏ 2 2 e =∏ e ; e > 0 2 0 2 ∏ 3 ⇒ ∫ esin x dx > 2 0 2 Chuù yù : baøi naøy coù theå giaûi theo phöông phaùp ñaïo haøm . x x t 3. ∫ e 2t + e − t dt = ∫ e 2 et + e−2t dt 0 0 (∫ ) 2 ∫ e dt ∫ ( e + e −2t )dt x t t t e 2 et + e−2t dt t t 0 0 0 vi ( ∫ f ( x).g ( x)dx ) b 2 b b a ∫ a f 2 ( x)dx . ∫ g 2 ( x)dx a ⇒ ( ∫ e + e dt ) 2 x 1 (e − 1) e x − − 2 x 1 1 < ( e − 1) e − x 2t −t x x o 2 e 2 1 (e − 1) e x − (1) 1 ⇒∫ e 2t + e − t dt x 0 2 Maët khaùc : e 2t + e − t > et ; ∀0 < t < x x x ⇒∫ e2t + e− t dt > ∫ et dt = e x − 1 (2) 0 0 1 (e − 1) e x − x Töø (1) vaø (2) suy ra : e x − 1 < ∫ e 2t + e − t dt < x 0 2 3cos x − 4sin x 1 32 + ( −4 )2 sin 2 x + cos 2 x = 5 4. 1 + x2 1 + x2 x2 + 1 1 3cos x − 4sin x 1 3cos x − 4sin x 1 1 ⇒ ∫ 0 1 + x2 dx ∫ 0 1 + x2 dx 5∫ 0 1 + x2 dx Ñaët x = tgt ⇒ dx = (1 + tg 2t ) dt 16
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 (1 + tg t ) 2 x 0 1 1 1 1 ∏ ⇒∫ dx = ∫ dt = ∫ dt = t 0 ∏ 0 1+ x 2 0 1 + tg t2 0 4 4 1 3cos x − 4sin x 5∏ ⇒ 4. ∫ dx 0 1+ x 2 4 Chöùng minh baát ñaúng thöùc tích phaân baèng phöông phaùp ñaïo haøm. Chöùng minh raèng : ∫ ( ) ( ) 11 ∏ ∏ ∏ 2 x+7 + 11 − x dx ∫ ( sin x + cos x )dx 4 1. 54 2 108 −7 4 0 4 2. 0 < ∫ x (1 − x 2 )dx < 1 4 e 3∏ 4. ∫ esin x dx > 2 0 27 0 2 Baøi giaûi : 1. Xeùt f ( x ) = ( ) ( x+7 + ) 11 − x ; x ∈ [ −7,11] 11 − x − x + 7 f '( x) = ⇒ f '( x) = 0 ⇔ x = 2 2 11 − x x + 7 x -7 2 11 f’(x) + 0 - f(x) 6 ր ց 3 2 3 2 11 11 11 ⇒3 2 f ( x) 6 ⇒ 3 2 ∫ dx ∫ f ( x ) dx 6 ∫ dx −7 −7 −7 ∫ ( ) 11 ⇒ 54 2 x + 7 + 11 − x dx 108 −7 2. Xeùt haøm soá : f(x) = x(1-x2) ; ∀x ∈ [ 0,1] ⇒ f ' ( x) = 3x 2 - 4 x + 1 1 ⇒ f’(x)=0 ⇔ x = ∨ x =1 3 x -∞ 0 1 1 +∞ 3 f’(x) + 0 - f(x) 4 27 ր ց 0 0 17
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 4 ⇒0 f ( x) 27 va ( 3 3 )( ∃x ∈ 0, 1 ; 1 , 0 ⇒ 0 < f < 4 ( x) 27 ) f (0) = f (1) = 0 1 4 1 1 4 ⇒ 0 < ∫ f ( x)dx < ∫0 dx ⇒ 0 < ∫0 f ( x)dx < 27 0 27 3. Xeùt haøm soá : ∏ ∏ f ( x) = sin x + cos x = 2 sin x + ; x ∈ 0, 4 4 ∏ ∏ f ' ( x) = 2 cos x + 0 , ∀x ∈ 0, 4 4 ∏ ⇒ f(x) laø haøm soá taêng ∀x ∈ 0, ⇒ f ( 0) f( x ) f ∏ 4 ( 4) ∏ ∏ ∏ 2 ⇒ 1 sin x + cos x 2⇒ ∫0 ( sin x + cos x )dx 4 4 4 4. Nhaän xeùt ∀x > 0 thì e x > 1 + x ( ñaây laø baøi taäp Sgk phaàn chöùng minh baát ñaúng thöùc baèng pp ñaïo haøm) Xeùt f (t ) = et − 1 − t ; t 0 ⇒ f '(t ) = et − 1 > 0 ; ∀t > 0 ⇒ haøm soá f(t) ñoàng bieán ∀t 0 Vì x > 0 neân f(x) > f(0) = 0 ⇒ e x − 1 − x > 0 ⇔ e x > 1 + x (1) Do vaäy : ∀x ∈ ( 0, ∏ ) thi esin ( do(1) ) 2 x > 1 + sin 2 x 1 − cos 2 x ⇒ ∫ esin x dx > ∫ (1 + sin 2 x )dx = ∏ + ∫ ∏ 2 ∏ ∏ dx 0 0 0 2 ∏ 3∏ ⇒ ∫ esin x dx > 2 0 2 Chöùng minh raèng : 2 x 1 ∏ 2 3 3 cot gx 1 1. 5 ∫1 x2 + 1dx 2 4. 12 ∫∏ 6 x dx 3 ∏ 3 3 sin x 1 2 1 1 1 2. ∫∏ 4 x dx 2 5. < ∫ dx < 4 3 0 2 + x − x2 2 ∏ 3 2∏ 3 ( ) 1 ∏ 1 6. 2 4 2 < ∫ 1 + x + 4 1 − x dx < 4 ∫ 4 3. dx −1 3 0 cos x + cos x + 1 2 3 Baøi giaûi : 18
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân x 1 − x2 1. Xeùt : f ( x ) = ; x ∈ [1, 2] . coù f '( x ) = 0 ; ∀x ∈ [1, 2] x +1 (1 + x 2 ) 2 2 ⇒ haøm soá nghòch bieán ∀x ∈ [1, 2] ⇒ f( 2) f( x ) f (1) 2 x 1 2 2 2 x 1 2 ⇒ ∫ dx ∫ 2 ∫1 ⇒ dx dx 5 x +1 2 2 5 1 1 x +1 2 2 2 x 1 ⇒ 5 ∫1 x 2 + 1 2 sin x ∏ ∏ x.cos x − sin x 2. Xeùt f ( x ) = ; ∀x ∈ ; ⇒ f '( x ) = x 6 3 x2 ∏ ∏ Ñaët Z = x.cos x − sin x ⇒ Z ' = − x x < 0 ; ∀x ∈ ; 6 3 ∏ ∏ ⇒ Z ñoàng bieán treân ∀x ∈ ; vaø : 6 3 ∏ −3 3 ∏ ∏ Z Z∏ = < 0 ; ∀x ∈ ; ( 3) 6 6 3 ∏ ∏ ⇒ f '( x ) < 0 ; ∀x ∈ ; 6 3 x -∞ ∏ ∏ +∞ 6 3 f’(x) − f(x) ∏ 3 ց 3 3 2∏ 3 3 3 ⇒ f( X ) 2∏ ∏ 3 3 sin x 3 hay : 2∏ x ∏ 3 3 ∏3 ∏ sin x 3 ∏3 3 ∏ sin x 1 2 ∏ ∫∏ 6 ∫ ∫∏ 6 dx ⇒ 4 ∫ ⇒ dx ∏ 3 dx ∏ 3 dx 6 x ∏ 6 x 2 3. Ñaët t = cos x ; x ∈ [ 0, ∏ ] ⇒ t ∈ [ −1,1] vaø f (t ) = t 2 + t + 1; t ∈ [ −1,1] 19
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 f '(t ) = 2t + 1; f '( t ) = 0 ⇔ t = − 2 t - ∞ -1 −1 1 +∞ 2 f’(t) − 0 + f(t) 1 3 ց ր 3 4 3 ⇒ f(t ) 3 ; ∀t ∈ [ −1,1] 4 3 ⇒ cos 2 x + cos x + 1 3 ; ∀x ∈ [ 0, ∏ ] 4 3 1 1 2 hay cos 2 x + cos x + 1 3 ⇒ 2 3 cos 2 x + cos x + 1 3 1 ∏ ∏ 1 2 ∏ ⇒ ∫ dx 3 0 ∫ 0 cos x + cos x + 1 2 dx ∫ dx 3 0 ∏ 3 ∏ 1 2∏ 3 ⇒ 3 ∫ cos x + cos x + 1 0 2 dx 3 Chuù yù : thöïc chaát baát ñaúng thöùc treân phaûi laø : ∏ 3 ∏ 1 2∏ 3
CÓ THỂ BẠN MUỐN DOWNLOAD
-
TUYỂN TẬP BÀI TẬP DÒNG ĐIỆN XOAY CHIỀU THI ĐẠI HỌC
9 p | 3019 | 1173
-
Tuyển tập bài tập Toán hình học lớp 9
28 p | 2898 | 963
-
tuyển tập bài tập vật lý 10 hay
43 p | 1760 | 518
-
Sưu tầm Trò chơi, bài hát, thơ ca, truyện, câu đố theo chủ đề
253 p | 1068 | 317
-
Tuyển tập ôn tập Toán 9 theo từng chuyên đề: Phương trình bậc hai một ẩn
2 p | 1614 | 207
-
Phương pháp giải toán Vật lý 12 - Phần II
68 p | 293 | 165
-
TUYỂN CHỌN VÀ BIÊN TẬP BÀI TẬP VẬT LÝ BÀI TẬP DAO ĐỘNG CƠ HỌC
8 p | 539 | 127
-
HỆ THỐNG BÀI TẬP CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC VẬT LÝ - VŨ ĐÌNH HOÀNG
551 p | 205 | 73
-
Hệ thống công thức Vật Lý 12 chương trình Phân Ban
26 p | 196 | 58
-
ĐỀ CƯƠNG ÔN THI TUYỂN SINH LIÊN THÔNG KHÓA 7 MÔN: ANH VĂN KHÁCH SẠN – NHÀ HÀNG
2 p | 231 | 45
-
TUYỂN TẬP BÀI TẬP ÔN THI ĐẠI HỌC CAO ĐẲNG CÁC NĂM PHẦN DAO ĐỘNG CƠ HỌC
7 p | 200 | 44
-
Tuyển chọn bài tập hình học không gian
5 p | 161 | 42
-
Bài giảng Hóa học 10 bài 38: Cân bằng hóa học
40 p | 271 | 39
-
phát triển tư duy sáng tạo giải bài tập chuyên đề vô cơ - trần nguyễn trọng nhân
322 p | 240 | 38
-
Tuyển tập bài tập phương trình, bất phương trình, hệ phương trình, mũ, logarit
2 p | 190 | 36
-
Phương trình căn
6 p | 88 | 15
-
Tuyển chọn 1000 bài tập chuyên đề viết lại câu tiếng Anh (Có đáp án)
54 p | 67 | 8
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn