Tuyển tập đề thi học sinh giỏi Toán 12 tỉnh Đồng Tháp 2001 - 2009
lượt xem 56
download
Dưới đây là tuyển tập đề thi học sinh giỏi môn Toán lớp 12 tỉnh Đồng Tháp từ năm 2011 - 2009 này giúp các em học sinh ôn tập kiến thức, ôn tập kiểm tra, thi cuối kỳ, rèn luyện kỹ năng để các em nắm được toàn bộ kiến thức chương trình toán 12.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tuyển tập đề thi học sinh giỏi Toán 12 tỉnh Đồng Tháp 2001 - 2009
- TUY N T P THI H C SINH GI I THPT C P T NH MÔN TOÁN NG THÁP T N M H C 2000-2001 N N M H C 2008-2009 http://kinhhoa.violet.vn Nguy n c Tu n ( NDTuanMAT ) Tháng 9 Năm 2009 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2000 - 2001 Ngày thi: 25 tháng 11 Th i gian làm bài: 180 phút Bài 1: Cho dãy s xác nh như sau: n 1 un = ∑ ; ∀n ∈ Ν và n ≥ 1 . i =1 i ( i + 1)( i + 2 )( i + 3 ) Tìm lim un . x →+∞ 1 Bài 2: Cho phương trình: y 3 − 9 y 2 + 11 y − = 0 (1) 3 a. Ch ng minh r ng tan 10 ; tan 50 ; tan 2 700 là 3 nghi m phân bi t c a phương 2 0 2 0 trình (1). b. Tính P = tan 6 100 + tan 6 500 + tan 6 700 . Bài 3: Tìm t t c các a th c P ( x) có h s nguyên sao cho ta có: x.P ( x − 20) = ( x − 2000).P ( x) ; ∀x ∈ Ζ . Bài 4: Cho hình chóp S . ABC nh S ; SA = x ; SB = y ; SC = z . a. Ch ng minh r ng VS . ABC = x. y.z.VS . A ' B 'C ' ; v i SA ' = SB ' = SC ' = 1 ơn v dài. A '; B '; C ' n m tương ng trên các tia SA; SB; SC . b. Xác nh x, y, z di n tích xung quanh c a hình chóp S . ABC b ng 3k 2 ( k là s th c cho trư c) và th tích c a nó l n nh t. Bài 5: Cho a, b, c là 3 s th c dương và ab + bc + ca = abc . Ch ng minh r ng: a 2 + 2b 2 b 2 + 2c 2 c 2 + 2a 2 + + ≥ 3. ab bc ca 1 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2001 - 2002 Ngày thi: 24 tháng 11 Th i gian làm bài: 180 phút Bài 1: Cho 3 s th c dương a, b, c th a i u ki n abc = 1 . Ch ng minh r ng: 1 + ab 2 1 + bc 2 1 + ca 2 18 + + ≥ 3 3 3. c 3 a 3 b 3 a +b +c Bài 2: Cho x, y là 2 s th a mãn i u ki n: x − 2 y −1 ≤ 0 x + 3y − 6 ≤ 0 2 x + y − 2 ≥ 0 a. Ch ng minh: x 2 + y 2 ≤ 10 . b. Tìm t t c các giá tr c a x, y : x 2 + y 2 = 10 . Bài 3: Cho phương trình: x n + x n −1 + x n − 2 + ... + x 2 + x − 1 = 0 (1), n nguyên dương. a. Ch ng minh r ng v i m i n thì phương trình (1) có nghi m dương duy nh t xn . b. Tìm lim xn . x →+∞ Bài 4: Cho tam giác ABC có BC > CA > AB . G i D là m t i m n m trên o n BC . Trên ph n n i dài c a BA v phía A ch n i m E . Bi t r ng BD = BE = CA . G i P là giao i m c a ư ng tròn ngo i ti p tam giác EBD v i c nh AC . G i Q là giao i m th hai c a BP v i ư ng tròn ngo i ti p tam giác ABC . Ch ng minh r ng: a. Tam giác AQC và tam giác EPD là hai tam giác ng d ng. b. Ta có: BP = AQ + CQ . Bài 5: Cho 3 tia Ox, Oy, Oz vuông góc v i nhau ôi m t t o thành góc tam di n Oxyz . i m M c nh n m trong góc tam di n. M t m t ph ng (α ) qua M c t Ox, Oy, Oz l n lư t t i A, B, C . G i kho ng cách t M n các m t ph ng ( OBC ) , ( OCA) , ( OAB ) l n lư t là a, b, c . a. Ch ng minh tam giác ABC là tam giác nh n. b. Tính OA, OB, OC theo a, b, c th tích t di n OABC là nh nh t. 2 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2002 - 2003 Ngày thi: 24 tháng 11 Th i gian làm bài: 180 phút Bài 1: a. Cho 4 s th c dương a, b, c, d . Ch ng minh r ng: a4 b4 c4 d4 a+b+c+d + + + ≥ ( a + b ) ( a + b ) (b + c ) (b + c ) ( c + d ) (c + d ) ( d + a ) ( d + a ) 2 2 2 2 2 2 2 2 4 . b. Cho 6 s th c dương a, b, c, d , e, f . Ch ng minh r ng: (a + b + c) + (d + e + f ) 2 2 ≤ a 2 + d 2 + b 2 + e2 + c 2 + f 2 . Bài 2: Kí hi u Ν * là t p các s nguyên dương. Tìm t t c các hàm f : Ν* → Ν * th a mãn ng th i hai i u ki n sau: ( i ) : f ( n + 1) > f ( n ) ( ii ) : f ( f ( n ) ) = n + 2002, ∀n ∈ Ν * Bài 3: Cho dãy {an } , n ∈ Ν * ư c xác nh b i: a1 = a2 = 1; a3 = 2 a a + p v i p∈ Ν*. an +3 = n + 2. n +1 an nh p m i s h ng c a dãy {an } u là s nguyên. Bài 4: Cho a th c f ( x ) = x n + a1 x n −1 + a2 x n − 2 + ... + an là a th c b c n ≥ 2 có các nghi m th c b1 , b2 ,..., bn . Cho x > bi , ∀i = 1...n . Ch ng minh: 1 1 1 f ( x + 1) + + ... + ≥ 2n . 2 x − b1 x − b2 x − bn Bài 5: Cho t di n ABCD có các c nh xu t phát t A ôi m t vuông góc v i nhau. G i a là c nh l n nh t xu t phát t A và r là bán kính hình c u n i ti p t di n. Ch ng minh r ng: ( a ≥ 3+ 3 r . ) 3 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2003 - 2004 Ngày thi: 23 tháng 11 Th i gian làm bài: 180 phút Bài 1: Gi i phương trình sau: 1 + 1 − x 2 (1 − x ) − (1 + x ) = 2 + 1 − x2 . 3 3 Bài 2: 3 2 a. Tìm giá tr l n nh t, giá tr nh nh t c a ( x + y + z ) bi t: y 2 + yz + z 2 = 1 − x . 2 b. Tìm các s nguyên a, b, c th a mãn b t ng th c: a + b + c + 3 < ab + 3b + 2c . 2 2 2 Bài 3: Trong tam giác ABC ta d ng các ư ng phân giác trong AA ', BB ', CC ' ; giao i m A ', B ', C ' l n lư t thu c các c nh BC , CA, AB . Các giao i m này l p thành tam giác A ' B ' C ' . Ch ng minh r ng: S A ' B 'C ' 2abc = . S ABC ( a + b )( b + c )( c + a ) Bài 4: Cho Ζ là t p các s nguyên. Cho hàm f : Ζ → Ζ th a mãn các i u ki n: ( i ) : f ( −1) = f (1) ( ii ) : f ( x ) + f ( y ) = f ( x + 2 xy ) + f ( y − 2 xy ) v i m i x, y ∈ Ζ . a. Ch ng minh f ( − n ) = f ( n ) , ∀n ∈ Ν . b. Tìm t t c các hàm f có tính ch t nói trên. 4 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2004 - 2005 Ngày thi: 14 tháng 11 Th i gian làm bài: 180 phút Bài 1: V i 3 s th c x, y, z tùy ý, ta t: S = x + y + z ; P = xy + yz + zx ; Q = xyz . a. Ch ng minh: x3 + y 3 + z 3 = S 3 − 3SP + 3Q . b. Hãy bi u di n x 4 + y 4 + z 4 theo S , P và Q . Bài 2: Tìm a th c f ( x ) có t t c các h s u là s nguyên không âm nh hơn 9 và th a mãn f ( 9 ) = 2004 . Bài 3: Cho hai hình vuông ABCD và ABEF có c nh AB là c nh chung. Hai m t ph ng ( ABCD ) và ( ABEF ) vuông góc v i nhau. Tìm v trí ư ng vuông góc chung c a hai ư ng th ng AE và BD . Bài 4: V i s nguyên dương a = a1a2 ...ak , k ∈ Ν * , ta t: T ( a ) = a1 + a2 + ... + ak ( t ng các ch s c a a ) Dãy s { xn } , n ∈ Ν * xác nh như sau: x = (T ( 2004 ) )2004 1 xn = (T ( xn −1 ) ) 2004 Ch ng minh r ng dãy { xn } , n ∈ Ν * b ch n. Bài 5: Tam giác ABC có 3 góc nh n n i ti p trong ư ng tròn tâm O bán kính R . Cho AB = c; BC = a; CA = b . Ch n I là i m b t kì trong tam giác ABC ; g i x, y, z là các kho ng cách t I n các c nh BC , CA, AB . Ch ng minh: a 2 + b2 + c 2 x+ y+ z≤ . 2R 5 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2005 - 2006 Ngày thi: 9 tháng 10 Th i gian làm bài: 180 phút Bài 1: Tính t ng: S = t an10 . t an20 + t an20 .t an30 + ... + t an20040. t an20050 . Bài 2: a. Cho P ( x ) là a th c v i h s nguyên sao cho: P ( a ) = P ( b ) = P ( c ) = 1 v i a, b, c là các s nguyên ôi m t khác nhau. Ch ng minh phương trình P ( x ) = 0 không có nghi m nguyên. b. Tìm m t a th c f ( x ) b c 5 sao cho f ( x ) − 1 chia h t cho ( x − 1) và f ( x ) 3 chia h t cho x3 . Bài 3: a. T ng c a 2 s nguyên dương b ng 2310. Ch ng minh r ng tích c a hai s này không chia h t cho 2310. b. Tìm nghi m nguyên ( x, y ) c a phương trình y = 2 x + y 2 + 2 ( 2 x + 1) y + 8 x . Bài 4: a. Cho tam giác ABC n i ti p ư ng tròn ( O ) . Các ư ng th ng v qua A, B, C ôi m t song song, c t ư ng tròn ( O ) t i các i m A1 , B 1 , C1 ( khác v i A, B, C ). Ch ng minh r ng tr c tâm các tam giác A1 BC , B1CA, C1 AB th ng hàng. b. Cho tam giác ABC u c nh b ng 2 ơn v dài. ư ng th ng ( d ) không i qua b t kì nh nào c a tam giác. G i α , β , γ là góc gi a ( d ) và theo th t v i các ư ng th ng i qua các c nh BC , CA, AB c a tam giác u ABC . Tính: M = sin α .sin β .sin γ + cos α .cos β .cos γ . 2 2 2 2 2 2 Bài 5: Cho dãy {un } , n nguyên dương, xác nh như sau: u1 = 2 n ui u 2 − un . t Sn = ∑ . un +1 = n + un i =1 ui +1 − 1 2005 Tìm lim S n . x →+∞ 6 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2006 - 2007 Ngày thi: 22 tháng 10 Th i gian làm bài: 180 phút Bài 1: Tìm t ng c a các s nguyên dương t m n n , k c m và n ( m < n ) , suy ra t ng các s gi a 1000 và 2000 mà không chia h t cho 5. x+2 Bài 2: Tìm t t c các s th c x sao cho k = là s nguyên. x + 4x + 5 2 Bài 3: Ch ng minh r ng n u a, b, c là 3 c nh c a m t tam giác tương ng v i các nh A, B, C thì: a + b − 2c b + c − 2a c + a − 2b + + ≥ 0. C A B sin sin sin 2 2 2 Bài 4: Tìm t t c các a th c d ng f ( x ) = x3 + ax 2 + bx + c , v i a, b, c là các s nguyên, sao cho a, b, c là nghi m c a f ( x ) . 1 Bài 5: Cho F (1) = F ( 2 ) = 1, F ( n + 2 ) = F ( n + 1) + F ( n ) và hàm s f ( x) = . 1+ x ( ) t: Gn ( x ) = x + f ( x ) + f ( f ( x ) ) + ... + f f (... f ( x ) ...) , trong s h ng sau cùng f l p F (1) F ( 2) F ( n + 1) l i n l n. Ch ng minh: Gn (1) = + + ... + . F ( 2) F ( 3) F ( n + 2) Bài 6: T i m P n m ngoài ư ng tròn cho trư c k hai ti p tuy n ti p xúc v i ư ng tròn l n lư t t i A và B . Ch n i m S n m trên dây cung AB . Tia PS c t cung nh 2 PR.PQ AB t i R và c t cung l n AB t i Q . Ch ng minh: PS = . PR + PQ Bài 7: Ch ng minh r ng m i s nguyên dương n tùy ý luôn bi u di n dư i d ng t ng c a các s h ng 2 r 3s v i r , s là các s nguyên không âm. 7 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2007 - 2008 Ngày thi: 14 tháng 10 Th i gian làm bài: 180 phút Bài 1: a. Tìm t t c các s nguyên m sao cho phương trình x 2 + ( m 2 − m ) x − m3 + 1 = 0 có m t nghi m nguyên. ( ) ( ) x x b. Gi i b t phương trình: log 2 2 − 1 + 3 + 1 − log 2 2 +1 ≤ 2. Bài 2: a. Gi i phương trình: 4sin 2 5 x − 4sin 2 x + 2 ( sin 6 x + s in4x ) + 1 = 0 . b. Cho các s th c x1 , x2 ,..., xn th a mãn sin 2 x1 + 2sin 2 x2 + ... + n sin 2 xn = a , v i n n ( n + 1) là s nguyên dương, a là s th c cho trư c, 0 ≤ a ≤ . Xác nh các giá tr 2 c a x1 , x2 ,..., xn sao cho t ng S = s in2x1 + 2s in2x2 + ... + n s in2xn t giá tr l n nh t và tìm giá tr l n nh t này theo a và n . Bài 3: a. Cho 3 s th c a, b, c th a abc = 1 . Ch ng minh: 1 1 1 3 + 6 2 + 6 2 ≥ . a6 (b2 + c2 ) b ( c + a 2 ) c ( a + b2 ) 2 b. Cho tam giác ABC nh n th a mãn i u ki n: cot A ( cot A + 2 cot B ) A+ B = 2 cot − cot B . Ch ng minh tam giác ABC là tam A+ B 2 2 cot + cot B 2 giác cân. Bài 4: Cho tam giác ABC , trên các c nh BC , CA, AB l n lư t l y các i m A ', B ', C ' sao cho AA ', BB ' và CC ' ng quy t i i m M . G i S1 , S 2 , S3 l n lư t là di n tích c a MA ' MB ' MC ' các tam giác MBC , MCA, MAB và t = x, = y, = z. MA MB MC Ch ng minh r ng: ( y + z − 1) S1 + ( x + z − 1) S 2 + ( x + y − 1) S3 = 0 . 8 © Nguy n c Tu n – Nickname: NDTuanMAT
- Bài 5: Cho dãy {un } , n là s nguyên dương, xác nh như sau: u1 = 1 1 + un 2 − 1 . un +1 = , un > 0 un n −1 π 1 Tính u n và ch ng minh r ng: u1 + u2 + ... + un ≥ 1 + 1 − . 4 2 Bài 6: Cho a th c f ( x ) = x3 + ax 2 + bx + b có 3 nghi m x1 , x2 , x3 và a th c g ( x ) = x3 + bx 2 + bx + a . Tính t ng: S = g ( x1 ) + g ( x2 ) + g ( x3 ) theo a, b . 9 © Nguy n c Tu n – Nickname: NDTuanMAT
- THI NĂM H C 2008 - 2009 Ngày thi: 16 tháng 11 Th i gian làm bài: 180 phút 2 3 Câu 1: Gi i phương trình: ( tan x − cot x ) = tan 2 x + cot 2 x − 2 . 3 Câu 2: Cho tam giác ABC n i ti p ư ng tròn tâm I . G i D là trung i m c a c nh AB , E là tr ng tâm c a tam giác ADC . Ch ng minh r ng n u AB = AC thì IE vuông góc v i CD . Câu 3: Tìm nghi m nguyên dương c a phương trình: x2 − 2 y 2 = 1. Câu 4: Cho dãy s { xn } , n ∈ Ν * ư c xác nh b i: x1 = 1 x 2008 . Tìm gi i h n c a dãy un v i: xn +1 = n + xn 2008 x1 2007 x2 2007 xn 2007 un = + + ... + . x2 x3 xn +1 Câu 5: Cho n là s t nhiên, ch ng minh r ng: ( C0n ) + ( C1n ) + ... + ( Cnn ) = C2 n . 2 2 n 2 Câu 6: 1 1 1 a. Cho x, y, z ≥ 1 và + + = 2 . Ch ng minh r ng: x y z x + y + z ≥ x −1 + y −1 + z −1 . b. Cho a th c f ( x ) = x3 − 3 x − 1 có 3 nghi m là a, b, c . Hãy tính: 1+ a 1+ b 1+ c S= + + . 1− a 1− b 1− c Câu 7: Cho i m A ( 0;3) và parabol ( P ) : y = x2 . G i M là m t i m thu c ( P ) có hoành xM = a . Tìm a dài AM là ng n nh t. T ó ch ng t r ng n u o n AM là ng n nh t thì AM vuông góc v i ti p tuy n t i M c a ( P ) . 10 © Nguy n c Tu n – Nickname: NDTuanMAT
- PH L C THI CH N I TUY N D THI C P QU C GIA NĂM H C 2008 – 2009 Ngày thi: 14 tháng 12 Th i gian làm bài: 180 phút Câu 1: Gi i phương trình: (1 + t an10 )(1 + t an20 ) ... (1 + t an450 ) = 2 x . Câu 2: Cho tam giác ABC có các góc u nh n. G i AH , BI , CK là các ư ng cao c a tam giác ABC . Ch ng minh r ng: S HIK = 1 − cos 2 A − cos 2 B − cos 2 C . S ABC Câu 3: Cho a, b là hai s nguyên. Ch ng minh r ng: A = ab ( a 2 + b 2 )( a 2 − b 2 ) chia h t cho 30. Câu 4: Cho hàm s f : Ν* → Ν * th a mãn hai i u ki n: f ( a.b ) = f ( a ) . f ( b ) . Trong ó a, b ∈ Ν*, ( a, b ) = 1 và p, q là s nguyên t . f ( p + q) = f ( p) + f (q) Ch ng minh r ng: f ( 2008 ) = 2008 . Bài 5: Ch ng minh r ng n u n ch n thì 2n chia h t (*) C2 n + 3C2 n + ... + 3k C22nk + ... + 3nC22nn . 0 2 Bài 6: Cho 3 s th c a, b, c . Ch ng minh r ng: (a 2 + 1)( b2 + 1)( c 2 + 1) ≥ ( ab + bc + ca − 1) . 2 Bài 7: Cho tam giác ABC cân t i A . ư ng tròn ( C ) ti p xúc v i ư ng th ng AB, AC l n lư t t i B, C . M là i m tùy ý n m trên ư ng tròn ( C ) . G i d1 , d 2 , d3 l n lư t là các kho ng cách t M n các ư ng th ng AB, AC , BC . Ch ng minh: d1.d 2 = d 32 . 11 (*) hi u là: C2 n + 3C2 n + ... + 3k C2 n + ... + 3nC2 n chia h t cho 2 n 0 2 2k 2n © Nguy n c Tu n – Nickname: NDTuanMAT
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tuyển tập đề thi học sinh giỏi môn Hoá học
65 p | 2778 | 907
-
Tuyển tập đề thi học sinh giỏi lớp 6 - Phạm Bá Thanh
47 p | 1753 | 454
-
Tuyển tập đề thi học sinh giỏi môn Toán lớp 8
47 p | 1200 | 357
-
Tuyển tập đề thi học sinh giỏi các môn lớp 9
43 p | 1378 | 325
-
Tuyển tập đề thi học sinh giỏi môn toán các tỉnh thành 2008 - 2009
40 p | 611 | 246
-
Tuyển tập đề thi học sinh giỏi môn toán THCS tỉnh Hải Dương
32 p | 794 | 180
-
Tuyển tập đề thi học sinh giỏi môn Sinh lớp 12
6 p | 785 | 129
-
Tuyển tập đề thi học sinh giỏi Toán 12 tỉnh Kon Tum
4 p | 375 | 91
-
Tuyển tập đề thi học sinh giỏi môn Toán lớp 6
16 p | 449 | 88
-
Tuyển tập đề thi học sinh giỏi môn Tiếng Anh 12 (các tỉnh thành cả nước)
205 p | 299 | 87
-
Tuyển tập đề thi học sinh giỏi môn Anh lớp 12 năm 2010 - 2011
275 p | 244 | 68
-
Tuyển tập đề thi học sinh giỏi có đáp án: Môn Toán 8 - Trường THCS Thanh Mỹ (Năm học 2011-2012)
49 p | 465 | 60
-
Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán
49 p | 452 | 44
-
Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán - Trường THCS Phạm Công Bình
49 p | 590 | 34
-
Tuyển tập đề thi học sinh giỏi Vật lí 9 THCS cấp tỉnh hay và khó năm học 2021-2022
69 p | 113 | 24
-
Tuyển tập đề thi học sinh giỏi THCS môn Lý
16 p | 134 | 13
-
Tuyển tập đề thi học sinh giỏi môn Vật lí lớp 9 cấp tỉnh năm 2023-2024
52 p | 16 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn