Tuyển tập các câu hỏi trắc nghiệm về hệ phương trình - Phạm Thành Luân
lượt xem 101
download
Tài liệu "Tuyển tập các câu hỏi trắc nghiệm về hệ phương trình - Phạm Thành Luân " nhằm giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập toán một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình, nâng cao khả năng vận dụng kiến thức vào trong các kỳ thi. Chúc các bạn học tốt...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tuyển tập các câu hỏi trắc nghiệm về hệ phương trình - Phạm Thành Luân
- CAÂU HOÛI TRAÉC NGHIEÄM 7. Ñònh a ñeå heä coù nghieäm thoûa: (x 2 + y 2 ) nhoû nhaát: ⎧2x + y = 5 ⎨ ⎩2y − x = 10a + 5 ⎧(m + 4)x − (m + 2)y = 4 Xeùt heä phöông trình: ⎨ 3 1 1 ⎩(2m − 1)x + (m − 4)y = m a. a = − b. a = − c. a = 1 d. a = 2 2 2 Traû lôøi töø caâu 1 ñeá caâu 3. e. Moät soá khaùc. 1.Vôùi giaù trò naøo cuûa m thì heä coù nghieäm duy nhaát. ⎧2x + y = 5 a. m ≠ −3 b. m ≠ −3 vaø m ≠ 2 c. m ≠ −2 vaø m ≠ 4 8. Ñònh a ñeå heä coù nghieäm thoûa x, y lôùn nhaát. ⎨ d. m ≠ 2 e. Moät keát quaû khaùc. ⎩2y − x = 10a + 5 2. Vôùi giaù trò naøo cuûa m thì heä voâ nghieäm. 3 1 1 2 a. b. − c. d. 1 e. a. m = - 2 b. m = 2 c. m = - 3 d. m = 4 4 2 4 3 e. Ñaùp soá khaùc. 3. Vôùi giaù trò naøo cuûa m thì heä voâ soá nghieäm (x, y). ⎧mx + 2y = m + 1 9. Cho heä phöông trình: ⎨ vaø caùc meänh ñeà: a. m = 2 b. m = - 3 c. m = - 2 d. m = 1 ⎩2x + my = 2m + 5 e. m = 3 (I) Heä coù nghieäm duy nhaát khi m ≠ 2 (II) Heä coù voâ soá nghieäm khi m = - 2 ⎧ax + 2y = a + 1 (III) Heä voâ nghieäm khi m = 2 Xeùt heä phöông trình: ⎨ ⎩2x + ay = 2a − 1 Caùc meänh ñeà naøo ñuùng ? Traû lôùi caùc caâu hoûi töø caâu 4 ñeán caâu 6. a. Chæ (I) b. Chæ (II) c. Chæ (III) d. Chæ (II) vaø (III) e. Chæ (I) vaø (III). 4. Vôùi giaù trò naøo cuûa a thì heä coù nghieäm duy nhaát: a. a ≠ −2 b. a ≠ +2 c. a ≠ ±3 d. a ≠ ±2 ⎧−4x + my = 1 + m 10. Tìm ñieàu kieän ñeå heä coù voâ soá nghieäm: ⎨ e. a ≠ −3 ⎩(m + 6)x + 2y = 3 + m 5. Heä thöùc ñoäc laäp giöõa caùc nghieäm laø: a. m = 3 b. m = - 3 c. m = 1 d. m = 2 a. 2x 2 − 2y2 + 5y + x + 3 = 0 b. 2(x 2 − y2 ) − 5y + x + 2 = 0 e. m = - 2 c. x 2 − y2 + 5y + x − 1 = 0 d. 2(x 2 + y2 ) + 5y − x − 3 = 0 ⎧x 2 y + xy2 = 6 ⎪ 6. Vôùi giaù trò nguyeân naøo cuûa a thì heä coù nghieäm nguyeân duy nhaát. 11. Nghieäm cuûa heä phöông trình: ⎨ laø caëp naøo ? a. a = ±1, a = ±3 b. a = ±2, a = ±4 c. a = ±2 ⎪xy + x + y = 5 ⎩ d. a = ±3 e. Ñaùp soá khaùc. a. (1, 2) vaø (2, 1) b. (1, 2) c. (2, 1) d. (1, 1) e. Ñaùp soá khaùc. 103 104
- ⎧x + xy + y = a + 1 ⎪ ⎧ 12. Cho heä phöông trình: ⎨ 2 2 ⎪x + y + z = 9 ⎪x y + y x = a ⎩ ⎪ ⎪ 16. Nghieäm cuûa heä phöông trình: ⎨xy + yz + zx = 27 laø boä ba naøo ? Ñònh a ñeå heä coù ít nhaát moät nghieäm (x, y) thoûa ñieàu kieän: x > 0 vaø y > ⎪1 1 1 0: ⎪ + + =1 1 1 ⎪x y z ⎩ a. 0 < a ≤ b. a ≥ 2 c. a ≥ 2 ∨ 0 < a ≤ 4 4 a. (2, 2, 2) b. (3, 3, 3) c. (4, 4, 4) d. (2, 2, 1) e. Moät 1 keát quaû khaùc. d. a ≤ 2 ∨ 0 < a ≤ e. Ñaùp soá khaùc. 3 17. Ñònh m ñeå phöông trình sau coù nghieäm: ⎧x 2 = 3x + 2y ⎪ ⎧ ⎪ x +1 + y = m 13. Nghieäm cuûa heä phöông trình: ⎨ laø caëp naøo ? ⎨ 2 ⎪y = 3y + 2x ⎩ ⎪ y +1 + x =1 ⎩ a. (0, 0), (5, 5) b. (0, 0), (5, 5), (-1, 2) vaø (2, -1) c. (-1, 2), (2, -1), (0, a. m = 1 b. m = 2 c. m = - 1 d. m = 3 e. m = 0) - 2. d. (5, 5), (3, 3) e. Moät keát quaû khaùc. ⎪x 2 + xy + y2 = 4 ⎧ 2 ⎧2x + 3xy + y = 15 2 18. Heä phöông trình: ⎨ Coù bao nhieâu caëp nghieäm ⎪ ⎪x + xy + y = 2 ⎩ 14. Heä phöông trình: ⎨ coù bao nhieâu caëp nghieäm 2 2 ⎪x + xy + 2y = 8 ⎩ (x,y). (x, y). a. 3 b. 4 c. 2 d. 1 e. Caû 4 a. 1 b. 3 c. 2 d. 4 e. Voâ caâu treân ñeàu sai. nghieäm. ⎧x 2 − 2y2 = 2x + y ⎪ 19. Nghieäm cuûa heä: ⎨ laø: ⎧x 2 + 2xy − 3y2 = 0 ⎪ 2 2 15. Heä phöông trình: ⎨ coù caëp nghieäm laø: ⎪y − 2x = 2y + x ⎩ ⎪x x + y y = −2 ⎩ a. (0, 0),(1, 1) b. (-3, -3) c. (2, 2),(0, 0) d. (0, 0), (-3, - ⎛ 3 1⎞ ⎛1 1⎞ 3) a. (−1, −1) b. ⎜ − , ⎟ c. (2, 2), ⎜ , ⎟ e. Moät keát quaû khaùc. ⎝ 2 2⎠ ⎝ 4 3⎠ ⎧ 3 3 ⎪x − y = 3x − 3y ⎛ 3 1⎞ ⎛ 3 1⎞ 20. Soá caëp nghieäm cuûa heä: ⎨ laø: d. ⎜ − , − ⎟ (3,3) e. (−1, −1), ⎜ − , ⎟ 6 6 ⎝ 2 2⎠ ⎝ 2 2⎠ ⎪x + y = 1 ⎩ a. 4 b. 1 c. 2 d. 3 e. Caû 4 caâu treân ñeàu sai. 105 106
- HÖÔÙNG DAÃN GIAÛI Vôùi a ≠ ±2 ⇒ heä coù nghieäm duy nhaát. D a −1 3 D y 2a + 1 3 x= x = =1− ; y= = =2− m + 4 −(m + 2) D a+2 a+2 D a+2 a+2 1b. D = = 3(m + 3)(m − 2) 2m − 1 m − 4 ⎡1 ⎡ −1 ⎢ −1 ⎢ −3 4 −(m + 2) Vaäy x, y nguyeân ⇔ a + 2 laø öôùc soá cuûa 3 ⇔ a + 2 = ⎢ ⇔ a = ⎢ Dx = = (m − 2)(m + 8) ⎢3 ⎢1 m m−4 ⎢ ⎢ m+4 4 ⎢ −3 ⎣ ⎢ −3 ⎣ Dy = = (m − 2)2 2m − 1 m 2 1 Neáu D ≠ 0 ⇔ 3(m + 3)(m − 2) ≠ 0 m ≠ −3 vaø m ≠ 2 thì heä coù nghieäm 7b. Ta coù: D = = 5, −1 2 duy nhaát. 5 1 2 5 Dx = = 5(−2a + 1) ; D y = = 5(4a + 3) 2c. Vôùi m = - 3 thì D = 0, Dx = −25 ≠ 0 : heä voâ nghieäm. 10a + 5 2 −1 10a + 5 ⎧ Dx ⎧6x − 4y = 4 ⎧3x − 2y = 2 ⎪x = ⎪ D = −2a + 1 3a. Vôùi m = 2 thì D = 0, heä ⇔ ⎨ ⇔⎨ Heä coù nghieäm: ⎨ ⇒ x 2 + y2 = f(a) = 20a2 + 20a + 10 ⎩3x − 2y = 2 ⎩3x − 2y = 2 ⎪y = Dy = 4a + 3 ⎧x tuøy yù ⎪ ⎩ D ⇒ Heä coù voâ soá nghieäm (x, y) vôùi 3x – 2y = 2 hay: ⎪ 3x − 2 . ⎨ 1 ⎛ 1⎞ f '(a) = 40a + 20, f '(a) = 0 ⇔ a = − ⇒ f ⎜ − ⎟ = −1 ⎪y = 2 ⎩ 2 ⎝ 2⎠ Baûng bieán thieân: a 2 4d. Ta coù: D = = a2 − 4 2 a Ñeå heä coù nghieäm duy nhaát ⇔ D ≠ 0 ⇔ a2 − 4 ≠ 0 ⇔ a ≠ ±2 . 5e. Ta coù: ⎧a(x − 1) = 1 − 2y 1 − 2y −1 − 2x 1 ⎨ ⇒ = ⇔ 2(x 2 − y 2 ) + 5y − x − 3 = 0 ⇒ Min (x 2 + y 2 = −1) khi a = − ⎩ a(y − 2) = −1 − 2x x −1 y−2 2 a +1 2 6a. D x = = a2 − 3a + 2 = (a − 1)(a − 2) 2a − 1 a a a +1 Dy = = 2a2 − 3a − 2 = (a − 2)(2a + 1) 2 2a − 1 107 108
- ⎧2x + y = 5 10e. Ñeå heä coù voâ soá nghieäm tröôùc tieân phaûi coù: 8c. Heä ⇔ ⎨ D=5, ⎩− x + 2y = 10a + 5 −4 m D= = −8 − m 2 − 6m = 0 5 1 2 5 m+6 2 Dx = = 5(−2a + 1) ; D y = = 20a 10a + 5 2 −1 10a + 5 ⇔ m 2 + 6m + 8 = 0 ⇔ m = −2 ∨ m = −4 ⎧ Dx ⎧−4x − 2y = −1 . Vôùi m = - 2: heä trôû thaønh: ⎨ ⇔ 4x + 2y = 1 ⇒ heä coù voâ ⎪x = ⎪ D = −2a + 1 ⎩4x + 2y = 1 ⇒⎨ ⇒ xy = f(a) = −8a2 + 4a ⎪y = Dy soá nghieäm ⇒ m = −2 (nhaän). = 4a ⎪ ⎩ D ⎧ 3 ⎧−4x − 4y = −3 ⎪2x + 2y = 1 ⎛1⎞ 1 . Vôùi m = - 4: Heä trôû thaønh: ⎨ ⇔⎨ 2 Voâ ⇒ f '(a) = −16a + 4, f '(a) = 0 ⇔ a = , f ⎜ ⎟ = ⎩2x + 2y = −1 ⎪2x + 2y = −1 4 ⎝4⎠ 2 ⎩ Baûng bieán thieân: nghieäm. Vaäy m = - 2 heä coù voâ soá nghòeâm. ⎧SP = 6 ⎧S = 2 ⎧S = 3 11a. Heä ⇔ ⎨ ⇔⎨ ∨⎨ ⎩P + S = 5 ⎩P = 3 ⎩P = 2 . S = 2, P = 3 khoâng thoûa S2 − 4P ≥ 0 (loaïi) ⎧x = 1 ⎧x = 2 1 1 . S = 3, P = 2: ⇔ ⎨ ∨⎨ ⇒ Max(xy) = khi a = . ⎩y = 2 ⎩y = 1 2 4 m 2 ⎧ S + P = a + 1 ⎧ S = a ⎧S = 1 9d. Ta coù: D = = m 2 − 4 = (m + 2)(m − 2) 12c. Heä ⇔ ⎨ ⇔⎨ ∨⎨ 2 m ⎩SP = a ⎩P = 1 ⎩P = a m +1 2 m m +1 ⎧S = a Dx = = (m − 5)(m + 2), D y = = (m + 2)(2m − 1) . Vôùi ⎨ ñieàu kieän ñeå x > 0, y > 0 laø: 2m + 5 m 2 2m + 5 ⎩P = 1 . Neáu D ≠ 0 ⇔ m ≠ ±2 thì heä coù nghieäm duy nhaát. ⎧S > 0 ⎪ ⎧a > 0 ⎪ . Neáu D = 0 ⇔ m = ±2 ⎨P > 0 ⇔⎨ 2 ⇔a≥2 + m = 2: Dx = −12 ≠ 0 : heä voâ nghieäm ⎪ 2 ⎪a − 4 ≥ 0 ⎩ ⎩S − 4 ≥ 0 ⎧2x − 2y = 1 + m = - 2: heä trôû thaønh: ⎨ ⇒ heä coù voâ soá nghieäm. ⎩2x − 2y = 1 109 110
- ⎧S = 1 ⎧ 2 2 ⎪x + 2xy − 3y = 0 (1) . Vôùi ⎨ Ñieàu kieän ñeå x > 0, y > 0 laø: 15e. ⎨ ⎩P = a ⎪x x + y y = −2 (2) ⎩ ⎧S > 0 ⎪ ⎧a > 0 1 Ta xem (1) laø phöông trình aån soá x ta coù: ∆ ' = y2 + 3y2 = 4y2 ⎨P > 0 ⇔⎨ ⇔ 0
- ⎧ x + 1 + y = m(1) ⎪ ⎧x3 − y3 = 3x − 3y (1) ⎪ 17a. ⎨ Ñieàu kieän cuûa heä: x ≥ 0,y ≥ 0 20c. ⎨ 6 6 ⎪ y + 1 + x = 1(2) ⎩ ⎪x + y = 1 ⎩ (2) Thì y + 1 + x ≥ 1 ⇒ (2) ⇔ x = y = 0 thay vaøo (1): ta ñöôïc m = 1. Ta coù: (1) ⇔ (x − y)(x 2 + xy + y 2 − 3) = 0 Vaäy heä coù nghieäm khi m = 1. ⎧x = y ⎪ 1 1 1 * ⎨ 6 6 ⇒ x6 = ⇒ x = ± 6 = ± 6 ⎪x + y = 1 ⎩ 2 2 2 ⎧x 2 + xy + y2 = 4 ⎪ ⎧s2 − p = 4 ⎪ 18c. Ta coù: ⎨ ⇔⎨ (s = x + y, p = xy) ⎛ 1 1 ⎞⎛ 1 1 ⎞ ⎪x + xy + y = 2 ⎪s + p = 2 ⇒ Coù 2 caëp nghieäm cuûa heä : ⎜ 6 , 6 ⎟ , ⎜ − 6 , − 2 ⎟ ⎩ ⎩ ⎝ 2 2⎠ ⎝ 2 6⎠ ⎧s2 + s − 6 = 0 ⎪ ⎧s = −3 ⎧s = 2 ⎧s = 2 ⎧x 2 + xy + y2 − 3 = 0(3) ⇔⎨ ⇔⎨ ∨⎨ chæ nhaän ⎨ thoûa ñieàu kieän ⎪ ⎪p = 2 − s ⎩ p = 5 ⎩p = 0 ⎩p = 0 * ⎨ ⎩ 6 6 ⎪x + y = 1 ⎩ (2) ⎧x = 0 ⎧x = 2 s2 ≥ 4p ⇒ nghieäm ⎨ ∨⎨ (4) ⇒ x ≤ 1 vaø y ≤ 1 ⇒ x 2 + y2 + xy ≤ 3 . ⎩y = 2 ⎩y = 0 Daáu "=" xaûy ra ⇔ x = y = 1 hay x = y = - 1 khoâng thoûa (2). ⎧x 2 − 2y 2 = 2x + y (1) ⎪ 19d. ⎨ 2 2 ⎪y − 2x = 2y + x (2) ⎩ ⎡x = y (1) – (2) : 3(x 2 − y2 ) = x − y ⇔ (x − y)(3x + 3y − 1) = 0 ⇔ ⎢ ⎢x + y = 1 ⎢ ⎣ 3 ⎧ 1 ⎧x = y ⎪ ⎪x + y = Heä cho ⇔ (I) : ⎨ 2 2 ;(II) ⎨ 3 ⎪x − 2y = 2x + y ⎩ ⎪x 2 + y2 = −3(x + y) ⎩ ⎪x = y ⎧ ⎧x = 0 ⎧x = −3 (I) ⇔ ⎨ 2 ⇔⎨ ∨⎨ ⎪− x = 3x ⎩ ⎩y = 0 ⎩y = −3 ⎧ 1 ⎪x + y = 3 ⎪ (II) ⇔ ⎨ khoâng thoûa ñieàu kieän s2 − 4p ≥ 0 ⇒ (II)VN ⎪xy = 5 ⎪ ⎩ 9 Vaäy nghieäm soá heä: (0, 0), (-3, -3) 113 114
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi vào đại học FPT Gmat Test
7 p | 1264 | 360
-
Tuyển tập câu hỏi trắc nghiệm vật lí chuyên đề: Dòng điện xoay chiều
8 p | 827 | 308
-
Đề thi hoàn chỉnh đại học FPT
16 p | 1008 | 247
-
Đề thi mẫu đại học FPT
8 p | 669 | 170
-
Tuyển tập câu hỏi trắc nghiệm windows
17 p | 742 | 90
-
Tuyển tập các câu hỏi trắc nghiệm về phương trình - Phạm Thành Luân
9 p | 257 | 83
-
Tuyển tập 100 câu hỏi trắc nghiệm Tiếng Anh (Tập 3) kèm theo đáp án và giải thích
16 p | 320 | 80
-
Ôn tập dao động điều hòa con lắc lò xo
6 p | 245 | 73
-
80 câu hỏi trắc nghiệm ôn tập học kì 2 môn công nghệ lớp 12
5 p | 1440 | 70
-
Tổng hợp 50 câu trắc nghiệm vật lý hạt nhân
14 p | 253 | 60
-
Tuyển tập các câu hỏi Vật lý khó nhằn từ các đề thi thử Đại học trên toàn quốc
10 p | 229 | 50
-
Tuyển chọn các câu hỏi trắc nghiệm hóa-Halogen
7 p | 125 | 27
-
Bộ câu hỏi trắc nghiệm môn kiến thức chung phục vụ thi tuyển công chức cơ quan Đảng, đoàn thể
46 p | 30 | 7
-
Đề thi thử tốt nghiệp THPT môn Vật Lý - Trường THPT Đỗ Đăng Tuyển
19 p | 76 | 4
-
Tuyển chọn 150 câu điện xoay chiều - Trần Trọng Duy
17 p | 76 | 3
-
Tuyển chọn các câu hỏi hay phần Sóng cơ
3 p | 75 | 3
-
Tuyển tập bài tập Điện AC thi đại học
7 p | 52 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn